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Abstract

In this work we study the effects of dipole-dipole interactions in systems, which
possibly may exhibit superradiant behaviour. Starting with the Born-Markov ap-
proximation, we obtain equations for mean values of atomic operators for different
regimes of superradiance. We simulate these equations numerically and obtain
solutions for atomic observables.
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1 Introduction

Collective coherent spontaneous emission, or superradiance, has been a topic
of interest for many researchers from various fields of quantum optics related to light-
matter interactions. Due to unique features and possibilities provided by such a class
of phenomena, it has been thoroughly studied for a variety of systems using different
approaches, from the classical Maxwell equations and many-body physics methods to
purely quantum descriptions.

However, the influence of elastic dipole-dipole interactions of atoms, which usu-
ally are not taken into account in the description of collective emission, still remains
an unsolved issue. At first sight, due to dependence of the dipole-dipole interaction
on interatomic distances, each pair of atoms obtains a frequency shift which leads to
dephasing and subsequent ruining of superradiance process. Thus samples with large
dipole-dipole interactions (DDI) such as dense clouds of Rydberg atoms should not su-
perradiate. Indeed, some groups have reported the absence of superradiance. However,
other groups managed to observe superradiance directly in such systems [1]. Therefore
it is required to work out a way for correct inclusion of the dipole-dipole interaction and
study its influence on the collective spontaneous emission phenomena.

In this work we use the approach based on the Born-Markov Master equation [2].
The main idea is that we treat dipole-dipole interaction as a result of interaction between
every individual atom and quantized electromagnetic field. In our numerical simulations
we rely on the experimental parameters from [1]. We show that the Born-Markov ap-
proach is applicable for such experimental conditions, and then obtain equations for the
mean values of atomic operators. Since it is not possible to obtain a rigorous closed set
of equations, we assume factorization of operators of different atoms, in other words we
work in a semi-classical regime. Relying on the experimental parameters, we simulate
obtained equations numerically.
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2 Theoretical approach

Starting point of our research is the Master equation for a reduced density
matrix in the Born-Markov approximation. Consider a bipartite system, which consists
of two interacting sub-systems, namely S and R, and is described by Hamiltonian H =
HS + HR + V . In our case, such system is an atomic system coupled to a reservoir of
quantized electromagnetic field modes. Typically we are only interested in the evolution
of the atomic system, thus we need to conduct an exclusion of electromagnetic field. By
tracing the density matrix of the whole system ρ(t) = ρS(t)⊗ ρR(t), which satisfies von
Neumann equation, over reservoir, one obtains a reduced density matrix of the atomic
sub-system, which may be shown to satisfy the following equation in the Born-Markov
approximation:

ρ̇S(t) = − 1

~2
TrR

∫ ∞
0

dτ [V (t), [V (t− τ), ρS(t)⊗ ρR(0)]] . (1)

Take a note that this equation is written in interaction picture. Born approximation
typically implies neglecting time evolution of reservoir ρ(t) ≈ ρS(t)⊗ρR(0), while Markov
approximation neglects “memory” effects of evolution. Born approximation is valid only
if the Markov approximation is, and applying both of them physically mean neglecting
retardation effects [3].

2.1 Experimental parameters

In this section we will show that the Born-Markov approximation is applicable
for describing the experimental sample from [1]. In this experiment, the sample has a
pencil-shaped geometry with characteristic length L = 15 cm and radius 0.75 cm. This
volume is filled by 107-109 Rydberg atoms of Barium, initially prepared in highly excited
state 6s30p1P1. Such densities and large values of dipole transition moments result in a
significant dipole-dipole interaction between atoms.

