
Quantum Mechanics on a Discrete Time
Lattice

DESY Summer Student Programme, 2021

Annamaria Benakova
Aberystwyth University, Wales, UK

Supervisor: Karl Jansen

September 8, 2021

Abstract

Feynman’s path integral approach to quantum mechanics is introduced. The har-
monic oscillator gets considered at a discrete time lattice. A rotation gets performed
from Minkowski to Euclidean time to enable the harmonic oscillator to get explored.
It’s explored with Monte Carlo using python. The exact average squared position
value of 0.44727272727272727 gets compared with the values from the Monte Carlo
simulation.

CONTENTS 2

Contents

1 Introduction 1
1.1 Feynman’s Path Integral . 1
1.2 Harmonic Oscillator on a Discrete Time Lattice 1

2 Methodology 2

3 Results 3

4 Discussion of Results 3

5 Conclusions 4

6 Acknowledgements 5

A Wick’s Rotation from Minkowski to Euclidean Action 6

B Exact Average Squared Position 6

C Python Codes 7

1 1 INTRODUCTION

1 Introduction

1.1 Feynman’s Path Integral

The idea behind it is that it sums all the paths possible that connect the intial point and
final point. Feynman’s path integral takes the original form of:

Z(xf , xi) =
∑
paths

exp(
i · Sm
~

) (1)

where Sm is the Minkowski action. The classical action is defined using the Lagrangian,
L(x, ẋ, t) = 1

2mẋ
2 − V (x) to give:

SCl =

∫
[
1

2
mẋ2 − V (x)] dt (2)

where in the brackets the kinetic energy is subtracted from the potential energy. The
potential energy of a harmonic oscillator, V (x) = 1

2mω
2x2. Equations (1) and (2) are used

in order to get the Euclidean action (derivation in Appendix A) to substitute into the
path integral:

Z(xf , xi) =
∑
paths

exp(−Se
~

) (3)

this eliminates the imaginary time in the exponential.

1.2 Harmonic Oscillator on a Discrete Time Lattice

A time lattice consists of a discrete time axis where the position is in terms of the time, tj :

x(tj) = xj (4)

The time lattice consists of slices of time which are separated by a spacing, ε. So, for two
neighbouring time slices:

tj+1 − tj = ε (5)

this makes the time axis discrete due to the time slices. Due to a discrete time lattice,
each separate path can be defined on it. Each path in turn has to be continuous for them
to be defined on the discrete time lattice. At each time slice (i.e. lattice point) xi gives
the particle’s location.
For a discrete time lattice the action can be defined:

S =

N∑
j=1

a[
1

2
m0

(xj+1 − xj)2

a2
+

1

2
m0ω

2x2j] (6)

with: initial mass m0, angular frequency ω, a = iε or a = T
N .

2 METHODOLOGY 2

2 Methodology

An analytic continuation - i.e. Wick rotation - was performed on the Minkowski action to
get the Euclidean action in order to write the path integral in terms of it - the way it was
performed is shown in Appendix A.
The action was then computed for a discrete time lattice using equation (6) with the
potential energy, V for a harmonic oscillator used. It hence required certain parameters to
be defined; m0 = 1, number of paths, N = 10, ω =

√
2, T = 10, with a defined as a = T

N .
The position, xj was defined over periodic boundary conditions in order to fulfill the need
to be continuous. This meant that xN−1 = x0; when lattice point N-1 was reached, the
next lattice point would be 0. The way this was implemented into the code through an
if condition (shown in Appendix C) where the lattice point would return back to the
beginning after N-1 was reached.
Using the above calculation, the metropolis algorithm was formed. A random number, x′j
is generated with a uniform probability. The random number was accepted if it met the
condition:

(xj −∆) ≤ x′j ≤ (xj + ∆) (7)

where ∆ was taken as 2. Then, the action (equation (6)) was computed for each xj and
x′j being Sxj and Sx′

j
respectively. The difference between them was taken:

dS = Sxj − Sx′
j

(8)

considering the dS, if it was lowered when xj was replaced by x′j the xj was replaced by x′j .
However, if dS was more than or equal to 0, another random number, r was generated with
a uniform distribution between 0 and 1. If the random number r was less than exp−dS,
then the xj was set to x′j . The Metropolis algorithm is shown in Appendix C. This
Monte Carlo (Metropolis algorithm) was ran k times, where k was equal to 500 000. This
updated paths and the average squared position was taken for each generated path by the
Monte Carlo and plotted against k. This was then compared to the exact value of the
average squared position. The exact value was calculated using equations in Appendix
B whilst the average squared position of the monte carlo simulation was found using a
function defined in Appendix C.

