
Designing	a	Machine	Learning
Algorithm	for	Anamoly	Detection	for	the

DESY	dCache	System
Dipayan	Pal,	Indian	Institute	of	Science	Education	and	Research,	Pune,	India

Elisey	Mankov,	Saint	Petersburg	State	University,	Saint	Petersburg,	Russia

Supervisors	-	Thomas	Hartmann	and	Christian	Voss

13th	September,	2021

Abstract
dCache is a system which is used to store and host large amounts of data. However, transfers between dCache and individual clients
may fail due to various reasons, e.g. network disconnection. In this project, we tried building an Anamoly Detection Machine Learning
Algorithm which would detect when the system has failed in its operations and thus raise an alarm informing the operators of the system
failure and thus resulting in more quick fixes and more efficient working. We managed to build a very basic Machine Learning algorithm
called the Logistic Regression to perform this task. We feel like our work will contribute to the establishment of a more complex Anamoly
Detection algorithm and our project serves as a very basic first step towards that goal.

https://ibb.co/d0rvWCH
https://ibb.co/YjZQy4T

Table	Of	Content
1. Motivation
2. Introduction

2.1. dCache
2.2. Apache Spark

2.2.1. Apache SparkContext
2.2.2. Spark RDD

2.3. Machine Learning
2.4. Logistic Regression

3. Analysis
3.1 Importing Libraries and setting up the Spark Configuratio
3.2 Data Pre-Selection
3.3 Feature Description
3.4 Data Pre-Processing
3.5 Data Sampling and Labeling
3.6 Algorithm Selection
3.7 The model evaluation

4. Results
5. Conclusions
6. Discussion
7. Acknowledgement
8. References

1.	Motivation
As in each system, breakdowns and errors sometimes occur in dCache. Few people would dispute that it is important to detect them
automatically and warn users afterward. Imagine the situation, a scientist from Japan failed to access data from the node placed in the
mid-Europian region, and now that person is trying to figure out if there was a problem with her/his local machine or with the entire
system, but she/he can not get any information, because due to the difference in time zones local office in Europe is closed already. In
such cases, it is especially important to warn the user if something was wrong. That is why we decided to develop a machine
learning
model, helping to detect undesirable situations.

This report is devoted to our solution for this problem. We have prepared the model, analysing information about dCache transactions
and distinguishing signal - when the system works fine and backgorund - when something goes wrong. You can find a more
detailed description on the following pages of the report.

2.	Introduction
2.1.	dCache

Built in Java, dCache is a distributed mass-storage system that allows us to manage huge ammount of scientific data. The data are
distributed among the large number of heterogenous pools(nodes) that handle with data storage and transfer. A client can easily get
access to dCache data through requests.For more information look here: [9.].

Information we are intersted in is about occurred in dCache transactions, acting on file operations on the cluster. These are contained in
billing files which are a set of JSON dictionaries for a particular date. There are several main types of transactions: request , transfer,
remove, store, restore, but only stores will be in our sphere of interests (later will be explained why).

Since amount of data to process is huge, to avoid overloading our local machines we use an unified analytics engine for large-scale data
processing - Apache
Spark [6.].

2.2.	Apache	Spark
Apache
Spark is an open-source, distributed processing system used for big data workloads. It utilizes in-memory caching, and
optimized query execution for fast analytic queries against data of any size. [3.]

Spark was introduced in 2012 and has gained a lot of popularity in the field of Big Data Analytics.

Apache Spark works with the system to distribute data across the cluster and process the data in parallel. Spark uses master/slave
architecture i.e. one central coordinator and many distributed workers. Here, the central coordinator is called the driver .

The driver runs in its own Java process. These drivers communicate with a potentially large number of distributed workers called
executors . Each executor is a separate java process. A Spark Application is a combination of driver and its own executors. [6.]

2.2.1.	Apache	SparkContext
SparkContext is the heart of Spark Application. It establishes a connection to the Spark Execution environment. It is used to create
Spark RDDs , accumulators, and broadcast variables, access Spark services and run jobs. SparkContext is a client of Spark execution

environment and acts as the master of Spark application. [6.]

2.2.2.	Spark	RDD
RDD (Resilient Distributed Dataset) is the fundamental data structure of Apache Spark which are an immutable collection of objects
which computes on the different node of the cluster. Each and every dataset in Spark RDD is logically partitioned across many servers so
that they can be computed on different nodes of the cluster. [7.]

2.3.	Machine	Learning
Machine
learning(ML) is a subfield of artificial intelligence, which is broadly defined as the capability of a machine to imitate intelligent
human behavior. Artificial intelligence systems are used to perform complex tasks in a way that is similar to how humans solve problems.
[2.]

Broadly, there are mainly 3 types of ML algorithms:

Supervised Learning: When an algorithm learns from example data and associated target responses that can consist of numeric
values or string labels, such as classes or tags, in order to later predict the correct response when posed with new examples comes
under the category of Supervised learning. It is used for basic ML work like prediiction of house prices etc.

Unsupervised learning: When an algorithm learns from plain examples without any associated response, leaving to the algorithm to
determine the data patterns on its own. It is used for tasks like Email spam filtering, Natural Language Processing etc.

