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Abstract

The large Higgs transverse momentum greater than 175 GeV is sensitive to loop effects from
presence of Beyond Standard Model heavy new particlestM. This report focuses on optimization of
observables to probe the Higgs transverse momentum in the H — bb production in association
with a Z boson. The measurement of these optimized observables at hadron colliders can

significantly increase sensitivities to new physics.
1 Introduction

The Z/y*transverse momentum in the Drell-Yan process, in which a quark and an anti-quark
annihilates to form Z/y*and then decay to an lepton/anti-lepton pair,is limited by the experimental
resolution of the lepton transverse momenta. The transverse momentum arises due to radiations of
gluons and quarks from incoming partons. Optimisation of variables to probe the Z/y* transverse
momentum has been performed in this context!?!,
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Figure 1 The Feynman diagrams ofH — bb decay mode in ZH production. The analysis considers only the Z

decaying into di-leptons case.



The H — bb production in association with a W/Z boson has been observed with the ATLAS
detectorf®l. For Higgs transverse momentum greater than 175 GeV (top mass) , presence of Beyond
Standard Model (BSM) heavy particles can distort Higgs transverse momentum, thus finding
suitable variables with better resolution for studying Higgs transverse momentum is of great

importance to increase sensitivities to new physics.

This project applies the state-of-the-art technique proposed in the Drell-Yan processto pp —» ZH —
I*17bb (I can be e or u) channel to find the best variable that probe the large Higgs transverse

momentum.

2 Event selection

In this analysis, we use a ZH sample at truth level and apply appropriate smearing to the truth
lepton/jets full vector to mimic the detector effects. In order to mimic the selection of H — bb
produced along with a Z boson at the detector level, events are required to satisfy the following
selection criteria. The decay products must contain at least two b jets. Also, for the selected b jet,
events were excluded if either of the transverse momentum of the b jet is smaller than 25 GeV.
Simultaneously, the modulus pseudo-rapidity of both jets should be smaller than 2.5. The study only
considers jets which are well separated.

For leptons, both the transverse momentum of di-leptons should be larger than 25 GeV, and the

modulus pseudo-rapidity of di-leptons should be smaller than 2.5.

3 Candidate observables to probe Higgs transverse momentum

We introduce five new variables apart from the total transverse momentum of two objects, Q: or p;.



Recoil

Figure 2 A schematic demonstration of observables in the plane that is transverse to the beam direction®!
Figure 2 is the plane transverse to the beam direction and shows the definition of the new
variables.Q; is the transverse momentum of the di-b-jets / di-leptons. 4¢ is the angle between the
two transverse momentum of di-b-jets/di-leptons ,and its acoplanarity angle is @,c,p,. The thrust
axis is defined as £ = (" — p)/|p™ = p®|, and Qu is split into two components with regard
to the thrust aixs, the parallel component, denoted bya;, and the orthogonal component, a;.

In order to cancel the effect of lepton/jets transverse momentum resolution, a, and Q: can be
divided by the invariant mass of di-b-jets, Q, thus forming two variables a,/Q and Q./Q.

Since the lepton/jet angular resolution is much better than that of the transverse momentum, two
angular variables, @, and tan(@qc.p/2) are introduced to mitigate the effect of transverse

momentum  resolution. ¢y is defined as @, = tan(@qcop/2) sin(Gy) , where cos(6y) =

T]_—

'
2" ) is the cosine value of the scattering angle andnis the pseudorapidity of a jet or lepton.

tanh(

In order to compare the variable resolution, scaling of the new variables is applied such that it has a
unit of GeV. Sincea;is one of the two components of the transverse momentum, all variables
concerninga,is scaled by v2. And a./Q, Q./Q, @n.tan(@qcop/2) should all be scaled by the

mass to get the same unit as the transverse momentum. For tan(@qcop/2), since the mean value of

sin(8*) is ~0.85, so it has an additional scaling factor of 0.85.