3 4 DISCUSSION OF RESULTS

3 Results

Figure 1: Average squared position plot (red line is the exact position)

1 Average squared position 0.44692049664576267
2 Standard error of mean (average squared position) 0.00033031109647451974
3 Exact Average squared Position 0.44727272727272727

Table 1: Averages

4 Discussion of Results

The average squared position was calculated after the first 10 000 points. At the beginning
of the plot in Figure 1 the first points were further from the exact value (red line) and so
they were not considered in the average squared position value and gave a value that was
in agreement with the exact value to three decimal places (0.447). By doing this the data
further from the exact value is skipped, meaning that the system was considered when it
was thermalised.
The values on the plot were concentrated between 0 and 2 The standard error of the mean
was small, and so the distribution of the data spread was small - this means a more accurate
result was reached.

5 CONCLUSIONS 4

5 Conclusions

The exact average squared position was found to three decimal places with the Monte
Carlo simulation performed in python. The experimental value came out to be 0.447 (3
d.p.). It’s hence been shown that the exact average squared position using this simulation
can be found to reasonable accuracy if specific measures are taken to reduce error. In
further projects it can be explored how to reach the exact value more accurately.

5 REFERENCES

6 Acknowledgements

I’d like to thank both Karl Jansen and Arianna Crippa for all the patience, and support
they gave whenever I needed it - they lead me to achieve things I wouldn’t think I’d be
able to. I would also like to thank Yasaman for being a pleasant colleague to work with
whenever we worked together to solve a similar issue.
Working on this project allowed me to view some topics under a different perspective - and
for that I’d like to thank the Karl and the DESY team for all the effort that was placed in
order to make this project possible even during such strange times.

References

[1] M. Creutz and B. Freedman, A Statistical Approach to Quantum Mechanics, Annals
of Physics, 132, 427-462 (1981).

B EXACT AVERAGE SQUARED POSITION 6

A Wick’s Rotation from Minkowski to Euclidean Action

A Wick rotation is an analytic continuation of the the time coordinate. The rotation is
performed to get the Euclidean action. Consider the classical action, Scl. Let t = −iτ ,
thus:

dt = −idτ (9)

this is then substituted into the classical action equation, Scl. Hence leading to the Eu-
clidean action, Se:

Se =

∫
−idτ [

1

2
mẋ2 − V]

= i

∫
dτ [−1

2
mẋ2 + V].

(10)

The Minkowski action can be written in terms of the Euclidean action as follows:

Scl = −Se
i
. (11)

Consider the original Feynman’s path integral from equation (1), and substitute equation
(6) into it:

Z(xf , xi) =
∑
paths

exp(
i

~
(−Se

i
))

=
∑
paths

exp(−Se
~

)

=

∫
Dxe−

1
~Se

(12)

B Exact Average Squared Position

The average squared position considers a quantity, R which is defined as:

R = 1 +
a2µ2

2
− aµ(1 +

a2µ2

4
)
1
2 (13)

which can be then used in the equation for the average squared position. The way this is
defined is:

〈x2〉 =
1

2µ(1 + a2µ2/4)
1
2 (1+RN

1−RN)
(14)

7 C PYTHON CODES

C Python Codes

import numpy as np
def ActionDiscreteT (m, i , xj , u ,N,T) :

i f (i < N−1):
S = a ∗ ((0 . 5∗m∗(x j [i +1]−xj [i])∗∗2/ a ∗∗2)+(0.5∗m∗u∗∗2∗ xj [i]∗∗2)

+(0.5∗m∗(x j [i]−xj [i −1])∗∗2/a ∗∗2))
else :

S = a ∗ ((0 . 5∗m∗(x j [0] − xj [N−1])∗∗2/a)+(0.5∗m∗u∗∗2∗ xj [N−1]∗∗2)
+(0.5∗m∗(x j [N−1]−xj [N−2])∗∗2/a))

return S

def Metropol i sAlgor i thm (xj , d e l t a) :
for i in range (len (x j)) :

xdj = np . copy (x j)
xdj [i] = np . random . uniform (xj [i]−de l ta , x j [i]+ de l t a)

Sxdj = Act ionDiscreteT (m, i , xdj , u , N, T)
Sxj = Act ionDiscreteT (m, i , xj , u , N, T)
ds = Sxdj − Sxj
i f ds < 0 :

x j [i] = xdj [i]
i f ds >= 0 :

r = np . random . uniform (0 , 1)
i f np . exp(−ds) > r :

x j [i] = xdj [i]
return xj

def ExpValuex2 (N, x j) :
xbar2 = 0
for i in range (len (x j)) :

xbar2 += (1/N)∗ (x j [i])∗∗2
return xbar2

	Introduction
	Feynman's Path Integral
	Harmonic Oscillator on a Discrete Time Lattice

	Methodology
	Results
	Discussion of Results
	Conclusions
	Acknowledgements
	Wick's Rotation from Minkowski to Euclidean Action
	Exact Average Squared Position
	Python Codes

