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1 2 SERIAL CRYSTALLOGRAPHY

1 Introduction

Our notion of life is derived from our understanding of the molecular structure of the mat-
ter. The properties and functions of the matter are encoded in its molecular structure.
The majority of protein structure models were obtained with X-ray diffraction. The de-
termination of molecular structure of matter by X-ray diffraction is the subject of X-ray
crystallography.

X-ray crystallography provides a fast and reliable means of acquiring the results. In
fact, the frequency of incoming results exceeds the present rate of data saving. In the
European X-Ray Free-Electron Laser (XFEL), up to 3500 images are generated every
second. Linac Coherent Light Source (LCLS) and Cornell-SLAC Pixel Array (CSPAD)
detectors produce approximately 2.5 terabytes of data in one hour. On the other hand, a
typical value of percentage of recorded images containing crystal diffraction, referred as hit
fraction, is approximately 5-10%. In some experiments, hit fractions of values even lower
than 0.1% have been observed.

The high rate of incoming data impels incorporating a pipeline for filtering out images
that did not capture diffraction. Recently, deep learning was proposed as means of achiev-
ing it [I], [2]. However, deep learning methods come with a limitation of being a black-box
model and therefore, their predictions are non-transparent and obscured from humans.
Deep learning models for diffraction images are usually trained on simulated data or data
coming from detector other than the target detector[l], [2], [3], [4], [5]. Model trained on
such data may fail when implemented in real experimental setting. Selecting diffraction
images is an online processing problem, hence the filtered out images cannot be recovered.
In such a case, a model needs to be carefully evaluated before potential implementation.

In the recent years, a field of explainable artificial intelligence (XAI) has emerged. XAI
is a group of methods for humans to understand how artificial intelligence (AI) model
makes a decision. The role of XAl is to provide the methods for creating explainable
models while preserving high level performance [6].

In this report, XAl algorithms were used to explain the models from published research
trained on publicly available datasets for selecting diffraction images.

2 Serial crystallography

Serial Crystallography determines molecular structure by X-ray diffraction and is con-
sidered primary means of molecular structure determination. Around 90% of samples
stored at Protein Data Bank were obtained by this method. Crystallography produces
highly-detailed models of molecular structures, usually approaching atomic level of de-
tail. Molecular structure is a key element of structure-based drug discovery and structural
biology.

2.1 X-ray diffraction principles

The idea behind serial crystallography stems from double slit experiment with light, which
was illustrated in Figure 1. The experiment shows that illuminating a pair of slits produces
a series of light and dark bands on the screen behind it. Overlapping series of waves results
in constructive or destructive interference. Constructive interference increases its intensity,
whereas destructive decreases it. Light bands correspond to two waves with constructive
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Double slit experiment with light

Figure 1: Double slit experiment. Light source illuminates a plate with 2 slits. The
light passing through the slits is observed on a screen behind the plate. The light waves
passing through the slits interfere with constructively or destructively, which corresponds
to light and dark bands on the screen.

interference with resulting double amplitude. Dark bands correspond to destructive inter-
ference that canceled the pair of waves.

Double slit experiment is based on the principle that light has wavelength properties.
The wavelength of X-rays is comparable to atomic size, which allows reaching near atomic
level of detail of diffraction patterns.

One of the most famous examples of X-ray diffraction is the experiment of Rosalind
Franklin, which shed light on the double helix structure of DNA.

Synchrotrons typically utilize Fraunhoffer diffraction, which requires the illuminated
area of the sample to be minuscule compared to the distance to the source and to the
detector. In serial crystallography, the protein sample is typically millimeters in size,
whereas the distance from sample to the source and from sample to the detector can be
of many meters. In Fraunhoffer diffraction, the incoming paths from the source to the
sample and the outgoing paths from the sample to the screen are approximately parallel
for a specific point on a screen. In crystal diffraction, this property results in strong
constructive inference due to the regular arrangement of crystal planes. Natural crystals
rarely self-assemble into regular arrangements, so the well-diffracting protein crystals need
to be produced synthetically.