Immediately following the excitation to the Rydberg state, a 10-ns mm-wave
pulse triggers the superradiance. This pulse is on resonance with the 6s30p1P1 →
6s28d1D2 transition at 279.775 GHz, which corresponds to ≈ 1 mm wavelength. There-
fore L/λ ≈ 150, thus our system is not point-like.The triggering field has the energy
∼ 0.3 pJ, which is about ten orders higher than the energy of single photon, therefore
this pulse may be considered as classical field. Time retardation effects are of order
L/c = 5 · 10−10 s. Another characteristic time is a time of spontaneous decay, which is
given by:

τ =
3~c3

4ω3|µ|2
, (2)

which for our system of Rydberg atoms (|µ| ∼ 500 D) is of order of 10 ms.
Duration of the pulse which triggers the superradiance is 10 ns. Such duration

allows one to neglect both retardation effects and contribution of spontaneous decay
into the process. Initial tipping angle of the Bloch-vector is π/40, and semi-classical
approach will be a good approximation for such system.
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2.2 Born-Markov Master equation

To specify the atomic system, we consider it as a set of motionless two-level
systems distributed in space. In the framework of pseudospin formalism, we may write
a full Hamiltonian with interaction taken in minimal coupling form as follows:

H =
~ω0

2

N∑
i=1

σ(i)
z + ~

∑
k,λ

ωka
†
k,λak,λ

+i~ :
N∑
i=1

∑
k,λ

{
bk,λe

ikriak,λ + b∗k,λe
−ikria†k,λ

}{
σ
(i)
+ − σ

(i)
−

}
: .

(3)

Note that this Hamiltonian contains only electrostatic interaction within individual
atoms, i.e. no interaction between atoms is included. Also note that ∼ A2 shift is
neglected since it is irrelevant for our task. Atomic transition frequency is ω0, atom-field

coupling bk,λ =

√
2π

V

|e|ω0√
~ωk

(µ, e(k, λ)), where e(k, λ) denotes real field polarization vec-

tors and µ = 〈e|r|g〉 is a real atomic transition polarization vector. Therefore coefficients
bk,λ are real in such representation. In interaction picture corresponding to Hamiltonian
(3):

V (t) = i~ :
∑
k,λ,i

bk,λ

{
ei(kri−ωkt)ak,λ + e−i(kri−ωkt)a†k,λ

}{
σ
(i)
+ e

iω0t − σ(i)
− e
−iω0t

}
:, (4)

where colon operation denotes normal ordering of operators. Hence the Born-Markov
Master equation for such system has a form:

ρ̇S(t) = −
∑
k,λ,i,j

|bk,λ|2eik(ri−rj)
{(

π

c
δ(k − k0)−

i

c
v.p.

1

k − k0

)[
σ
(i)
+ , σ

(j)
− ρS(t)

]
+

+

(
π

c
δ(k + k0)−

i

c
v.p.

1

k + k0

)[
σ
(i)
− , σ

(j)
+ ρS(t)

]}
+ h.c, (5)

where we utilized the Sokhotski–Plemelj theorem:∫ ∞
0

dτ e−i(k±k0)cτ =
π

c
δ(k0 ± k)∓ i

c
v.p.

1

k0 ± k
. (6)

Omitting a principal value integral results in the Dicke superradiance regime [2],
but we will keep this term as it accounts for non-resonant exchange of photons between
atoms. Summation over polarization yields1∑

λ

(µ, e(k, λ)) = µ2 − (µ,k)2

k2
. (7)

1Here we used the identity which follows from complicity of polarization vectors:∑
λ

eα(k, λ) eβ(k, λ) = δαβ −
kαkβ
k2

.
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The next step is replacing summation over wave-vectors by integration∑
k

=
V

(2π)3

∫ ∞
0

dk k2
∫
dΩ(k).

At this point it is possible to introduce the most general form of the dipole-dipole
interaction (DDI) couplings, namely the inelastic part, responsible for collective decay
processes:

Fij(krij) =
3

8π

∫
dΩ(k)

(
1− (µ,k)2

µ2k2

)
eik(ri−rk), (8)

(note that normalization is chosen so that Fii(0) = 1) and the elastic part, which gives
rise to collective lineshifts:

Ωij =
1

πk0
v.p.

