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1 Introduction

In the past, parton shower generators and next-to-leading-order (NLO) calculations were seen as
complementary approaches to computing hadronic interactions. The latter reported, after many tests
of QCD carried out at lepton and hadron colliders, convincing evidence that showed that per-
perturbative QCD at the NLO level works well, and improves the agreement of theoretical prediction
with data. The interest in precise NLO calculations has then shifted in the direction of predicting
cross-sections and backgrounds for collider processes. On the other hand, an effort has been made to
improve the shower generators under the use of a TMD (transverse momentum distribution)
dependence or the use of more precise matrix elements. These efforts have created the way for two
new approaches that have impacted the collider phenomenology field. On one side, the (ME+PS)
(matrix element and shower matching) while on the other (NLO+PS) NLO calculations interfaced
with showers, the latter one would be the essence behind the simulations performed along with this
project. The main goal of our work was to get some answers to whether the usage of POWHEG
(NLO) + TMDs PS is a good tool, at least, when simulating the Z boson production in proton-proton
collisions. Before the idea and the interest came to us we noticed that there was an important
background on this type of study by using instead of POWHEG + TMD PS the MC@NLO approach
which had been quite successful, but it was lacking a couple of advantages that POWHEG might give
to us if we were able to get good enough results that could compete with the results coming from
MC@NLO. From the spectrums that we obtained we noticed that we couldn’t do the mixing of
POWHEG and TMD PS directly, which is by the usage of default parameters of POWHEG, so we
needed to understand the dependence of the results on parameters like hgqmp and p,, .. being the last
one fundamental on solving the scale-up problem. We used a couple of observables also, to get a
closer look inside of the theoretical models that we have used when chasing our main goal. All of
these will be better detailed in the next sections of this report.



2 Theory

2.1 The PB (Parton Branching) method

There is a logical question that needs to be answered when moving forward on this work which is,
why TMD? The answer is that the inclusion of a tied dependence of PS with TMD (transverse
momentum distribution function) results in an improvement to conventional PS methods. It provides,
for example, the strong convenience of fixing the small transverse momentum phenomena. The way
to include TMD in our analyses was through the Parton Branching method, through which it’s being
defined a TMD parton density function which evolution will be very tied to the Parton Shower
behavior, let’s take a deeper look inside this method.
The PB method describes the TMD parton density as:
xAg(x, ke, ) = Ba()xAg (x, ke, pho) +Zqu 40 8q (1)
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with z,, < 1 defining resolvable branchings, k;(q.) being the transverse momentum vector from
the propagating (emitted) parton, respectively. The transverse momentum of the parton before
branch-ing is defined as k, = |k + (1 —z)q| with g =q./1—z being the rescaled transverse
momentum vector of the emitted parton, and ¢ being the azimuthal angle between ¢ and k. The
argument in a; is in general a function of the evolution scale g. Higher-order calculations indicate
the transverse momentum of the emitted parton as the preferred scale. The real emission branching
probability is denoted by P%) = (a,(f(z q)), 2).

The Sudakov form factor is given by:

d
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Dividing the TMD parton density over Aa(»% and then differentiating the fraction over u? gives the
differential form of the evolution equation describing the probability for resolving a parton with
transverse momentum k and momentum fraction x/z into a parton with momentum fraction x and

emitting another parton during a small decrease of u, if it’s being further normalized it would be
obtained:

X X
Ba(W) o (WAaCikem)) _ o i czM o dD  (r) gAb(GRIn)
XAa(x:ktvli) d ( Aa(ﬂ) ) - Zb 2 f dZ 2m Pab XAa(kath) (3)

This equation can be integrated between p* | and u? to give the no-branching probability (Sudakov
form factor) for the backward evolution Ay,
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with x' = x/z. This Sudakov form factor is very similar to the Sudakov form factor in ordinary par-
ton shower approaches, with the difference that for the PB TMD shower the ratio of PB TMD
densities [x'A,(x', ki, q")]/[xA.(x, ki, q")] is applied, which includes a dependence on k..