Reinforcement learning: Reinforcement Learning is a feedback-based Machine learning technique in which an agent learns to behave
in an environment by performing the actions and seeing the results of actions. For each good action, the agent gets positive
feedback, and for each bad action, the agent gets negative feedback or penalty. The agent learns automatically using feedbacks
without any labeled data, unlike supervised learning. RL solves a specific type of problem where decision making is sequential, and
the goal is long-term, such as game-playing, robotics, etc. [4.] [5.]

Source: Link

https://ibb.co/sH5Nv38
https://developer.ibm.com/articles/cc-models-machine-learning/

2.4.	Logistic	Regression
Logistic Reression is a type of Supervised Algorithm that is used for classification problems, i.e. correctly classifying various data points
to their correct data labels. It calculates the probability of the datasample being a particular class.

In our project, we have worked with binary class Logistic Regression Model which classifies 2 Labels 0 and 1.

The conditional probability that our Logistic model gives a particular class given the dataset is given by -

where

w = weight values which are determined by our ML algorithm

x = data input

y = conditional probability of predicting a particular class given the dataset

Plot of y with a one dimensional data input x will have the following form -

Source: Link

If the y value for a particular instance is greater than the model's threshold, Logistic Regression predicts it as a positive instance (class 1),
otherwise as a negative one (class 0). Default model's threshold equals 0.5. [1.]

https://ibb.co/vXSL8Xr
https://ibb.co/sg1spY7
https://towardsdatascience.com/an-introduction-to-logistic-regression-8136ad65da2e

3.	Analysis
3.1.	Importing	Libraries	and	setting	up	the	Spark

Configuration
The following libraries and Spark Configurations were used:

In [1]:

In [2]:

3.2.	Data	Pre-Selection
As was said before, we were interested in only store type of transactions. There are two main reasons for it. First - structure of
messages with type store is not really complicated, there are not many features to analyze in comparison with transfer , for
instance. Second - there are sufficient number of instances with message type store in dCache.

Two random days were chosen for analysis: 2021-07-10 and 2021-08-01. For converting data to RDD we wrote special function
convert_data . As you may see, there are two parametrs in it: file - a file's directory, msgType - type of a message.

In [3]:

To combine data from both days SparkContext method union() was used:

In [4]:

#libraries for importing spark
import findspark
findspark.init()
from pyspark import SparkContext
from pyspark import SparkConf
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark_dist_explore import hist
from pyspark.sql.types import StructField, StructType, StringType
from pyspark.sql import Row

#general libraries
import os
import matplotlib.pyplot as plt
import numpy as np
from collections import Counter
from datetime import datetime
import time
import re
from ipaddress import ip_address
from urllib.parse import urlparse
import json
import isodate
from dateutil import parser
from dateutil import tz
from urllib.request import urlopen

#setting up the spark context

sc_conf = SparkConf().setMaster('spark://dcache-dot1.desy.de:4000').set('spark.executor.memory',
'26G').set('spark.driver.memory','8G').set('spark.driver.maxResultSize','8G')
#sc = SparkContext(appName="PythonStreaming")
sc = SparkContext(conf = sc_conf)
sqlContext = SQLContext(sc)

def convert_data(file, msgType):
 data = sc.textFile(file)
 billing = data.map(lambda row: json.loads(row)).filter(lambda row: row.get('msgType',None) == msgType)
 return billing

billing_RDD = sc.union(

3.3.	Feature	Description
After selecting the msgType Store , we can see that the RDD has many columns of data.

All the columns along with an example, can be seen using the following code.

In [5]:

Out[5]:
{'transferTime': 23,
 'version': '1.0',
 'date': '2021-07-10T02:01:27.432+02:00',
 'cellDomain': 'dcache-xfel132-06Domain',
 'pnfsid': '00005F97A5611EE74DE68C4EFB82451E8ADD',
 'transaction': 'pool:dcache-xfel132-06@dcache-xfel132-06Domain:1625875287432-12713',
 'status': {'code': 66, 'msg': 'HSM script failed (script reported: 66:)'},
 'msgType': 'store',
 'fileSize': 9514620780,
 'billingPath': '/pnfs/desy.de/exfel/archive/XFEL/proc//SPB/201701/p002038/r0220/CORR-R0220-AGIPD04-
S00003.h5',
 'storageInfo': 'xfel:SPB-201701PROC@osm2',
 'queuingTime': 0,
 '@version': '1',
 '@timestamp': '2021-07-10T00:01:27.457Z',
 'tags': ['xfel'],
 'cellType': 'pool',
 'session': 'pool:dcache-xfel132-06@dcache-xfel132-06Domain:1625875287432-12713',
 'cellName': 'dcache-xfel132-06'}
However, all this columns are not required for our ML analysis. So, we have selected few columns which we deemed important for our
task of Anomaly Detection.

All the other columns were rejected because they were unique label to each event and thus wouldn't provide much insight into the
Anomaly Detection algorithm that we are trying to construct.

Below we provide the features that we extracted and a brief description of each feature.

