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1 Introduction  
 

 In the past, parton shower generators and next-to-leading-order (NLO) calculations were seen as 

complementary approaches to computing hadronic interactions. The latter reported, after many tests 

of QCD carried out at lepton and hadron colliders, convincing evidence that showed that per- 

perturbative QCD at the NLO level works well, and improves the agreement of theoretical prediction 

with data. The interest in precise NLO calculations has then shifted in the direction of predicting 

cross-sections and backgrounds for collider processes. On the other hand, an effort has been made to 

improve the shower generators under the use of a TMD (transverse momentum distribution) 

dependence or the use of more precise matrix elements. These efforts have created the way for two 

new approaches that have impacted the collider phenomenology field. On one side, the (ME+PS) 

(matrix element and shower matching) while on the other (NLO+PS) NLO calculations interfaced 

with showers, the latter one would be the essence behind the simulations performed along with this 

project. The main goal of our work was to get some answers to whether the usage of POWHEG 

(NLO) + TMDs PS is a good tool, at least, when simulating the Z boson production in proton-proton 

collisions. Before the idea and the interest came to us we noticed that there was an important 

background on this type of study by using instead of POWHEG + TMD PS the MC@NLO approach 

which had been quite successful, but it was lacking a couple of advantages that POWHEG might give 

to us if we were able to get good enough results that could compete with the results coming from 

MC@NLO. From the spectrums that we obtained we noticed that we couldn’t do the mixing of 

POWHEG and TMD PS directly, which is by the usage of default parameters of POWHEG, so we 

needed to understand the dependence of the results on parameters like ℎ𝑑𝑎𝑚𝑝 and 𝑝𝑡𝑚𝑖𝑛 being the last 

one fundamental on solving the scale-up problem. We used a couple of observables also, to get a 

closer look inside of the theoretical models that we have used when chasing our main goal. All of 

these will be better detailed in the next sections of this report. 
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2 Theory 

 
2.1 The PB (Parton Branching) method  
 

 There is a logical question that needs to be answered when moving forward on this work which is, 

why TMD? The answer is that the inclusion of a tied dependence of PS with TMD (transverse 

momentum distribution function) results in an improvement to conventional PS methods. It provides, 

for example, the strong convenience of fixing the small transverse momentum phenomena. The way 

to include TMD in our analyses was through the Parton Branching method, through which it’s being 

defined a TMD parton density function which evolution will be very tied to the Parton Shower 

behavior, let’s take a deeper look inside this method. 

The PB method describes the TMD parton density as: 

𝑥𝐴𝑎(𝑥, 𝑘𝑡, 𝜇) = ∆𝑎(𝜇)𝑥𝐴𝑎(𝑥, 𝑘𝑡 , 𝜇0) + ∑ ∫
𝑑𝑞2

𝑞2

𝑑∅

2𝜋

∆𝑎(𝜇)

∆𝑎(𝑞)
𝜃(𝜇 − 𝑞)𝜃(𝑞 − 𝜇0)

𝑏

 

                                             ×     ∫ 𝑑𝑧 𝑃𝑎𝑏
(𝑅)(𝛼𝑠(𝑓(𝑧, 𝑞)), 𝑧)

𝑥

𝑧
𝐴𝑏 (

𝑥

𝑧
, 𝑘′𝑡, 𝑞)

𝑧𝑀
𝑥

                                   (1) 

with 𝑧𝑀 < 1 defining resolvable branchings, 𝑘𝑡(𝑞𝑐) being the transverse momentum vector from 

the propagating (emitted) parton, respectively. The transverse momentum of the parton before 

branch-ing is defined as 𝑘𝑡′ = |𝑘 + (1 − 𝑧)𝑞| with 𝑞 = 𝑞𝑐 1 − 𝑧Τ  being the rescaled transverse 

momentum vector of the emitted parton, and 𝜙 being the azimuthal angle between 𝑞Ԧ and 𝑘ሬԦ. The 

argument in 𝛼𝑠 is in general a function of the evolution scale q. Higher-order calculations indicate 

the transverse momentum of the emitted parton as the preferred scale. The real emission branching 

probability is denoted by 𝑃𝑎𝑏
(𝑅)

= (𝛼𝑠(𝑓(𝑧, 𝑞)), 𝑧). 

