
Command line tools for Podio
DESY Summer Student Programme, 2021

Juan Manuel Moreno Pérez
National University of Colombia

Supervisor
Gernot Maier

September 9, 2021

Abstract

Podio is an EDM tool that generates all code from YAML descriptions. As part of
the Key4Hep project it is necessary that it has some tools that are already available
in the iLC software, in this file we present advances made during the summer student
project implementing tools similar to anajob and dumpevent.



CONTENTS 2

Contents

1 Introduction 1

2 Development 1

3 Results 3

4 Conclusions 3



1 2 DEVELOPMENT

1 Introduction

The Key4hep project is a software construction project to make a common framework for
all future HEP experiments to use, the purpose of these is to implement all usual and
necessary libraries used in anything from simulation to analysis. These was motivated by
a common software developed by ILC and CLIC. The intention is that these facilitates the
usage and implementation of new packages ensuring compatibility with already existing
ones like ROOT, Geant4, DD4hep, Gaudi and podio which will be the main focus of the
project.
The podio package is an EDM package that generates code based on YAML description,
it is used within the Key4hep project, it can be used to generate arbitrary data models
which come great when using different backend I/O.// LCIO is the event data model used
currently by the iLC software, it has been developing for 15 years and due to that there are
multiple tools developed for this, we focus on two of them anajob and dumpevent which are
used to take a look at the files without making any code for that. Anajob and dumpevent
are really similar yet very different, the anajob gives us an overview of the kind of data
contained in the event but only prints the data types in the event while the dumpevent
prints the specific values contained on these events, this is why is important to begin by
the development of the anajob first.

2 Development

To develop the tool we want to make that gives as an overview like the anajob tool it is
necessary to look at the output produced by anajob which is presented here:

Figure 1: Output produced by anajob on an example file

In the next images some changes made to the current podio state will be presented,
however as this is a small report to presen more the results than the process the more



2 DEVELOPMENT 2

technical details will be left out. For further information this is the link to the repo on
github: https://github.com/jummorenope/podio.//

The first step in order to be able to read any file was implementing a function that
could read the two type of files that are currently supported by podio which are SIO files
and ROOT files.

1 #include "ROOTReader.h"
2 #include "SIOReader.h"
3

4 std::unique_ptr<podio::IReader> getReader(const std::string& FileName){
5 if(FileName.substr(FileName.length()-4)=="root"){
6 return std::make_unique<podio::ROOTReader>();
7 }
8 else{
9 return std::make_unique<podio::SIOReader>();

10 }
11 }

The next step after having done this was implementing some functions within the
readers to make sure they were able to circle through events, with this being implemented
it was possible to create a loop able to circle through the events required like this.

1 //Printing important info of the file
2 std::cout<<"FileName: "<<FileName<<std::endl;
3 std::cout<<"Number of events: "<<eventNumber<<std::endl;
4 std::cout<<std::endl;
5

6 //Getting Table containing the info about the collections
7 const auto collIDTable = reader->getCollectionIDTable();
8 const auto collNames = collIDTable->names();
9 //Iterating over all events to get size for each event

10 for(int i=startEvent; i<readEvent; i++){
11

12 std::cout<<"Event Number "<<i<<std::endl;
13 std::cout<<std::left<<std::setw(30)<<"Name"<<std::left<<std::setw(40)
14 <<"Type"<<"Colection Size"<<std::endl;
15 std::cout<<"--------------------------------------------------------
16 -----------------------------"<<std::endl;
17

18 reader->readEvent();
19 //Iterating over the collections to get each kind of data type
20 for (const auto& name : collNames) {
21

22 const auto coll = reader->readCollection(name);
23 auto size = coll->size();
24 const auto type = coll->getValueTypeName();
25 //Printing Collection Names
26 std::cout<<std::left<<std::setw(30)<<name<<std::left<<std::setw(40)

https://github.com/jummorenope/podio


3 4 CONCLUSIONS

27 <<type<<size<<"\n";
28 }
29 reader->endOfEvent();
30 std::cout<<std::endl;
31 }

3 Results

With the previous code this output can be produced:

Figure 2: Caption

This is actually pretty similar to the one found in anajob 1 with some small differences
in format which are not really important, the dumpevent has not yet been developed but
there is already a plan to add some functions in the CollectionBase dependency at podio.

4 Conclusions

• Podio is the EDM tool for the key4hep project and it supports multiple I/O backends.

• An equivalent to anajob has been developed, it required a few changes to the code
itself.

• Both the current and the old code had to be working.

• An equivalent to dumpevent started to be developed but faced some issues due to
the nature of podio.

This challenges will still be worked upon.

Acknowledgements

To Thomas and Frank who gave me every possible assistance during the Summer Student
internship.


	Introduction
	Development
	Results
	Conclusions