It is important to remark that, when describing conventional showers with standard collinear pdfs;
the z,, limit was identified as a source of systematic uncertainties. In this particular parton shower



through the PB approach, the same z,, limit is present. However, The PB approach allows a consistent
formulation of the parton shower with the PB TMDs, as in both Sudakov form factors A, and Ay,

the same value of z,, is used. The splitting functions PSZ) contains the coupling:

Pap(ty,2) = Eipy (SLED) p,, -0 ) ©

This method brings a couple of advantages, such as:

The fact that the solutions associated with it are valid for LO, NLO, NNLO calculations. On the other
side, and one of the biggest improvements is that as long as the initial parameters of the PS stay so
tied to the TMDs the uncertainties of the PS process can be relocated with the TMDs uncertainties
which can be fitted through experimental data. [1].

2.2 Background support

Before trying POWHEG with TMD PS there was a previous work on mixing the NLO calculations
with TMD PS. It was performed through the usage of MC@NLO. The main idea in this particular
approach is to subtract the PS approximation for the first emission from the NLO and add it back to
the LO plus unresolved contributions. It is important to remark the good results obtained through this
approach on the following graphs:
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(Fig. 1,2. Drell Yan p, spectrum for the real (left) and virtual (right) regions)

These two results are from a study of PB parton showers applied to Drell Yan (which describes the
lepton and anti-lepton productions in high energy hadrons collisions) + jets productions. In both
curves, the lepton and anti-lepton were produced through the previous productions of a Z boson as a
result of the interactions of a quark and an antiquark from the two initial hadrons.

We can observe the excellent fitting of the MC@NLO calculations with the experimental data of the
Drell Yan p, spectrum for two very different situations, in the left curve, for higher lepton masses
(which is the real region, located close to the Z boson peak) and on the right one for low lepton masses
(on the virtual region, located far from the Z boson peak). As it can be seen there were obtained very
good results for both low and medium p, values, which are the kind of results that we are looking for
in our pursuit.

Now, another logical question could be asked, which is why would anyone be interested on trying to
look for a new matching between NLO and TMD PS through POWHEG + PS if it is possible to get
such good results with MC@NLO? There are several reasons but the main ones are two, the first, and
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which can be considered the most important one, is the fact that MC@NLO brings negative weights
which means nonphysical process probabilities, this can be resolved, otherwise such results couldn’t
be obtained, but to solve this we need to run longer calculations times, and the second reason is the
strong dependence on the method as the whole machinery over the PS method that is being used. And
that is why we are interested in using and testing the POWHEG (NLO) + TMDs Parton Shower.

2.3 The scale up problem

POWHEG vouches for (Positive Weights Hardest Emission Generator) and the fundamental idea
behind it is to generate on the first moment the hardest radiation by modifying the NLO cross-section
and then to give place and to “turn on” the PS generator. The main advantage is that it solves both of
the MC@NLO deficiencies; it doesn’t bring negative weights into the simulation so it is possible to
get equally good fittings with fewer statistics, and it doesn’t depend so directly on the PS method that
is being used. However, would it work just by mixing POWHEG (NLO) and TMD PS directly? The
answer is no, the why;, is related to the scale-up problem. One of the most important parameters when
simulating non-real radiation in the POWHEG method is the p, . ., if the set default value for this
parameter by POWHEG is the one that gets used we would probably get similar results to the
following ones:

CMS, 3TV £ = p

“,:!_ N —

[pb/bin]

Fo—p— Powheg-TMD (scalup)

o logy/ g, /GeV? )

MC/ Data

(Fig. 3: behavior of the d,, observable) (Fig. 4: Transverse momentum of the Z boson )

The graph on the left shows the behavior of the differential jet rates d ;1 observable which usage will
be better detailed along this report’s following section. The one on the right shows the transverse
momentum of the Z boson and as it can be observed both of these curves are not giving place to a
good simulation of the non-real radiation, by using the default p, . . In this case, the number of
events affected by the PS are dramatically reduced and this is why it can’t produce a soft behavior
when merging the real emission region (NLO) with the virtual one (PS). However, it can be solved.
Now it would be good to take a deeper look inside how cross sections can be described.