The Sudakov form factor is given by: 

 

                                         ∆𝑎(𝑧𝑀, 𝜇, 𝜇0) = exp (− ∑ ∫
𝑑𝑞2

𝑞2 ∫ 𝑑𝑧 𝑧 𝑃𝑏𝑎
(𝑅) 

𝑧𝑀

0

𝜇

𝜇0
2𝑏 )                           (2) 

 

 Dividing the TMD parton density over   and then differentiating the fraction over 𝜇2 gives the 

differential form of the evolution equation describing the probability for resolving a parton with 

transverse momentum 𝑘′
 and momentum fraction 𝑥 𝑧Τ  into a parton with momentum fraction 𝑥 and 

emitting another parton during a small decrease of 𝜇, if it’s being further normalized it would be 

obtained: 

                          
∆𝑎(𝜇)

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝜇)
𝑑 (

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝜇)

∆𝑎(𝜇)
) = ∑

𝑑𝜇2

𝜇2 ∫ 𝑑𝑧
𝑑∅

2𝜋
𝑃𝑎𝑏

(𝑅)
𝑥

𝑧
𝐴𝑏(

𝑥

𝑧
,𝑘′𝑡,𝜇)

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝜇)

𝑧𝑀

𝑥𝑏                    (3) 

  

 This equation can be integrated between 𝜇𝑖−1
2  and 𝜇2 to give the no-branching probability (Sudakov 

form factor) for the backward evolution △𝑏𝑤 

 

                   log ∆𝑏𝑤(𝑥, 𝑘𝑡 , 𝜇, 𝜇𝑖 − 1) = log (
∆𝑎(𝜇)

∆𝑎(𝜇𝑖−1)

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝜇𝑖−1)

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝜇)
)                                       (4) 

                                                                     = − ∑ ∫
𝑑𝑞′2

𝑞′2

𝑑∅

2𝜋
∫ 𝑑𝑧

𝑧𝑀

𝑥
𝑃𝑎𝑏

(𝑅) 𝑥′𝐴𝑏(𝑥′,𝑘′
𝑡,𝑞′)

𝑥𝐴𝑎(𝑥,𝑘𝑡,𝑞′)
     

𝜇2

𝜇𝑖−1
2𝑏  

with 𝑥′ = 𝑥/𝑧. This Sudakov form factor is very similar to the Sudakov form factor in ordinary par- 

ton shower approaches, with the difference that for the PB TMD shower the ratio of PB TMD 

densities [𝑥′𝐴𝑏(𝑥′, 𝑘𝑡
′ , 𝑞′)]/[𝑥𝐴𝑎(𝑥, 𝑘𝑡

′ , 𝑞′)] is applied, which includes a dependence on 𝑘𝑡. 

It is important to remark that, when describing conventional showers with standard collinear pdfs; 

the 𝑧𝑀 limit was identified as a source of systematic uncertainties. In this particular parton shower 



                                                                                                                                            5 

through the PB approach, the same 𝑧𝑀 limit is present. However, The PB approach allows a consistent 

formulation of the parton shower with the PB TMDs, as in both Sudakov form factors △𝑎 and △𝑏𝑤 

the same value of 𝑧𝑀 is used. The splitting functions 𝑃𝑎𝑏
(𝑅)

 contains the coupling: 

 

                                      𝑃𝑎𝑏(𝛼𝑠, 𝑧) = ∑ (
𝛼𝑠(𝑓(𝑧,𝑞))

2𝜋
)

𝑛

𝑃𝑎𝑏
(𝑛−1)(𝑧)    ∞

𝑛=1                          (5) 

 

This method brings a couple of advantages, such as: 

The fact that the solutions associated with it are valid for LO, NLO, NNLO calculations. On the other 

side, and one of the biggest improvements is that as long as the initial parameters of the PS stay so 

tied to the TMDs the uncertainties of the PS process can be relocated with the TMDs uncertainties 

which can be fitted through experimental data. [1]. 

 

2.2 Background support 

 
 Before trying POWHEG with TMD PS there was a previous work on mixing the NLO calculations 

with TMD PS. It was performed through the usage of MC@NLO. The main idea in this particular 

approach is to subtract the PS approximation for the first emission from the NLO and add it back to 

the LO plus unresolved contributions. It is important to remark the good results obtained through this 

approach on the following graphs: 

 

        
 

   (Fig. 1,2. Drell Yan 𝑝𝑡 spectrum for the real (left) and virtual (right) regions) 
  

 These two results are from a study of PB parton showers applied to Drell Yan (which describes the 

lepton and anti-lepton productions in high energy hadrons collisions) + jets productions. In both 

curves, the lepton and anti-lepton were produced through the previous productions of a Z boson as a 

result of the interactions of a quark and an antiquark from the two initial hadrons. 

