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Abstract

The aim of this analysis is to study Machine Learning (ML) techniques to per-
form tagging of boosted top quarks decaying leptonically. In particular, to test the
performance of the Residual Convolutional Neural Network ResNet50. The network
successfully distinguishes the signal from the background, especially from the QCD
background, with background efficiencies at 60% signal efficiency in the order of 10−2

for the hadronic top background and in the order of 10−3 for the QCD background.
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1 Introduction

The top quark is the heaviest particle in the Standard Model and is important to study
for numerous reasons, such as its role in the Higgs mass correction self-coupling loop [1].
Studying the production of top-antitop pairs could shed light on new physics, as some
Beyond the Standard Model (BSM) processes with energies in the order of a TeV have
boosted top quarks as the final states. Additionally, lower energy phase spaces for those
processes have been excluded by ATLAS and CMS searches. Hence the importance of
developing tools and techniques to tag such interactions, in particular boosted top quark
interactions. At very high energy, these boosted top quarks decay into one single very
collimated jet, called a fatjet, so it’s important for those techniques to be able to tag
boosted top jets as a single fatjet. Hadronically decaying boosted top quarks have been
widely studied using various ML techniques, while there is still much demand for techniques
that are effective on leptonic boosted top quarks.

2 Methodology

2.1 Jet image formation

The network uses jet images as inputs. The images are histograms of size 50x50 pixels,
with the color axis representing the fraction of jet energy of each constituent. First the jets
are formed by clustering its constituent using a jet clustering algorithm. In this case, the
algorithm used is the sequential jet clustering algorithm Anti-kt [3], with radius parameter
set to 1.5. The radius parameter describes the size of the fatjet, and is determined by
the rapidities of the jet components, ∆φ. The jets are then rescaled and Lorentz boosted.
All the constituent four-momenta are rescaled such that the mass of the jet is given by
a constant m0, and then a Lorentz boost is performed such that, in the new frame of
reference, all jets have a constant energy. E0 [2]. A Gram-Schmidt transformation is then
applied so that the plane of the image is perpendicular to the jet axis, and the two subjets
with the highest energy lie along the x-axis of the image plane [4].
For heavily boosted top quarks, the subjects in the image have lower resolutions, and the
jet constituent are not distinguishable in the image. The preprocessing helps mitigate this
effect and keep the subjects resolved independently from the top’s boost in the lab frame.
This makes results reliable in a wide range of energies, compared to the usually applied
pT − η rotation, as seen in figure 1.

2.2 Convolutional Neural Networks

Convolutional neural networks make use of the convolution to process an input image
and classify it. A basic CNN is composed of convolutional layers, pooling layers and
fully connected layers. Convolutional layers apply cross correlation between sections of
the input and a smaller matrix called "kernel", and do it across the whole input image at
intervals defined by the stride of the convolution. Pooling layers, also called subsampling or
downsampling layers, reduce the size of the feature map: for example, an average pooling
layer will take in input 9 pixels and return the average as a single output. Fully connected
layers are the same as in a regular perceptron network, and are used for classification once
all the convolution and pooling layers have been applied.
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Figure 1: Jet images. At the top, jet images after the process described in the Methodology
section. At the bottom, jet images after a pT − η only.

Figure 2: [7] Schematic diagram of a simple Convolutional neural network
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Figure 3: [6] Left: ResNet50 residual block. Center: ResNeXt50 residual block. Right:
Regular (non-residual) CNN block.

2.3 Residual Networks

Residual neural networks include skip connections in their architecture. These connections
bypass the deeper layer and the output of such layer is added to the output of the previous
one. In networks that employ gradient-based learning, the skip connection allows the
gradient information to be preserved through the layer, solving the vanishing gradient
problem that deep networks tend to have [5]. The layers between two nodes of a skip
connection are called, a residual block.