2.4 NLO, PS and pure POWHEG

We can write the cross section for the emission of a parton according to NLO as:

d R
oz = R (©)

The expression in Eq. 6 is divergent when the radiation becomes soft or collinear to any of the
incoming or outgoing partons. In other words, when we try to have the exclusive cross section in
the radiation variables we obtain unphysical results in regions of phase space in which a small scale
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is resolved. On the other hand, the PS formulation is able to resolve small scales by the subsequent
emission of partons (resolvable and non-resolvable) [2]. The PS approximation for the radiation of
one resolvable parton from the Born configuration is:

Hee) )

207 — RFS(pDexpl- [, ,dp',?
dp:? t P2 t B
where the Sudakov form factor enforces no further resolvable emission above p?2. One should notice
that the LO cross section (B) is recovered after integrating over the radiation phase space. This
should be the case from the probabilistic interpretation of the Sudakov factor, in other words, the

PS is by construction, conserving unitarity. The matching/merging of a PS to a fixed-order relies on

the relation between Eq. 6 and Eq. 7. It is interesting to notice that both R and RS are divergent in
the soft and collinear limit, however in the case of Eq. 7 the Sudakov factor overtakes the divergency
as it tends to zero more rapidly in this limit.

The POWHEG solution corresponds to define a cross section for the real emission which mimics the
PS formin Eq. 7:

doPH B , 2R(P’ 2
W =5 RwMexpl— [, . dp'/° (Bt )]

(8)

where the superscript PH stands for POWHEG emission, which corresponds to the real emission
weighted by the Sudakov factor contained in Eq. 8. The expression in Eq. 8 is a mixture of Eq. 6 and
Eq. 7. It contains a Sudakov factor, however this factor carries the real matrix elements emission

kernel R. The ratio between the Born matrix elements §/B is included to ensure that after
integrating Eg. 8 over the radiation phase space one obtains the NLO cross section in the Born
variables B. In addition, the inclusion of the Sudakov factor formally does not diminish, at the given
order and large P;, the accuracy of the cross section:

R(p'tz)

R(p:Dexpl= [, .dp' =5~ ~ RpH(1+0(as) (9

3 Results
3.1 Transverse momentum spectrum for NLO and POWHEG. The parameter 14,

Before we show the results and in order to explain them it is primordial to remark some of the
mathematical advantages that POWHEG provides. For this it is defined a function D (py; h) as:

h2
D h) =

t2+h2 (10)
The parameter h is called hgamp on the POWHEGBOX library.
Using the function D one can then rewrite Eq. 8 as:

doPH B R0
d(;tz = DER(ptz)exp[_ fptz dp t2 (Bt )] + (1 - D)R(ptz) (11)

If D = 0 then Eq. 11 approaches Eq. 2 and no Sudakov weight is applied to the event whereas if
D = 1 the expression Eq. 8 is recovered. So POWHEG provide the possibility to analyze the
behaviour of the real contribution and the pure POWHEG.



In order to analyze the NLO transverse momentum spectrum of the Z boson corresponding to a
center of mass energy of 13T eV we chose h = 0,001 GeV (see figure 5). For this we use the routine
rivet CMS_2019_11753680.
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(Fig.6. p: spectrum for pure POWHEG)

There is a divergence for low p, in Figure 5 that corresponds to events with non-radiation from
exact calculations and the behaviour for higher p, values is given by events with exact radiation. If
we want to analyze the transverse momentum spectrum obtained for pure POWHEG we would have
totend h ~ oo (see Figure 6). In this case there is not divergences for low p, because of the influence

of the Sudakov factor, but as it was previously treated and as it can be seen there is no accomplish
of a good correspondence with the experimental data.

3.2 POWHEG (NLO) +TMD PS. The parameter Pmin

As it was introduced, in order to match TMD PS and NLO in POWHEG properly, so a good
agreement with the experimental data could be obtained, ap,, . is defined. Below this value it
won’t be possible to have exact radiation. We used ap,, .. = 19GeV (see Figure 7).
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In the region of low p, (Figure 7) through conservation of the momentum we obtain a delta in p, =
0. This region below P min 1S SUPPOse to be filled by the PS. When we turned on the PS (see Figure
8), this region of phase space is filled by the PS according to the TMD evolution. At low p, we have
approximate radiation from the PS and at high p, exact radiation. As can be seen there is a good

agreement with the experimental data and we achieved a good matching between TMD PS and NLO
with POWHEG.