4 Mythology

In order to mimic the detector effects, Gaussian Smearing is applied to the lepton and jet truth

transverse momentum, 7, @



The resolution of the jet transverse momentum is calorimeter-like and takes the following form,

oPt/Pt = \/(%)2 + (%)Z + C?, where A is the noise term, B is the stochastic part and C is a

constant. The specific value of the factors A, B, C in each event is dependent on . For electrons,

2
the resolution of the transverse momentum takes the for Pt = \/(0.01 x Pt)2 4+ (0.99) ,and
for muons, oPt = 1% X Pt + 0.00014% x (Pt)3.

The resolutions of 1 and ¢ for leptons are better than jets. For jets, it takes the forma =

\/ (0.37%)2 + (*=)2.And for leptons, o = J (0.036%)? + ()2
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Figure 3 Relative transverse momentum resolution of stable particles at the ATLAS experiment!“]

As is shown in Figure 3, for transverse momentum less than 100 GeV, the relative resolution of
muon is the best, around 1—3%. For the jet resolution, which is at least 10%, is much worse than
that of di-leptons. However, as the transverse momentum increases, the muon resolution rises
sharply, whereas the electron and jet resolution declines. For transverse momentum at
approximately 1000 GeV, the resolution of jet, dominated by the constant term, is much better
than muon but worse than electron.

The distribution of the transverse momentum,nandeof di-b-jets (Figure 4), di-electrons (Figure 6),
di-muons (Figure 8) before and after smearing is shown below. Also, the distribution of newly
introduced variablesa;, a;/Q,Q:/Q, ®n,tan(@qcop/2) that respectively using the smeared and

unsmeared transverse momentum,nandeof di-b-jets(Figure 5), di-electrons (Figure 6), di-muons
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(Figure 8) are also shown below. It can be observed from the graphs that the peak of mass after

smearing is about the half of that before smearing and the difference of transverse momentum before

and after smearing is around 5% , which is as expected and self-assuring.
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Figure 4 The truth and smeared observable distributions for di-b-jets
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Figure 5 The truth and smeared new variables of di-b-jets
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Figure 6 The truth and smeared observable distributions for di-electrons
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Figure 7 The truth and smeared new variables of di-electrons
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Figure 8 The truth and smeared observable distributions for di-muons
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Figure 9 The truth and smeared new variables of di-muons




5 Results
The distribution of the resolution between smeared and truth variables a; , a;/Q, Q;/Q ,

@y, tan(@qcop/2) of di-b-jets, di-electrons and di-muons are shown in Figure10,11,12, respectively.

Figure 10 shows the comparison of the resolution of the variables before and after smearing of b
jets. As is shown in Figure 10 the resolution of a;/Q and Q./Q are the best and the angular

variable resolution is comparable.
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Figure 10 The distribution of the resolutions of variables before and after smearing of di-b-jets

Figure 11 shows the distribution of the variables before and after smearing of electron full vector.
The resolutions of all variablesa;,a; /Q,Q:/Q,¢y.tan(@qcop/2) are all better than those of di-b-jets,
because the resolutions of the transverse momentum,nandeof electrons used in Gaussian smearing
is much better than that of jets. The resolutions of angular variable here are the best, the resolution

of a;/Q and Q;/Q isin between, and thea,resolution is the worst.
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Figure 11 The distribution of the resolutions of variables before and after smearing for di-electrons
Figure 12 shows the distribution of the variables before and after smearing of di-muons. The
resolutions of all variables a;, a;/Q, Q:/Q, @5, tan(Pacop/2) are all better than those of di-b-
jets, but worse than those of dielectron, because the resolutions of the transverse momentum, n and
@of muons used in Gaussian smearing is much better than those of bjets, but not as good as those
of electrons. The resolutions of angular variables here are the best, the resolution of a;/Q and

Q:/Q isin between, and the a; resolution is the worst.
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Figure 12 The distribution of the resolutions of variables before and after smearing of di-muons



The resolution is determined in terms of the scaled variables. As plotted in Figure 13,14,15 ,the

resolutions increase with the scaled variables i.e. the Higgs transverse momentum.