Features Description

CellName contains information on which pool issued the request

date_time time at which the exact request was made

fileSize actual stored size of a file for a single request

queuingTime how long the request was queued by the tape system

transferTime time in ms it took for the transfer to finish

status status of the transfer; 0 means successful request and non zero status means some
error

3.4.	Data	Pre-Processing
Before the data can be used for our ML purposes it has to be transformed so that they are suitable for applying our ML algorithm.

We use some wrapper functions to do some initial transformations and thus make our custom schema.

CellName - Taking the last 4 numbers and converting it into a string.

date_time - Converting the date into an unix epoch format, which is the number of seconds that have elapsed since January 1,
1970.

fileSize transferTime - Took the log of numbers

queuingTime - Took the log of numbers, taking care of the null or 0 cases and assigning them -10

initial label - Assigned all non-zero status numbers as 1 and zero as 0

In [6]:

billing_RDD = sc.union(
 [
 convert_data('/pnfs/desy.de/desy/dcache-operations/billing-archive/xfel/2021/07/billing-2021-07-10.json'
 convert_data('/pnfs/desy.de/desy/dcache-operations/billing-archive/xfel/2021/08/billing-2021-08-01.json'
]
)

billing_RDD.first()

def cellName(cellName):

We then call our custom schema and apply it to our RDD billing_RDD to create a dataframe.

In [7]:

Out[7]:
DataFrame[cellName: string, date_time: bigint, fileSize: float, transferTime: float, queuingTime: float,
initial_label: bigint]
Below, we have printed our custom schema.

It also shows the datatypes for each column and provides us with the information that there is no null value in any of the columns.

In [8]:

root
 |-- cellName: string (nullable = true)
 |-- date_time: long (nullable = true)
 |-- fileSize: float (nullable = true)
 |-- transferTime: float (nullable = true)
 |-- queuingTime: float (nullable = true)
 |-- initial_label: long (nullable = true)

We have one column cellName which has 'String' type. Since, a 'String' type column can't directly be used for any ML analysis, we
have to convert it into a suitable form.

To perform machine learning and all necessary preprocessing steps we used special library MLlib . For more information look [10].

We use the StringIndexer module in Mllib followed by the OneHotEncoder module, which transforms the CellName columns into
a sparse matrix which can then be used for ML analysis.

 s=cellName[len(cellName)-5:]
 s1=s.split('-')
 return str(s1[0])+str(s1[1])

def date_time(date):
 return int(time.mktime(parser.parse(date).timetuple()))

def fileSize(fileSize):
 return float(np.log(fileSize))

def queuingTime(queuingTime):
 if (queuingTime == 0) | (queuingTime is None):
 return -10.0
 else:
 return float(np.log(queuingTime))

def transferTime(transferTime):
 return float(np.log(transferTime))

def initial_label(status):
 if status['code']!=0:
 return 1
 else:
 return 0

billing_Schema = StructType([
 StructField('cellName', StringType(), True),
 StructField('date_time', LongType(), True),
 StructField('fileSize', FloatType(), True),
 StructField('transferTime', FloatType(), True),
 StructField('queuingTime', FloatType(), True),
 StructField('initial_label', LongType(), True)
])

def parse_billing(entry):
 parse_list = [cellName(entry.get('cellName')),
 date_time(entry.get('date')),
 fileSize(entry.get('fileSize')),
 transferTime(entry.get('transferTime')),
 queuingTime(entry.get('queuingTime')),
 initial_label(entry.get('status'))
]
 info = tuple(field for field in parse_list)
 return info

billing_df = sqlContext.createDataFrame(billing_RDD.map(lambda s: parse_billing(s)), billing_Schema)
billing_df.createOrReplaceTempView("billing_desy") #name creation for sql quiries
billing_df.cache()

billing_df.printSchema()

In [9]:

To be able to apply Logistic Regression on our data we have to convert the DataFrame into a single vector of features called 'features'
which is achieved by the Vectorizer module in Mllib.

In [10]:

Note, that date_time field was not included in the vector of features. That is because date_time is a unique feature for each file,
which does not provide an ML model with important information. However, it plays a crucial role in data sampling (later will be shown
how), that is why we did not exclude date_time from the list of fields.

3.5.	Data	Sampling	and	Labeling
Since, we had 2 classes to distinguish - signal and background , we had to use a classification model for our problem.

Before starting to apply machine learning for classifictaion, it is essetial to prepare data samples and label instances correctly.

First of all, we would like to describe labeling of the data instances. Ideally, each instance should be provided with its own label
independently on other instances, however, it was not feasible for us, since approach with using status_code feature (look at the
initial_label field, point 2.5) is a bit naive to make a decision if a particular instance is a part of background or signal . More

sophisticated algrothim was required. So, we have developed the one, having decided that dividing all instances on one hour bins might
be helpful. New labeling algorithm includes two steps:

Using date_time field, we divide all available time (for two chosen dates) on a particular number of bins, each bin equals one hour
of time.
Averaging values of the field initial_label for a particular bin, we compare output value with the threshold (threshold=0.5 in
our case). If the averaged value is less than the threshold we consider all instances as signal (fill 0 as the label for each instance
of the bin), otherwise as background (fill 1 as the the label for each instance of the bin).