 

 We can observe the excellent fitting of the MC@NLO calculations with the experimental data of the 

Drell Yan 𝑝𝑡 spectrum for two very different situations, in the left curve, for higher lepton masses 

(which is the real region, located close to the Z boson peak) and on the right one for low lepton masses 

(on the virtual region, located far from the Z boson peak). As it can be seen there were obtained very 

good results for both low and medium 𝑝𝑡 values, which are the kind of results that we are looking for 

in our pursuit. 

 Now, another logical question could be asked, which is why would anyone be interested on trying to 

look for a new matching between NLO and TMD PS through POWHEG + PS if it is possible to get 

such good results with MC@NLO? There are several reasons but the main ones are two, the first, and 
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which can be considered the most important one, is the fact that MC@NLO brings negative weights 

which means nonphysical process probabilities, this can be resolved, otherwise such results couldn’t 

be obtained, but to solve this we need to run longer calculations times, and the second reason is the 

strong dependence on the method as the whole machinery over the PS method that is being used. And 

that is why we are interested in using and testing the POWHEG (NLO) + TMDs Parton Shower. 

 

2.3 The scale up problem 
 

 POWHEG vouches for (Positive Weights Hardest Emission Generator) and the fundamental idea 

behind it is to generate on the first moment the hardest radiation by modifying the NLO cross-section 

and then to give place and to “turn on” the PS generator. The main advantage is that it solves both of 

the MC@NLO deficiencies; it doesn’t bring negative weights into the simulation so it is possible to 

get equally good fittings with fewer statistics, and it doesn’t depend so directly on the PS method that 

is being used. However, would it work just by mixing POWHEG (NLO) and TMD PS directly? The 

answer is no, the why, is related to the scale-up problem. One of the most important parameters when 

simulating non-real radiation in the POWHEG method is the 𝑝𝑡𝑚𝑖𝑛, if the set default value for this 

parameter by POWHEG is the one that gets used we would probably get similar results to the 

following ones: 

         

               
 

        (Fig. 3: behavior of  the 𝑑01 observable)                                                  (Fig. 4: Transverse momentum of the Z boson ) 

 

 The graph on the left shows the behavior of the differential jet rates 𝑑01 observable which usage will 

be better detailed along this report’s following section. The one on the right shows the transverse 

momentum of the Z boson and as it can be observed both of these curves are not giving place to a 

good simulation of the non-real radiation, by using the default 𝑝𝑡𝑚𝑖𝑛. In this case, the number of 

events affected by the PS are dramatically reduced and this is why it can’t produce a soft behavior 

when merging the real emission region (NLO) with the virtual one (PS). However, it can be solved.  

Now it would be good to take a deeper look inside how cross sections can be described. 

 

2.4 NLO, PS and pure POWHEG 

We can write the cross section for the emission of a parton according to NLO as: 

                                           
𝑑𝜎𝑅

𝑑𝑝𝑡
2 = 𝑅(𝑝𝑡

2)                                                                      (6) 

 The expression in Eq. 6 is divergent when the radiation becomes soft or collinear to any of the 
incoming or outgoing partons. In other words, when we try to have the exclusive cross section in 
the radiation variables we obtain unphysical results in regions of phase space in which a small scale 
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is resolved. On the other hand, the PS formulation is able to resolve small scales by the subsequent 
emission of partons (resolvable and non-resolvable) [2]. The PS approximation for the radiation of 
one resolvable parton from the Born configuration is: 

                      
𝑑𝜎𝑃𝑆

𝑑𝑝𝑡
2 = 𝑅𝑃𝑆(𝑝𝑡

2)𝑒𝑥𝑝[− ∫ 𝑑𝑝′
𝑡

2 𝑅(𝑝′
𝑡

2
)

𝐵
]

 

𝑝𝑡
2                                    (7) 

where the Sudakov form factor enforces no further resolvable emission above 𝑝𝑡
2. One should notice 

that the LO cross section (𝐵) is recovered after integrating over the radiation phase space. This 
should be the case from the probabilistic interpretation of the Sudakov factor, in other words, the 
PS is by construction, conserving unitarity. The matching/merging of a PS to a fixed-order relies on 

the relation between Eq. 6 and Eq. 7. It is interesting to notice that both 𝑅 and 𝑅𝑃𝑆 are divergent in 
the soft and collinear limit, however in the case of Eq. 7 the Sudakov factor overtakes the divergency 
as it tends to zero more rapidly in this limit.  