Figure 13 shows the resolution of different variables of di-b-jets. For the Higgs transverse
momentum lower than 500 GeV, the angular variables have the best resolutions. a; and Q; are the
worst and a;/Q and Q./Qare in between. For Higgs transverse momentum between 500 GeV
and 700 GeV, the resolution of angular variables, a;/Q and Q;/Q are almost the same. For
Higgs transverse momentum higher than 700 GeV, the resolutions of all variables are very close to

each other, where the constant terms in jet resolution becomes dominant.
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Figure 13 Resolution of the scaled variable as a function of itself for di-b-jets

Figure 14 shows the resolution of different variables of di-electrons.For the Z boson transverse
momentum from 0 to 1000 GeV, the resolutions of angular variables are always the best, followed
by the resolution of Q./Q, Q:, a;/Q,and the resolution of a, is the worst. Compared with the

resolution of all variables of di-b-jets, those of di-electrons are much better.



Figure 15 shows the resolution of different variables of di-muons. For the Z boson transverse
momentum from 0 to 800 GeV, the resolutions of angular variables are always the best, followed by
the resolution of Q./Q, a./Q, a;, and the resolution of Q: is the worst. Compared with the

resolutions of all variables of di-b-jets, those of di-muons are better, but are not as good as those of

di-electrons.
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Figure 14 Resolution of the scaled variable as a function of itself for di-electrons
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Figure 15 Resolution of the scaled variable as a function of itself for di-muons



To decide which variable of a;, a;/Q, Q:/Q, @5, tan(@qcop/2) is the optimized variable to
probe Higgs transverse momentum, the correlation between these variables and the Higgs
transverse momentum need to be determined to ensure the variables can be used to probe the large
Higgs transverse momentum.

Figure 16 shows the correlation between ¢, and the transverse momentum, Q: for di-b-jets(a),
di-electrons(b), di-muons(c), and the ¢;-¢@, correlation of di-leptons and di-b-jets(d). And shown
in the figure, sincegyare sensitive to the low Higgs transverse momentum below 125 GeV with
four times better resolution than using b jet transverse momentum. It is much less susceptible to
Higgs transverse momentum larger than 200 GeV. Therefore, ¢, is not a suitable variable to

probe Higgs transverse momentum greater than 175 GeV.

The scaled variables a,/Q and Q./Q in the dilepton system inthe ZH — [*1~bb channel are
the best variables to study Higgs transverse momentum larger than 125 GeV based on the
observable resolution as well as the correlation with the Higgs transverse momentum.

The correlations of tan(@gcop/2), behaves similarly as ¢y, is insufficient to probe Higgs
transverse momentum greater than 125 GeV, and additional correlation plots between different

variables can be found in the Appendix.
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Figurel?7 shows the correlations between Q./Q and the transverse momentum of di-b-jets(a), di-

electrons(b), di-muons(c), and the Q./Q -Q./Qcorrelation between di-leptons and di-b-jets(d).
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6 Conclusion

The project investigates the best observable to study the large Higgs transverse momentum sensitive

to the presence of BSM heavy particles. The angular variables ¢; and tan(@qcop/2) are sensitive

to Higgs transverse momentum below Higgs mass (~125 GeV). For Higgs transverse momentum



above the Higgs mass, a;/Q and Q./Q are the optimised variables. In particular, for ZH channel,
the Z boson can be used to probe the Higgs transverse momentum. Therefore, measurement of a;/Q
and Q./Q for both Higgs and Z bosons are important in improving sensitivities to new physics.
For the other VH channels with 1 or 0 lepton in the final state, a;/Q

and Q./Q in the di-b-jets system are the best variables to study the Higgs transverse momentum.
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Appendix

correlation plots between different variables
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	The resolution of the jet transverse momentum is calorimeter-like and takes the following form , 𝝈𝑷𝒕/𝑷𝒕=,(,𝑨-𝑷𝒕.,)-𝟐.+(,𝑩-,𝑷𝒕..,)-𝟐.+,𝑪-𝟐.., where A is the noise term, B is the stochastic part and C is a constant. The specific value of ...