2.4 Training the networks

The network used for the analysis is a ResNet50 residual network, adapted for a problem
with 3 categories and 1.5M training parameters. The original network was designed for
much larger problems. The network and training were implemented in Python using Ten-
sorflow. The output is a multiclassifier with 3 nodes, one for each category of jets. The
training sample consists in three different jet categories: leptonically decaying top quarks,
hadronically decaying top quarks and other QCD events (light quarks and gluons). The
signal and background events were, respectively, approximately 2M and 6M. The ResNet50
network was trained over a number of epochs between 20 and 60, with learning rates rang-
ing from 10−4 to 10−8. An epoch is defined as a complete cycle through the training
dataset. Each configuration of learning rates has been tested both including and excluding
secondary vertex layers, to test any difference in performance between the two approaches.
Those trainings will respectively be referred to as "All Layers" and "Energy Fraction"
trainings.

3 Results

The most successful run, the one that reached the best epoch accuracy, had learning rates
of 10−5 for epochs 0 to 29, 10−6 30 to 59, and 10−7 epoch 60 and over. The results are
taken from such run. Both in the training with all layers and the one with energy fraction
layers only, the epoch accuracy starts reaching a plateau around epoch 25, so all the rele-
vant values and results have been measured at epoch 25. In the epoch accuracy graph, the
Energy Fraction and All Layers training performed very similarly, both reaching accuracies
of 0.80 for the validation and 0.81 for the training, as seen in figure 4.
However, using all the layers leads to better ratios between signal and background efficiency,
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Figure 4: Epoch accuracy (left) and loss (right). Red: All Layers train. Blue: All Layers
validation. Grey: energy fraction train. Orange: Energy Fraction validation.

Figure 5: Receiver Operating Characteristics (ROC) curves for network validation
cat0=leptonic top events, cat1=hadronic top events, cat2=QCD events. Top and bottom
left are the curves for all layers, top and bottom right are the curves for energy fraction
layers only.
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Figure 6: Area under the curve (AUC) for leptonic top vs hadronic top (left) and leptonic
top vs QCD (right). Red: All Layers train. Blue: All Layers validation. Grey: energy
fraction train. Orange: Energy Fraction validation.

Figure 7: Classifier outputs for node 0, category 0 (signal).
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Figure 8: Classifier outputs for node 0, category 1 (hadronic top)

Figure 9: Classifier outputs for node 0, category 1 (QCD)
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especially at lower signal efficiencies, as illustrated by the Receiver Operating Character-
istics (ROC) curves in figure 6. At 60% signal efficiency, the hadronic top background
efficiency is in the order of 10−2 for both validations and the QCD background efficiency
is in the order of 10−3, with the one for All Layers being marginally higher in both cases.
The Area Under the Curve (AUC) plots show that the All Layers run reaches a larger
AUC for leptonic top vs QCD than Energy fraction layers (0.955 at epoch 25 for All Lay-
ers validation against 0.945 of the Energy Fraction validation), while the opposite is true
for leptonic top from hadronic top events (0.91 All Layers agaist 0.92). Both networks
perform better at separating the signal from QCD background rather than from hadronic
top background.
The values of the output node 0 for category 0 (signal) are displayed in figure 7. As epochs
progress, the output approaches 1, which is expected if the network successfully recognized
the signal. The values of the output node 0 for the two background categories are in figure
8 and 9. The outputs for both are close to 0 especially as epochs progess, sign that the
network learns to reject these background events.

4 Conclusions

The ResNet50 network can clearly distinguish the leptonic top quarks from the back-
ground,so the results look promising.
Conventional (non-ML) methods require an already well identified and reconstructed lep-
ton, which is a challenging task in cases where the quark jet and lepton start overlapping,
such as highly boosted cases with a single fatjet. This CNN-based technique solves the
problem as it does not need a precise lepton reconstruction and identification.
A possible improvement to be explored can be using a custom classifier for specific types
of signal and background types only, rather than a multiclassifier like ResNet50. Adding
different types of background, for example decaying leptonically and hadronically decaying
W and Z bosons would also improve the classification in experiments in which the back-
ground types are more varied.
To study more in depth this classification method, a next step can be checking its perfor-
mance on different bins of top quark pT and comparing with traditional methods.
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