 The POWHEG solution corresponds to define a cross section for the real emission which mimics the 
PS form in Eq. 7: 

                             
𝑑𝜎𝑃𝐻

𝑑𝑝𝑡
2 =

𝐵
¯

𝐵
𝑅(𝑝𝑡

2)𝑒𝑥𝑝[− ∫ 𝑑𝑝′
𝑡

2 𝑅(𝑝′
𝑡

2
)

𝐵
]

 

𝑝𝑡
2                                            (8) 

where the superscript 𝑃𝐻 stands for POWHEG emission, which corresponds to the real emission 
weighted by the Sudakov factor contained in Eq. 8. The expression in Eq. 8 is a mixture of Eq. 6 and 
Eq. 7. It contains a Sudakov factor, however this factor carries the real matrix elements emission 

kernel 𝑅. The ratio between the Born matrix elements 𝐵 𝐵Τ  is included to ensure that after 
integrating Eq. 8 over the radiation phase space one obtains the NLO cross section in the Born 

variables 𝐵. In addition, the inclusion of the Sudakov factor formally does not diminish, at the given 
order and large 𝑃𝑡, the accuracy of the cross section: 

                           𝑅(𝑝𝑡
2)𝑒𝑥𝑝[− ∫ 𝑑𝑝′

𝑡
2 𝑅(𝑝′

𝑡
2

)

𝐵
]

 

𝑝𝑡
2 ≈ 𝑅(𝑝𝑡

2)(1 + 𝑂(𝛼𝑆))             (9) 

 

3 Results  

3.1 Transverse momentum spectrum for NLO and POWHEG. The parameter ℎ𝑑𝑎𝑚𝑝 

 Before we show the results and in order to explain them it is primordial to remark some of the 
mathematical advantages that POWHEG provides. For this it is defined a function 𝐷(𝑝𝑡; ℎ) as: 

                                                                               𝐷(𝑝𝑡; ℎ) =
ℎ2

𝑝𝑡
2+ℎ2

                                                           (10) 

The parameter ℎ is called ℎ𝑑𝑎𝑚𝑝  on the POWHEGBOX library. 

 Using the function 𝐷 one can then rewrite Eq. 8 as: 

                           
𝑑𝜎𝑃𝐻

𝑑𝑝𝑡
2 = 𝐷

𝐵
¯

𝐵
𝑅(𝑝𝑡

2)𝑒𝑥𝑝[− ∫ 𝑑𝑝′
𝑡

2 𝑅(𝑝′
𝑡

2
)

𝐵
]

 

𝑝𝑡
2 + (1 − 𝐷)𝑅(𝑝𝑡

2)       (11) 

If 𝐷 ≈ 0 then Eq. 11 approaches Eq. 2  and no Sudakov weight is applied to the event whereas if 

𝐷 ≈ 1 the expression Eq. 8 is recovered. So POWHEG provide the possibility to analyze the 
behaviour of the real contribution and the pure POWHEG. 
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 In order to analyze the NLO transverse momentum spectrum of the Z boson corresponding to a 

center of mass energy of 13𝑇𝑒𝑉 we chose ℎ = 0,001 GeV (see figure 5). For this we use the routine 
rivet CMS_2019_I1753680. 

             

               (Fig.5. pt spectrum for NLO)                                                            (Fig.6. pt spectrum for pure POWHEG) 

 There is a divergence for low 𝑝
𝑡
 in Figure 5 that corresponds to events with non-radiation from 

exact calculations and the behaviour for higher 𝑝
𝑡
 values is given by events with exact radiation. If 

we want to analyze the transverse momentum spectrum obtained for pure POWHEG we would have 

to tend ℎ ∼ ∞ (see Figure 6). In this case there is not divergences for low 𝑝
𝑡
 because of the influence 

of the Sudakov factor, but as it was previously treated and as it can be seen there is no accomplish 
of a good correspondence with the experimental data.  

 

3.2 POWHEG (NLO) +TMD PS. The parameter 𝑝
𝑡𝑚𝑖𝑛

 

 As it was introduced, in order to match TMD PS and NLO in POWHEG properly, so a good 
agreement with the experimental data could be obtained, a 𝑝

𝑡𝑚𝑖𝑛
 is defined. Below this value it 

won’t be possible to have exact radiation. We used a 𝑝𝑡𝑚𝑖𝑛 = 19𝐺𝑒𝑉 (see Figure 7). 