Figure 2 presents a diffraction image from protein crystal. The arrangements of spots
in the diffraction image ascertains the arrangement of atoms or molecules inside a crystal.
In the protein crystals, crystals consist of complex molecules. The crystal arrangement
significantly boosts the X-ray diffraction signal compared to a single crystal molecule.
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X-ray diffraction Dataset

Rotation

X-ray beam

Pixel detector

Figure 2: X-ray diffraction. Rotating crystalline structure hit by X-ray beam produces
diffraction pattern on the screen of the detector.

However, utilizing protein crystals comes with a limitation. The positions of the spots
in protein crystal diffraction images only convey the information of how the molecules
are arranged within a crystal and not what the molecule itself looks like. The information
about the structure of a single molecule can be retrieved from the intensities of the spots. In
view of this facts, the pattern can be considered less important than the precise intensities
of the spots.

Diffraction pattern present in the image is a two dimensional slice of a three dimen-
sional Fourier transform of the electron density of the crystal. Therefore, the crystal needs
to be rotated to obtain the complete information about its Fourier transform. To retrieve
information about the molecule structure from spot intensities, the relation between the
produced 2D slice and complete 3D transform needs to be determined. X-ray diffrac-
tion experiment is conducted with a rotating crystal and the resulting images are created
without the information about the phase that the crystal was in when X-ray beam hit it.
Due to the fact that crystal phase angles are not directly accessible after the experiment,
they need to be supplied by additional experiments or prior knowledge. Once the three
dimensional dataset is created, it is possible to determine the structure of a molecule.

The detectors for crystal diffraction need to meet specific requirements. The detector
needs to have pixel density large enough to capture full diffraction pattern, while being
not to large to keep the spots at a distance from each other so that they do not overlap.
Moreover, it needs to be sensitive enough not to capture only the large spots towards the
center but also the spots towards the edge of the detector. Otherwise, the produced crystal
structure will be only a rough estimation of the actual structure.
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3 Explainable Artificial Intelligence

Deep Learning is being widely implemented in various areas of life, including medicine,
recommendation systems and virtual assistance [7]. Despite the proliferating adoption of
its applications, it has a potentially dangerous limitation, referred to as the black box
problem. The black box problem is related to the fact that even model’s creators do not
know on what basis a model makes a prediction.

To resolve the black box problem, explainable artificial intelligence (XAI) field was cre-
ated. The role of XAl is to provide a set of tools for providing human-readable explanation
of the prediction process to create a model that can be trusted.

For the analysis of the models for diffraction images, two sets of methods were selected.
The first group of method is based on the idea of visualization of parts of image that
were used by the model to make a prediction. The aim of the second is evaluate what
information about the input image is preserved by the specific layer of the model.

3.1 Class Activation Mapping methods

Class activation mapping (CAM)[S] is a set of methods that are the extensions of class
activation mapping. CAM methods are class-specific, which means they are able to produce
a separate visualizations for each of the possible classes. They can be used to explain the
models that were trained on images with labels, not necessarily on images with semantic
segmentation maps.

Class Activation Mapping

GAP
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Figure 3: The structure of a neural network for image classification with a global average
pooling operation required by class activation mapping.
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3.1.1 Class Activation Mapping (CAM)

Class activation mapping (CAM) is the basis for the methods presented in following sub-
sections.

Figure 3 illustrates a typical neural network for image classification. A typical neural
network for image classification consists of two parts. The first part is a feature extractor
composing of convolutional layers. Its role is to extract features from the image. The
second part is build of fully-connected layers and is used to determine the likelihood of
an image belonging to each of the classes based on the presence or absence of extracted
features. To use the cam method, global average pooling operation needs to be inserted
between the feature extractor and fully-connected layers. Global average pooling is based
on the assumption that the last convolutional layer of the model extracts high level features
and still preserves some spatial information. Global average pooling calculates the average
value for each of the feature maps of the last layer of the feature extractor. The average
value can be interpreted as success rate of extracting the feature of the filter. The feature
maps can be colored according to the values yielded with gradient average pooling to form
a heatmap. Juxtaposing the heatmap with the input image shows the importance of of
image regions in making a prediction. A procedure for obtaining CAM images for a class
with the highest score in the output layer is listed below.

1. Make a prediction on the image with the model.
2. Find class with the highest score,

3. Get the output of the final convolutional layer.

W

. Apply global average pooling on the retrieved feature maps.
5. Color the feature maps according to their global average pooling score.