∫ +∞

−∞
dk k

Fij(krij)

k − k0
. (9)

Using the notation Fij ≡ Fij(k0rij), we rewrite the Born-Markov Master equation (5)
as:

ρ̇S(t) = − γ
N∑
i=1

([
σ
(i)
+ σ

(i)
− , ρS(t)

]
+
− 2σ

(i)
− ρS(t)σ

(i)
+

)
− γ

∑
i 6=j

{
(Fij − iΩij)

[
σ
(i)
+ , σ

(j)
− ρS(t)

]
+ (Fij + iΩij)

[
ρS(t)σ

(i)
+ , σ

(j)
−

]}
,

(10)

where we have omitted the Lamb shift of each atom assuming that frequency transition
is already renormalized.

2.3 Equations for mean values

From the Master equation for density matrix it is possible to obtain equations
for mean values of atomic operators. Atomic coherences satisfy the following set of
differential equations:〈

σ̇
(k)
+ (t)

〉
= −γ

〈
σ
(k)
+ (t)

〉
+ γ

∑
i 6=k

(Fik + iΩik)
〈
σ
(i)
+ (t)σ(k)

z (t)
〉
, (11)

and as for atomic populations:〈
σ̇(k)
z (t)

〉
= −2γ

(
1 +

〈
σ(k)
z (t)

〉)
− 2γ

∑
j 6=k

(Fkj − iΩkj)
〈
σ
(k)
+ (t)σ

(j)
− (t)

〉
−2γ

∑
i 6=k

(Fik + iΩik)
〈
σ
(i)
+ (t)σ

(k)
− (t)

〉
,

(12)

note that this set of equations is not closed, so we assume that compositions of two
operators of different atoms factorize:〈

σ
(k1)
±,z (t)σ

(k2)
±,z (t)

〉
≈
〈
σ
(k1)
±,z (t)

〉〈
σ
(k2)
±,z (t)

〉
, k1 6= k2, (13)

which basically implies that we work in semi-classical regime.
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3 Results

In this section we give the analytical and numerical results for different regimes
of superradiance in the Born-Markov approximation.

3.1 Full angle integration

Coefficients (8), which describe inelastic part of DDI, have the following form in
the case of full angle integration:

Fij =
3

2
sin2 ηij

sin k0rij
k0rij

+
3

2
(1− 3 cos2 ηij) ·

(
cos k0rij
(k0rij)2

− sin k0rij
(k0rij)3

)
, (14)

and hence coefficients (9), which account for imaginary part of the equations for atomic
observables, are the following:

Ωij =
3

2
sin2 ηij

cos k0rij
k0rij

− 3

2
(1− 3 cos2 ηij) ·

(
sin k0rij
(k0rij)2

+
cos k0rij − 1

(k0rij)3

)
. (15)

Note that the full couplings of dipole-dipole interaction are complex and may be written
as:

Fij + iΩij = νije
−ik0rij + ζij, (16)

with complex coefficients:

νij =
3

2
sin2 ηij

1

(−ik0rij)
+

3

2
(1− 3 cos2 ηij) ·

(
1

(k0rij)2
+

1

(−ik0rij)3

)
, (17)

while ζij resembles electrostatic dipole-dipole interaction between atoms:

ζij =
3

2
(1− 3 cos2 ηij) ·

i

(k0rij)3
, ζ∗ij = −ζij. (18)

3.2 Integration in forth propagation direction

Assume that our atomic system is pencil-shaped and oriented along z-axis. It
opens up a possibility to approximate integration over solid angle by a single term
corresponding to small solid angle ∆o in z direction, which results in the following form
of the inelastic DDI coefficient (8):

Fik(krik) =≈ 3∆o

8π

(
1− µ2

z

µ2

)
eik(zi−zk) ≡ ξeik(zi−zk), (19)

and for elastic DDI (9):

Ωik = iξ sign (zi − zk) eik0(zi−zk). (20)

Consequently, the full DDI coupling shows the explicit effect of forth propagation:

Fij + iΩij = θ(zi − zj)ξeik0(zi−zj), (21)

where θ(z) is the Heaviside step function, which is 0 for z < 0 and 1 for z > 1. Here it
is assumed that the atoms are ordered in such a way that zi > zj if i > j.
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3.3 Integration in forth and back propagation direction

Taking the backwards propagation into account in addition to forth direction
propagation, the inelastic DDI coefficient takes a following form:

Fik(krik) ≈
3∆o

8π

(
1− µ2

z

µ2

)(
eik(zi−zk) + e−ik(zi−zk)

)
≡ 2ξ cos k|zi − zj|, (22)

and for elastic coefficients:
Ωij = −2ξ sin k0|zi − zj|, (23)

thus, the full coupling is:
Fij + iΩij = 2ξe−ik0|zi−zj |. (24)

By comparing (16), (21) and (24) it is possible to work out limit transition between these
models. It allows to build-up a quasi-1D model from 3D model, which is important for
angle ∆o estimations.

3.4 Comparison of complex DDI and Dicke limit

We generated an atomic system of N = 1000 atoms randomly distributed in the
cylinder with length L = 2λ0 and radius r = 0, 001λ0. Polarization of atomic transition
is orthogonal to the cylinder axis. The figure 1 shows the intensity calculated for different
regimes of superradiance: complex DDI and Dicke limit. One can see that complex DDI
regime exhibits intensity ringings, which were experimentally observed.
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Figure 1: Intensity of emission in regime of complex DDI coefficients (left) and in the
Dicke limit (right) for the same configuration of atoms.

3.5 Coarse-grained approximation

Since we want to describe the system with a large number of atoms, it is advanta-
geous to work out a continuous approximation for our observables. We divide our sample
into small slices. Each slice contains N0 atoms, which are assumed to undergo the same
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time evolution [4]. Neglecting the self-action of each slice on itself, we may represent
evolution of the whole slice as an evolution of single atom, but with increased number
of neighbours. We may effectively increase the number of neighbours by multiplying the
term in equations (11)-(12) responsible for interaction between slices by the number of
atoms in a slice. We generate an extended pencil-shaped geometry with L = 15λ0 and
r = 0.75λ0. The results for N = 500 “clusters” with N0 = 10 atoms in each cluster are
shown on fig. 2.
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Figure 2: Atomic population 〈σz(t, z)〉 on the left and dipole moment Re〈σ+(t, z)〉 on
the right for N = 500 and N0 = 10 in the complex DDI couplings regime.

The exact solution for N = 5000 atoms is shown on fig. 3 (please note that time
scale is different). One can see that both systems undergo the same evolution, which
indicates the validity of coarse-grained description.
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Figure 3: Atomic population 〈σz(t, z)〉 on the left and dipole moment Re〈σ+(t, z)〉 on
the right for N = 5000 and N0 = 1 in the complex DDI couplings regime.

Also note that for such system superradiance occurs in the direction along the atomic
sample. This holds for both complex DDI couplings regime and the Dicke limit, which is
illustrated on fig. 4. Once again, it indicates the absence of dephasing caused by elastic
DDI coefficients.
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Figure 4: Dependence of intensity of emission I(t, θ) on the angle θ between the wave-
vector direction and z-axis, in a plane formed by z-axis and polarization vector,
for complex DDI coefficients (left) and Dicke limit (right).

4 Conslusions

To sum up, in this work we have considered different regimes of superradiance. First,
we considered a model with off-resonant terms, which are ommited in the Dicke limit of
superradiance. Then we considered a models with forth and back radiation only. In the
regime with the complex DDI coefficients, where elastic part is included, the numerical
simulation for dense system showed the superradiant behaviour. Also for small samples
we have obtained ringings of intensity, which were experimentally observed and which
are not present in the Dicke limit. Furthermore, it turns out that there is no dephasing in
extended systems as well, and for some set of parameters we have obtained a pronounced
propagation along atomic sample. One of the main results of our work is validity of
coarse-grained description for extended systems in regime with complex DDI couplings.
It opens up many possibilities for probing the parameter values in order to find new
effects, as well as to clarify already known results.
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