                 

                   (Fig.7.  The 𝑝
𝑡
 spectrum without PS)                                                   (Fig.8. The 𝑝

𝑡
 spectrum with PS) 
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 In the region of low 𝑝
𝑡
 (Figure 7) through conservation of the momentum we obtain a delta in 𝑝

𝑡
=

0. This region below 𝑝
𝑡𝑚𝑖𝑛

 is suppose to be filled by the PS. When we turned on the PS (see Figure 

8), this region of phase space is filled by the PS according to the TMD evolution. At low 𝑝
𝑡
 we have 

approximate radiation from the PS and at high 𝑝
𝑡
  exact radiation. As can be seen there is a good 

agreement with the experimental data and we achieved a good matching between TMD PS and NLO 
with POWHEG.  

 

3.3 Observables  

 The transverse of the z-boson is sensitive to the sum of the momentum of the partons that were 
emitted, it is no sensitive to each one separately. Taking this into account, let’s analyze the matching 
between TMD and NLO in POWHEG studying the jet production rates at different resolution scales. 
To this end, splitting scales of jets are constructed using an infrared safe clustering algorithm based 
on sequential combination of the input momenta. In this analysis the 𝑘𝑡 algorithm is used, with 
distance measures defined for every iteration as follows [3]: 

  𝑑𝑖𝑗 = 𝑚𝑖𝑛(𝑝𝑇,𝑖
2 , 𝑝𝑇,𝑗

2 ) 𝑥
∆𝑅𝑖𝑗

2

𝑅2                                             (12) 

                                                                                    𝑑𝑖𝑏 = 𝑝𝑇,𝑖
2                                                               (13) 

where the transverse momentum 𝑝
𝑡
 carries an index corresponding to the 𝑖𝑡ℎ

 and 𝑗𝑡ℎ constituent 

momentum in the input list, for all possible permutations of 𝑖 and 𝑗 in the given clustering step. 

𝑑𝑖𝑏 is a measure of the distance in energy between particle 𝑖 and the initials, the index 𝑏 denotes 
the beam line. The input momenta separation ΔRij is being defined in rapidity and azimuthal angle 

(η-φ) space as (𝛥𝑅𝑖𝑗)
2 = (𝜂

𝑖
− 𝜂

𝑗
)2 + (𝜑

𝑖
− 𝜑

𝑗
)2

. The parameter 𝑅 governs the average cone size 

in (η-φ) the space around the jet axis. 

 For a given iteration of the algorithm in which the number of input momenta drops from 𝑘 + 1 to 

𝑘, the associated squared splitting scale 𝑑𝑘 is given by the minimum in 𝑑𝑖𝑗 and 𝑑𝑖𝑏 scales that are 

being defined for that iteration step: 

- If this minimum is a 𝑑𝑖𝑗, the 𝑖𝑡ℎ
 and 𝑗𝑡ℎ momenta in the input list are replaced by their vectorial 

sum.  

- If the minimum is a 𝑑𝑖𝑏, the 𝑖𝑡ℎ
 momenta is removed from the input collection and is declared a 

jet.  

 The index k defines the order of the splitting scale, with k = 0 being the last iteration step before 

the algorithm terminates. Hence the zeroth-order splitting scale, ඥ𝑑0, corresponds to the 𝑝
𝑡
 of the 

leading 𝑘𝑡-jet, and one can regard the 𝑁𝑡ℎ splitting scale, ඥ𝑑𝑁  , as the distance measure at which 

an 𝑁-jet event it’s being resolved as an (𝑁 + 1)-jet event.   
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 The steps of a 𝑘𝑡 clustering sequence using three input momenta are illustrated in the following 
figure: 

 

(Fig. 9 Simplified illustration of the 𝑘𝑡 clustering algorithm, starting with three input momenta 𝑃0, 𝑃1 and 𝑃2 (step 1). The dotted 

line labelled b represents the beam line. In step 2, the minimum distance measured is the one between two input momenta 𝑝
1

 and 

𝑃2, so that the two input momenta are replaced by their vector combination. In step 3, the minimum distance measure is between 

the 𝑃0 and the beam line, so that 𝑃0 is declared a jet (𝑗
2
) and removed from the input list. Finally in step 4, there is only the 

combined input momentum 𝑃12 left and so it will be declared a jet (𝑗
1
) and the algorithm terminates). 