The second issue is how to sample the data. We decided to apply two ways:

Extracting first 70 % instances for each hour sequently (serial way)
Extracting 70 % instances for each hour randomly (random way)

We chose exactly these ways to see how the input data with the particular sequential structure, like in the serial way, might influence of
the machine learning algorithm perfomance, and compare results with those for the random input data.

Code examples, including labeling and two ways of the data selection, are represented below:

In [11]:

In [12]:

from pyspark.ml.feature import StringIndexer, OneHotEncoder
str_columns=['cellName']
string_indexer=[StringIndexer(inputCol=x, outputCol=x+'_StringIndexer', handleInvalid='skip') for x in str_columns
one_hot_encoder=[OneHotEncoder(inputCol=f"{x}_StringIndexer", outputCol=f"{x}_OneHotEncoder") for x in str_columns

from pyspark.ml.feature import VectorAssembler
num_columns=['fileSize', 'transferTime', 'queuingTime']
assembler_input=num_columns+[f"{x}_OneHotEncoder" for x in str_columns]
vector_assembler=VectorAssembler(inputCols=assembler_input, outputCol='features')

treshhold=0.5

#finding of minimum value for date_time in the initial data frame
min_val=sqlContext.sql("select MIN(date_time) from billing_desy").collect()
min_val=np.array(min_val)[0]

#finding of maximum value for date_time in the initial data frame
max_val=sqlContext.sql("select MAX(date_time) from billing_desy").collect()
max_val=np.array(max_val)[0]

#calculating number of hours
bin_num=np.round((max_val-min_val)/3600,0)

"""serial way"""

#importing lit for labeling
from pyspark.sql.functions import lit

#creation of an empty data frame for followed union
billing_Schema_empty = StructType([
 StructField('cellName', StringType(), True),
 StructField('date_time', LongType(), True),

In [13]:

+-----+-----+
|label|count|
+-----+-----+
| 1|10251|
| 0|12108|
+-----+-----+

In [14]:

 StructField('fileSize', FloatType(), True),
 StructField('transferTime', FloatType(), True),
 StructField('queuingTime', FloatType(), True),
 StructField('initial_label', LongType(), True),
 StructField('label', IntegerType(), True)
])
serial_df=sqlContext.createDataFrame(sc.emptyRDD(), billing_Schema_empty)

for i in range(int(bin_num)):
 #spliting by hours
 new_df=sqlContext.sql("select * from billing_desy where date_time between {} and {} order by date_time DESC"
 int(min_val)+3600*i,int(min_val)+3600*(i+1)))
 new_avg=sqlContext.sql("select AVG(initial_label) from billing_desy where date_time between {} and {}
 int(min_val)+3600*i,int(min_val)+3600*(i+1))).collect()
 new_avg=np.array(new_avg)[0][0]

 if new_avg is None:
 continue

 else:
 new_avg=float(new_avg)

 #serial extracting
 per_70=new_df.take(int(np.round(0.7*new_df.count(),0))+1)
 per_70_df=sqlContext.createDataFrame(per_70)

 #labeling
 if new_avg>=treshhold:
 per_70_df=per_70_df.withColumn("label", lit(1))
 else:
 per_70_df=per_70_df.withColumn("label", lit(0))
 serial_df=serial_df.union(per_70_df)

#distribution of signal(0) and background(1) instances for serial sampling
serial_df.groupBy("label").count().show()

"""random way"""

#creation of empty dataframe for followed union
billing_Schema_empty = StructType([
 StructField('cellName', StringType(), True),
 StructField('date_time', LongType(), True),
 StructField('fileSize', FloatType(), True),
 StructField('transferTime', FloatType(), True),
 StructField('queuingTime', FloatType(), True),
 StructField('initial_label', LongType(), True),
 StructField('label', IntegerType(), True)
])
rand_df=sqlContext.createDataFrame(sc.emptyRDD(), billing_Schema_empty)

for i in range(int(bin_num)):
 #spliting by hours
 new_df=sqlContext.sql("select * from billing_desy where date_time between {} and {} order by date_time DESC"
 int(min_val)+3600*i,int(min_val)+3600*(i+1)))
 new_avg=sqlContext.sql("select AVG(initial_label) from billing_desy where date_time between {} and {}
 int(min_val)+3600*i,int(min_val)+3600*(i+1))).collect()
 new_avg=np.array(new_avg)[0][0]

 if new_avg is None:
 continue

 else:
 new_avg=float(new_avg)

 #random extracting
 rand_70_df, rand_30_df= new_df.randomSplit([0.7,0.3],seed=7)

In [15]:

+-----+-----+
|label|count|
+-----+-----+
| 1|10176|
| 0|12072|
+-----+-----+

3.6.	Algorithm	Selection
Having prepared data, chosen samples and labeled instances, we are able to apply machine learning algorithms. We decided to choose
Logistic Regression as our Classifier model because of the following reasons:

Since the model's mathematical algorithm is not very complicated (look at point 1.4), Logistic Regression is easy to train and fast in
predictions.
Logistic Regression scales well to large datasets.
Logistic Regression is able to give probabilities for each predicted class as output explicitly.
Reasons for the model's predictions are relatively easy to interpret.