6. Reshape and project maps on the original image.

3.1.2 Gradient-based Class Activation Mapping (Grad-CAM)

Gradient-based Class Activation Mapping (Grad-CAM)[9] is an extension of CAM. Grad-
CAM does not require global average pooling and can use any layer of the model, mot
necessarily the last convolutional layer. The only condition is that the layer needs to be
differentiable to make it possible to calculate the gradient. The importance of feature maps
is assessed based on the alpha values. Alpha values are calculated based on the gradients.

1. Compute the gradient of the score for y¢ (the output of the class before softmax)
with the respect to the feature map activations A* of a convolutional layer.

2. Average the gradients to calculate alpha values
3. Calculate the final Grad-CAM heatmap.

4. Reshape and project maps on the original image.
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Grad-CAM Example

Figure 4: The example of Grad-CAM. Grad-CAM generates a heatmap with colors
corresponding to the values of gradients associated with these regions.

3.1.3 Guided Gradient-based Class Activation Mapping (Guided Grad-CAM)

Guided Grad-CAM[9] is a combination of guided backpropagation and Grad-CAM meth-
ods. The difference between guided Grad-CAM and Grad-CAM is that with Grad-CAM
we omit negative gradient values. It can be interpreted as taking into consideration only
the features that a neuron detected and omit features that the features that a neuron did
not detect.

3.2 Inverting Visual Representations

Inverting visual representations [10] is a method used to check if a specific layer retains
the ability to reproduce the input image based on its output. The feature extracting part
of the network is called an endcoder because it encodes the input image into a simplified
representation. Inverted visual representations are created by attaching a decoder with
deconvolutional upsampling layers to the encoder of the network. The first convolutional
layers usually extract basic features, such as vertical edges, so typical inverted visual repre-
sentations of the first convolutional layer recreate the input image with great level of detail.
With the deeper layers, the inverted visual representation should get more abstract, how-
ever, it should preserve the key information that makes the image belong to the specific
class. If the key information is missing, a model’s quality can be questioned.
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Guided Grad-CAM Example

Figure 5: The example of Guided Grad-CAM. Guided Grad-CAM highlights the
regions with large positive values of gradients.

4 Experiments and Results

In this paper, an AlexNet [I1I] model trained on the DiffraNet dataset [I] was analyzed
with XAI methods. The reason behind selecting AlexNet was justified by the fact that
diffraction patterns have simpler structure than natural images.

4.1 Dataset description

DiffraNet dataset is a publicly available dataset with 3 subsets.

e diffranet synthetic: contains images simulated with nanoBragg simulator belonging
to 1 of the 5 classes: (blank, no-crystal, weak, good and strong). The dataset is
divided into 3 subsets: train, val and test. Test set was used for tests.

e diffranet real raw: contains real raw images belonging to 1 of the 2 classes: (no
diffraction, diffraction). The dataset is divided into 2 subsets: val and test. Test set
was used for tests.

e Diffranet real preprocessed: contains real preprocessed images belonging to 1 of the
2 classes: (no diffraction, diffraction). Preprocessing was done by downsampling,
cropping and removing beamstop shadow. The dataset is divided into 2 subsets: val
and test. Test set was used for tests.



REFERENCES 8

4.2 Tested models

The experiments were conducted with 3 variations of the model. The models are listed
below.

e Model 1: AlexNet pretrained on ImageNet. Only fully connected layers were trained
on diffranet synthetic dataset (train subset used for training, val subset for valida-
tion).

e Model 2: AlexNet pretrained on ImageNet. All layers were trained on diffranet
synthetic dataset (train subset used for training, val subset for validation).

e Model 3: AlexNet pretrained on ImageNet. Then all layers were trained on a diffranet
synthetic dataset (train subset used for training, val subset for validation). Then only
fully-connected layers were trained on diffranet real preprocessed dataset (val subset
used for training, test subset for validation).

5 Conclusions and Future Work

Deep learning models should be carefully analyzed before application in real world envi-
ronment. The paper presented the model with AlexNet architecture. XAI methods shown
that even shallow architecture, such as AlexNet, is too deep for the sparse structure of
diffraction images. The original DiffraNet paper used ResNet50 architecture [?], which
is significantly deeper than AlexNet. Implementing a model for selection of images with
diffraction patterns without testing it with XAI methods, could have potentially resulted
in excessive usage of resource without real need for it.
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