 The following graph shows that the approximate radiation of the parton shower is precisely 

adjusted with the 0 jet sample for low values of 𝑑01, as well as for high values of 𝑑01 where the 1 

jet sample can be observed with a very good approximation, which is radiation associated with the 

exact calculation, proving the effectiveness of the used method: 

 

 

 

 

 

 

 

 

(Fig. 10 Matching TMD PS and POWHEG (NLO) using the observable 𝑑01) 
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4 Conclusions  
 

 Along this report we have performed a successful test when matching POWHEG (NLO) with TMD 

PS. In order to do this several important things were done along the way, so that, they can be 

integrated in a timeline: 

The potentiality of an inclusion of TMD on the PS method was recognized, due to the detection of 

possible several advantages of tiding the PS method to a TMD parton density through the Parton 

Branching method. Then it was obtained through MC@NLO, a successful merging between NLO 

and TMD PS, but the analysis didn’t stop there, in fact the deficiencies of MC@NLO (the inclusion 

of negative weights and the strong dependence over the PS method that was used) were good reasons 

to keep digging in the possible improvement of the calculations with POWHEG. Although, good 

results were obtained at last, it wasn’t a direct line to success. When merging POWHEG with TMD 

PS directly, it was crucial to get a deeper understanding of the 𝑝
𝑡𝑚𝑖𝑛

 parameter in order to get a 

smooth spectrum without scale up issues. After that it became significant how POWHEG provides 

an easy way to study NLO and pure POWHEG transverse momentum spectrum by means of the 

variation of the parameter ℎ𝑑𝑎𝑚𝑝. In both cases a good agreement with the experimental data at low 

𝑝𝑡 couldn’t be achieved, However, it was obtained with the appropriate combination between TMD 

PS and NLO. In the last section of this report were showed some of the most important observables 

that were used in order to get a deeper look inside of the used models. After all of this it was confirmed 

that there was a good agreement with the experimental data and a good matching between TMD PS 

and NLO with POWHEG was obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                            12 

5 Acknowledgements 
 

  We would like to use the following words to communicate our sincere acknowledgment and 

gratefulness towards the QCD DESY-CMS group among which, in special manner, to Dr. Hannnes 

Jung for his desire to include us in this wonderful summer student program at DESY and share 

through lectures and discussion part of the knowledge he has acquire through his scientific career, to 

Dr. Armando Bermudez Martinez, for his patience with us, his dedication as our direct supervisor, 

and the sharpness in every answer to any of our questions and for his good explanations regarding 

the theory and the computational aspects behind this project. Last, but certainly not least to our 

professor at our home institute (Higher Institute of Technology and Applied Sciences) Dr. Fernando 

Guzman for his intention of linking us with this program at DESY and his work on making physics 

even more attractive for us.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                            13 

6 Bibliography  
 
[1] S. Baranov, A. Bermudez Martinez, L.I. Estevez Banos, F. Guzman, F. Hautmann, H. Jung, A. Lelek, J. Lidrych, A. Lipatov, M. 

Malyshev, M. Mendizabal, S. Taheri Monfared, A.M. van Kampen, Q. Wang, H. Yang. CASCADE3 A Monte Carlo event generator 

based on TMDs. 2021. arXiv:2101.10221v2 [hep-ph]. 

  

[2] A. Bermudez Martinez. Measurements and phenomenology of azimuthal correlations in high transeverse momentum multi-jet. 

Topologies in CMS at the center of mass energy of 13𝑇𝑒𝑉. 2019. 

 

[3] ATLAS Collaboration. Measurement of the kt splitting scales in Z → ll events in pp collisions at ξ𝑆 = 8𝑇𝑒𝑉 with the ATLAS 

detector. JHEP08026 (2017). 

 

[4] P. Nason, B. Webber. Next-to-Leading-Order Event Generators. Cavendish-HEP-2012-02, CERN-PH-TH-2012-028. 2012. 

https://arxiv.org/abs/1202.1251v1.  

 

[5] RIVET user manual version 2.5.1, Andy Buckley, Jonathan Butterworth, David Grellscheid, Hendrik Hoeth, Leif Lonnblad, 

James Monk, Chris Pollard, Holger Schulz and Frank Siegert, (2013) [arXiv:1003.0694v8]. 

 

 

 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://arxiv.org/abs/1202.1251v1