For more information about Logistic Regression in MLLib , please, look [1].

To combine all steps of the data pre-processing (look at point 2.5) and not to do them separately each time, we used Pipline . Output
data of Pipline model are appropriate for the training of Logistic Regression model. Code goes below:

In [16]:

3.7.	The	model	evaluation
Before representing the results, it is worth saying some words about how we evaluated the model.

To check the quality of the model's performance we split prepared datasets on train sample , used for model fitting, and test
sample , used for model evaluation, in the proportion of 70% and 30 % accordingly (look at the cell below).

In [17]:

 #labeling
 if new_avg>=treshhold:
 rand_70_df=rand_70_df.withColumn("label", lit(1))
 else:
 rand_70_df=rand_70_df.withColumn("label", lit(0))

 rand_df=rand_df.union(rand_70_df)

#distribution of signal(0) and background(1) instances for random sampling
rand_df.groupBy("label").count().show()

#splitting of selected data on train and test samples (serial_df for sequential selection is in this exaple, rand_df is also possible)
train, test= serial_df.randomSplit([0.7,0.3],seed=7)

#designation of stages for Pipline
stages=[]
stages+=string_indexer
stages+=one_hot_encoder
stages+=[vector_assembler]

#Pipline model creation
from pyspark.ml import Pipeline
pipeline=Pipeline().setStages(stages)
model=pipeline.fit(train)

#transforming of the train sample for Logistic Regression
X_train=model.transform(train)
X_train.createOrReplaceTempView("X_train")
data=sqlContext.sql("select distinct(features),label from X_train")

#training of Logistic Regression model
from pyspark.ml.classification import LogisticRegression
lr=LogisticRegression().fit(data)

train, test= serial_df.randomSplit([0.7,0.3],seed=7) #or random_df.randomSplit(...)

To understand evaluation metrics description, it is necessary to keep in mind two simple things. First, all predictions can be divided into
two classes - correct ones and incorrect ones. Second, there are two types of correct predictions: true positive (TP) , true
negative (TN) ; and two types of incorrect ones: false positive (FP) and false negative (FN) .

Correct
preidctions:

TP - number of the test set's instances that belong to class 1 and were predicted as class 1
TN - number of the test set's instances that belong to class 0 and were predicted as class 0

Incorrect
preidctions:

FP - number of the test set's instances that belong to class 0 and were predicted as class 1
FN - number of the test set's instances that belong to class 1 and were predicted as class 0

Now, we can continue with description of evaluation metrics we used:

1. ROC-curve
and
AUC-score. A receiver operating characteristic curve, or ROC curve, is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings, where TPR=TP/(TP+FN) and FPR=FP/(FP+TN). Looking at the
ROC-curve, you can choose a particular model's threshold, providing you with desirable values of TPR and FPR. The area under the
ROC-curve - AUC-score (Area Under the Receiver Operating Characteristic Curve). Than more the AUC value than better model's
performance. Perfect model has AUC-score=1.0.

2. Accuracy. This metric simply shows what proportion of the test set's instances were predicted correctly. Accuracy=
(TP+TN)/(TP+TN+FN+FP). It varies for different model's thresholds.

3. Confusion
matrix. The matrix of the form: [[TN,FP], [FN,TP]], also varies for different model's thresholds.

4.	Results
Note,
that
the
default
value
of
the
model's
threshold
(0.5)
were
used
to
predict
whether
a
particular
instance
belongs
to
positive
class
or
negative
class.

Full code of the model implementation and evaluation for serial sampling:

In [18]:

#dividing columns into numeric and string ones
num_columns=['fileSize', 'transferTime', 'queuingTime']
str_columns=['cellName']

#String Indexer and One Hot Encoder implementation
from pyspark.ml.feature import (StringIndexer, OneHotEncoder)
string_indexer=[StringIndexer(inputCol=x, outputCol=x+'_StringIndexer', handleInvalid='skip') for x in str_columns
one_hot_encoder=[OneHotEncoder(inputCol=f"{x}_StringIndexer", outputCol=f"{x}_OneHotEncoder") for x in str_columns

#Vector Assembler implementation
from pyspark.ml.feature import VectorAssembler
assembler_input=[x for x in num_columns]
assembler_input+=[f"{x}_OneHotEncoder" for x in str_columns]
vector_assembler=VectorAssembler(inputCols=assembler_input, outputCol='features')

#splitting selected data on train and test samples (serial_df)
train, test= serial_df.randomSplit([0.7,0.3],seed=7)

#designation of stages for Pipline
stages=[]
stages+=string_indexer
stages+=one_hot_encoder
stages+=[vector_assembler]

#Pipline model creation
from pyspark.ml import Pipeline
pipeline=Pipeline().setStages(stages)
model=pipeline.fit(train)

#transforming the train sample
X_train=model.transform(train)
X_train.createOrReplaceTempView("X_train")
data=sqlContext.sql("select distinct(features),label from X_train")