3.3 Observables

The transverse of the z-boson is sensitive to the sum of the momentum of the partons that were
emitted, it is no sensitive to each one separately. Taking this into account, let’s analyze the matching
between TMD and NLO in POWHEG studying the jet production rates at different resolution scales.
To this end, splitting scales of jets are constructed using an infrared safe clustering algorithm based
on sequential combination of the input momenta. In this analysis the k; algorithm is used, with
distance measures defined for every iteration as follows [3]:

2
R2

dip = ¥, (13)

di; = min(p%,;,p3 ;) x (12)

. . . .th . .
where the transverse momentum p, carries an index corresponding to the i and j™ constituent

momentum in the input list, for all possible permutations of L and j in the given clustering step.

d;, is a measure of the distance in energy between particle [ and the initials, the index b denotes
the beam line. The input momenta separation AR;j is being defined in rapidity and azimuthal angle

(n-0) space as (ARL-]-)2 =M — nj)z + (¢, — (pj)z. The parameter R governs the average cone size
in (n-¢) the space around the jet axis.
For a given iteration of the algorithm in which the number of input momenta drops from k + 1 to

k, the associated squared splitting scale dj, is given by the minimum in dl-j and d;; scales that are
being defined for that iteration step:

- If this minimum isa d
sum.

ij» the ith and j** momenta in the input list are replaced by their vectorial

- If the minimum is a d;;, the i'™ momenta is removed from the input collection and is declared a
jet.

The index k defines the order of the splitting scale, with k = 0 being the last iteration step before

the algorithm terminates. Hence the zeroth-order splitting scale, 4/ d, corresponds to the D, of the

leading k;-jet, and one can regard the Nt splitting scale, \/dy , as the distance measure at which
an N-jet event it’s being resolved as an (N + 1)-jet event.



The steps of a k; clustering sequence using three input momenta are illustrated in the following

figure:

m

(a) Step 1. (b) Step 2.
xJ2 )2
/// 2 i .
P2 Jt
(¢) Step 3. (d) Step 4.

(Fig. 9 Simplified illustration of the k, clustering algorithm, starting with three input momenta P, P; and P, (step 1). The dotted
line labelled b represents the beam line. In step 2, the minimum distance measured is the one between two input momenta p, and
P, so that the two input momenta are replaced by their vector combination. In step 3, the minimum distance measure is between

the P and the beam line, so that Py, is declared a jet (j,) and removed from the input list. Finally in step 4, there is only the

combined input momentum P, left and so it will be declared a jet (j1) and the algorithm terminates).

The following graph shows that the approximate radiation of the parton shower is precisely
adjusted with the 0 jet sample for low values of d1, as well as for high values of dy; where the 1
jet sample can be observed with a very good approximation, which is radiation associated with the

exact calculation, proving the effectiveness of the used method:
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(Fig. 10 Matching TMD PS and POWHEG (NLO) using the observable d ;)
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4 Conclusions

Along this report we have performed a successful test when matching POWHEG (NLO) with TMD
PS. In order to do this several important things were done along the way, so that, they can be
integrated in a timeline:

The potentiality of an inclusion of TMD on the PS method was recognized, due to the detection of
possible several advantages of tiding the PS method to a TMD parton density through the Parton
Branching method. Then it was obtained through MC@NLO, a successful merging between NLO
and TMD PS, but the analysis didn’t stop there, in fact the deficiencies of MC@NLO (the inclusion
of negative weights and the strong dependence over the PS method that was used) were good reasons
to keep digging in the possible improvement of the calculations with POWHEG. Although, good
results were obtained at last, it wasn’t a direct line to success. When merging POWHEG with TMD
PS directly, it was crucial to get a deeper understanding of the p, . parameter in order to get a
smooth spectrum without scale up issues. After that it became significant how POWHEG provides
an easy way to study NLO and pure POWHEG transverse momentum spectrum by means of the
variation of the parameter hg,my. In both cases a good agreement with the experimental data at low
p; couldn’t be achieved, However, it was obtained with the appropriate combination between TMD
PS and NLO. In the last section of this report were showed some of the most important observables
that were used in order to get a deeper look inside of the used models. After all of this it was confirmed
that there was a good agreement with the experimental data and a good matching between TMD PS
and NLO with POWHEG was obtained.
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