#training Logistic Regression
from pyspark.ml.classification import LogisticRegression
lr=LogisticRegression().fit(data)

#transforming test sample
X_test=model.transform(test)
predicts=lr.transform(X_test)

#getting probabilitis, preidctions and actual labels
probas=np.array(predicts.select('probability').collect())
lbls=np.array(predicts.select('label').collect())
preds=np.array(predicts.select('prediction').collect())
probas_1=[]
for proba in probas:
 probas_1.append(proba[0][1])

#calculating parametrs for ROC-curve plotting
import sklearn.metrics as metrics
fpr, tpr, threshold = metrics.roc_curve(lbls, probas_1)

#calculating auc score
roc_auc = metrics.auc(fpr, tpr)

#ROC-curve plotting
import matplotlib.pyplot as plt
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

#calculating confusion matrix and model accuracy
conf_mat=metrics.confusion_matrix(lbls,preds)
accuracy=metrics.accuracy_score(lbls,preds)

print('test_auc={}\ntest_accuracy={}\nconfision_mat={}'.format(roc_auc,accuracy,conf_mat))

#probability distributions plotting
predicts_train=lr.transform(X_train)
probas1=np.array(predicts_train.select('probability').collect())
prob_negative1=[]
prob_positive1=[]
for proba1 in probas1:
 prob_negative1.append(proba1[0][0])
 prob_positive1.append(proba1[0][1])
prob_negative1=np.array(prob_negative1)
prob_positive1=np.array(prob_positive1)

probas=np.array(predicts.select('probability').collect())
prob_negative=[]
prob_positive=[]
for proba in probas:
 prob_negative.append(proba[0][0])
 prob_positive.append(proba[0][1])
prob_negative=np.array(prob_negative)
prob_positive=np.array(prob_positive)

neg_train=np.histogram(prob_negative1,50)
pos_train=np.histogram(prob_positive1,50)
neg_test=np.histogram(prob_negative,50)
pos_test=np.histogram(prob_positive,50)

plt.figure()
plt.plot(neg_train[1][:len(neg_train[1])-1],neg_train[0], color='blue', label='0')
plt.plot(pos_train[1][:len(pos_train[1])-1],pos_train[0], color='red', label='1')
plt.xlim([-0.1,1.1])
plt.xlabel('probabilities')
plt.title('Probability distribution for the train set (serial sampling)')
plt.legend()

plt.figure()
plt.plot(neg_test[1][:len(neg_test[1])-1],neg_test[0], color='blue', label='0')
plt.plot(pos_test[1][:len(pos_test[1])-1],pos_test[0], color='red', label='1')
plt.xlim([-0.1,1.1])
plt.xlabel('probabilities')
plt.title('Probability distribution for the test set (serial sampling)')
plt.legend()

test_auc=0.9098132425717106
test_accuracy=0.84911286715372
confision_mat=[[3255 362]
 [650 2440]]

Out[18]:
<matplotlib.legend.Legend at 0x7fa1a0901470>

Full code of the model implementation and evaluation for random sampling:

In [19]:

#dividing columns into numeric and string ones
num_columns=['fileSize', 'transferTime', 'queuingTime']
str_columns=['cellName']

#String Indexer and One Hot Encoder implementation
from pyspark.ml.feature import (StringIndexer, OneHotEncoder)
string_indexer=[StringIndexer(inputCol=x, outputCol=x+'_StringIndexer', handleInvalid='skip') for x in str_columns
one_hot_encoder=[OneHotEncoder(inputCol=f"{x}_StringIndexer", outputCol=f"{x}_OneHotEncoder") for x in str_columns

#Vector Assembler implementation
from pyspark.ml.feature import VectorAssembler
assembler_input=[x for x in num_columns]
assembler_input+=[f"{x}_OneHotEncoder" for x in str_columns]
vector_assembler=VectorAssembler(inputCols=assembler_input, outputCol='features')

#splitting selected data on train and test samples (rand_df)
train, test= rand_df.randomSplit([0.7,0.3],seed=7)

#designation of stages for Pipline
stages=[]
stages+=string_indexer
stages+=one_hot_encoder
stages+=[vector_assembler]

#Pipline model creation
from pyspark.ml import Pipeline
pipeline=Pipeline().setStages(stages)
model=pipeline.fit(train)

#transforming the train sample
X_train=model.transform(train)
X_train.createOrReplaceTempView("X_train")
data=sqlContext.sql("select distinct(features),label from X_train")

#training Logistic Regression
from pyspark.ml.classification import LogisticRegression
lr=LogisticRegression().fit(data)

#transforming test sample
X_test=model.transform(test)
predicts=lr.transform(X_test)

#getting probabilitis, preidctions and actual labels
probas=np.array(predicts.select('probability').collect())
lbls=np.array(predicts.select('label').collect())
preds=np.array(predicts.select('prediction').collect())
probas_1=[]
for proba in probas:
 probas_1.append(proba[0][1])

#calculating parametrs for ROC-curve plotting
import sklearn.metrics as metrics
fpr, tpr, threshold = metrics.roc_curve(lbls, probas_1)

#calculating auc score
roc_auc = metrics.auc(fpr, tpr)

#ROC-curve plotting
import matplotlib.pyplot as plt
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

#calculating confusion matrix and model accuracy
conf_mat=metrics.confusion_matrix(lbls,preds)
accuracy=metrics.accuracy_score(lbls,preds)

print('test_auc={}\ntest_accuracy={}\nconfision_mat={}'.format(roc_auc,accuracy,conf_mat))

#probability distributions plotting
predicts_train=lr.transform(X_train)
probas1=np.array(predicts_train.select('probability').collect())
prob_negative1=[]
prob_positive1=[]
for proba1 in probas1:
 prob_negative1.append(proba1[0][0])
 prob_positive1.append(proba1[0][1])
prob_negative1=np.array(prob_negative1)
prob_positive1=np.array(prob_positive1)

probas=np.array(predicts.select('probability').collect())
prob_negative=[]
prob_positive=[]
for proba in probas:
 prob_negative.append(proba[0][0])
 prob_positive.append(proba[0][1])
prob_negative=np.array(prob_negative)
prob_positive=np.array(prob_positive)

test_auc=0.9018672983079001
test_accuracy=0.8462682129051442
confision_mat=[[3349 311]
 [723 2343]]

Out[19]:
<matplotlib.legend.Legend at 0x7fa1a0bda080>

neg_train=np.histogram(prob_negative1,50)
pos_train=np.histogram(prob_positive1,50)
neg_test=np.histogram(prob_negative,50)
pos_test=np.histogram(prob_positive,50)

plt.figure()
plt.plot(neg_train[1][:len(neg_train[1])-1],neg_train[0], color='blue', label='0')
plt.plot(pos_train[1][:len(pos_train[1])-1],pos_train[0], color='red', label='1')
plt.xlim([-0.1,1.1])
plt.xlabel('probabilities')
plt.title('Probability distribution for the train set (random sampling)')
plt.legend()

plt.figure()
plt.plot(neg_test[1][:len(neg_test[1])-1],neg_test[0], color='blue', label='0')
plt.plot(pos_test[1][:len(pos_test[1])-1],pos_test[0], color='red', label='1')
plt.xlim([-0.1,1.1])
plt.xlabel('probabilities')
plt.title('Probability distribution for the test set (random sampling)')
plt.legend()

Following observations can be done from the results:

Scores and ROC-curves look quite similar for both types of selection. We suppose that this is an exceptional case, in more common
and complicated situations such behavior is unlikely to be observed. More research are required regarding this issue, at least, it is
needed to try diffirent test sets for comparison. However, due to the limited amount of time, we were unable to perform this.

ROC-curves are a bit wiggled in some places. This fact can be explained by not enough statistics due to the not much amount of
input data. However, our case is not critical since most parts are smooth.

If you look at the confusion matrices, you can notice that the model with the random sampling is a bit better in predicting
background instances since TP and FN values are higher than the ones for the model with the serial sampling. While the latter is

better in predicting signal due to the higher TN and FP values.

One non-obvious and essential issue is whether the chosen value of the model's threshold is appropriate. Let's consider model with the
random sampling as an example. As was said before, we selected 0.5 as the threshold value for determing background instances, this
means that decision boundaries (black dotted lines) split probability disrtibutions on approximately equal parts (look at figures below),
therefore, the model will predict background and warn users frequently, that sometimes may be inconvenient.

In [20]:

Out[20]:
<matplotlib.legend.Legend at 0x7fa133cfea58>

To avoid such situations, we can increase the threshold value for background determining, for instance, to 0.8, the threshold value for
signal determining will decrease to 1-0.8=0.2. Decision boundaries will shift from the middle and less part of instances will be

predicted as background (look at figures below). Of course, due to the background threshold rise, accuracy of the model might be
reduced, however, with high probability, the model's reliability would be increased. If we get a warning about breakdowns in dCache
from the model with stronger requirements to background instances, we will be much more sure that something is really going wrong
and we should start taking action to figure out what was happened.

In [21]:

#plot of probability distributions for random sampling with default background threshold
fig, (ax1,ax2)=plt.subplots(1,2,sharey=True,figsize=(10,4))
ax1.plot(neg_test[1][:len(neg_test[1])-1],neg_test[0], color='blue', label='0')
ax1.plot([0.5,0.5],[0,np.max(neg_test[0])],'k--')
ax1.set_xlabel('probabilities')
ax1.legend('0')
ax2.plot(pos_test[1][:len(pos_test[1])-1],neg_test[0], color='red', label='0')
ax2.plot([0.5,0.5],[0,np.max(neg_test[0])],'k--')
ax2.set_xlabel('probabilities')
ax2.legend('1')

#plot of probability distributions for random sampling with higher background threshold
fig, (ax1,ax2)=plt.subplots(1,2,sharey=True,figsize=(10,4))
ax1.plot(neg_test[1][:len(neg_test[1])-1],neg_test[0], color='blue', label='0')
ax1.plot([0.2,0.2],[0,np.max(neg_test[0])],'k--')
ax1.set_xlabel('probabilities')
ax1.legend('0')
ax2.plot(pos_test[1][:len(pos_test[1])-1],neg_test[0], color='red', label='0')
ax2.plot([0.8,0.8],[0,np.max(neg_test[0])],'k--')
ax2.set_xlabel('probabilities')
ax2.legend('1')

Out[21]:
<matplotlib.legend.Legend at 0x7fa1a0916668>

Unfortunately, due to the lack of time, we did not investigate this issue fully. Optimal value for the background threshold was not
found.

5.	Conclusions
Several main conclusions can be drawn from the results.

1. We managed to implement machine learning model able to distinguish signal and background instances with suitable accuracy,
approximately 85 % for each sampling way.

2. Testing scores (accuracy, auc) and ROC-curve look very similar for both types of sampling. We are pretty sure that such behavior is
not typical in general. In serial sampling, data, with high probability, have a particular sequential structure, that can contribute to the
distribution of input data, while in random sampling there is no such problem. Why is in our case no manifestation of described effect
- is on more question to investigate.

3. It is needed to investigate in more detail which value of threshold should be chosen for distinguishing signal and background.
Optimal value, cutting off the doubtful background instances and, at the same time, preserving meaningful ones, should be
found.

6.	Discussion
In this project, as disscussed we were able to successfully implement a ML algorithm on a Spark framework.

This model can be now used for our task of Anamoly Detection, where our signal represents any error in the DESY system. Now, based
on the training, whenever a new request happens, it will consider all the Data for each hour(our selected time frame) that we have
selected as Input and based on that classify whether the system is faulty or not. It can then raise an alarm informing dcache engineers of
its failure.

We recognise that our model is nowhere close to being perfect.

There were many things which we considered doing but were unable to achieve due to various constrains. Some include-

Determining the signal and background data in a better way by performing some statistical tests like Chi Square test etc.
Doing more rigorous feature selection by performing more traditional Data selection processes.
Implementing more complex ML algorithm
Doing the training with more data by selecting data from more dates

We hope that our project has been useful to anyone who is trying to devolop an Anamoly Detection algorithm for the DESY system and
serve as stepping stone towards devoloping a more complex and accurate algorithm.

7.	Acknowledgement

The authors would like to express their gratitude towards my supervisors Thomas Hartmann and Christian Voss. All the numerous
discussions, constant guidance and support, and providing us with the DESY resources which we used throughout the project, have
helped us immensely during the span of our project and helped us learn a lot of new things. I would also like to thank DESY summer
student programme organisers for giving us this wonderful oppurtunity and helping us with various problems throughout the entire
program.

8.	References
1. Logistic regression: https://spark.apache.org/docs/latest/mllib-linear-methods.html#logistic-regression;

https://www.pdfdrive.com/applied-logistic-regression-e172207141.html

2. Apache Spark documentation: https://spark.apache.org/ [back]

3. Apache Spark blog by AWS: https://aws.amazon.com/big-data/what-is-spark/

4. Machine Learning Definition: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

5. ML types: https://www.geeksforgeeks.org/introduction-machine-learning/

6. Apache Spark: https://data-flair.training/blogs/how-apache-spark-works/

7. RDD: https://data-flair.training/blogs/spark-rdd-tutorial/

8. Reinforcement Learing: https://www.javatpoint.com/reinforcement-learning

9. dCache book: https://dcache.org/old/manuals/Book-5.0/ [back]

10. MLlib description: https://spark.apache.org/mllib/

11. MLlib documentation for Spark 3.1.2 : https://spark.apache.org/docs/latest/ml-guide.html

In []:

https://spark.apache.org/docs/latest/mllib-linear-methods.html#logistic-regression
https://www.pdfdrive.com/applied-logistic-regression-e172207141.html
https://spark.apache.org/
https://aws.amazon.com/big-data/what-is-spark/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://www.geeksforgeeks.org/introduction-machine-learning/
https://data-flair.training/blogs/how-apache-spark-works/
https://data-flair.training/blogs/spark-rdd-tutorial/
https://www.javatpoint.com/reinforcement-learning
https://dcache.org/old/manuals/Book-5.0/
https://spark.apache.org/mllib/
https://spark.apache.org/docs/latest/ml-guide.html

	Designing a Machine Learning Algorithm for Anamoly Detection for the DESY dCache System
	Dipayan Pal, Indian Institute of Science Education and Research, Pune, India
	Elisey Mankov, Saint Petersburg State University, Saint Petersburg, Russia
	Supervisors - Thomas Hartmann and Christian Voss
	13th September, 2021
	Abstract
	Table Of Content
	1. Motivation
	2. Introduction
	2.1. dCache
	2.2. Apache Spark
	2.2.1. Apache SparkContext
	2.2.2. Spark RDD
	2.3. Machine Learning
	2.4. Logistic Regression
	3. Analysis
	3.1. Importing Libraries and setting up the Spark Configuration
	3.2. Data Pre-Selection
	3.3. Feature Description
	3.4. Data Pre-Processing
	3.5. Data Sampling and Labeling
	3.6. Algorithm Selection
	3.7. The model evaluation
	4. Results
	5. Conclusions
	6. Discussion
	7. Acknowledgement
	8. References

