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Abstract

Identification of electrons is extremely important for many analyses. In current
method 19 quantities describing track quality, shower-shape and track to cluster
matching are used to distinguish between real electrons and background, but the
correlations between them are neglected. This report describes a way to take
these relationships in account using neural networks in order to improve electron
performance in ATLAS detector.
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1 Introduction

Many final states of proton-proton collisions at the Large Hadron Collider contain elec-
trons and positrons1. These particles are very important part of ATLAS experiment’s
Standard Model, Higgs boson and beyond the Standard Model research. Therefore
identifying electrons coming from decays of heavier particles with high efficiency and
good background rejection is crucial for a successful physics programme.

The method used for electron identification in previous LHC runs is described in several
papers [1, 2]. Current method uses probability density functions of 19 shower-shape,
track quality or track-cluster matching variables to calculate the likelihood of particle
to be an electron. The procedure is described more precisely in section 2, the most im-
portant matter is that current LH method neglects all correlations between the variables.

Machine learning is one of the ways to look for these relationships. With provided MC
samples for signal (electrons) and background (hadronic jets) deep neural networks2 can
be trained to identify electrons. The same 19 variables as in LH method are not used
separately, but as 19-dimensional input space. NN’s architecture, optimization and data
pre-processing is explained in section 4. Result are shown in section 5.

2 Theory of Electron Identification

The electron identification have to be preceded by reconstruction procedure. Gen-
eral purpose of reconstruction is to create pairs of tracks and clusters that are loosely
matched. It is described more precisely in references [1, 2].

In current electron identification method electron likelihood L is calculated as a product
of n probability density functions (P ) for signal S and background B:

LS(B)(x) =
n∏
i=1

PS(B),i(xi) (1)

x is the vector or variables specified in figure 1. In general different variables can
have discriminating power between electrons and light-flavour jets, photon conversions
or electrons from semileptonic decays of hadrons containing heavy-flavour quarks. As
formula 1 shows the correlation between ID quantities are not used.

Equation 1 is used to calculate discriminant dL for each electron candidate:

dL =
LS

LS + LB
(2)

1 Further in this report term ”electron” means both electrons and positrons
2 Further abbreviated to NN

3



Putting a cut on higher values of dL allow to increase background rejection 1
εB

, but for
the price of lower signal efficiency εS. Dependent on needs of analysis it is possible to
chose ”tight” (the most restrictive) , ”medium”, ”loose” or ”veryloose” operating point.

Discriminating variables depend on the kinematics, therefore identification is done bins
of the electron candidate’s transverse momentum and absolute value of pseudorapidity.

4



Figure 1: Description of electron identification variables. Rejects columns tells whether
the quantity has important role in discrimiating electrons and light-flavour
jets (LF), photon conversions (γ) or electrons originating from semileptonic
decay of hadrons containing heavy-flavour quarks (HF). Usage column gives
information whether in LH method the quantity was used to calculate electron
LH (LH) or it was used as fixed selection criterion (C). 3x3, 3x5, 3x7 and 7x7
refer to areas of ∆η ×∆φ in units of 0.025× 0.025 [1]

As it was mentioned before formulas 1 and 2 neglect correlations between ID quantities.
Neural Network with the same input as LH method can be used to look for these re-
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lationships, output of NN can be treated exactly the same as dL discriminant from LH
method.

3 Data Samples

NN should be trained on electrons with wide range of transverse momentum and pseu-
dorapidity, therefore signal MC sample was coming from Z → e+e− decay. Distribution
of invariant mass of 2 electron candidates with highest transverse momentum in the
signal event is shown on the figure 2. Red line shows Z boson mass, most of events have
invariant mass equal to it.
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Figure 2: Distribution of invariant mass of 2 electrons with highest transverse momentum
in the signal events. The red line indicate Z boson mass.

Sample with events containing 2 hadronic jets with filter over jet momentum was con-
sidered as a background. Similar to the signal, the distribution of invariant mass of 2
electrons with highest transverse momentum in the event is shown on the figure 3. One
of possible checks for electron contamination of background sample is to look for peak
around Z boson mass. On this plot we can see that the result of the check is negative.
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Figure 3: Distribution of invariant mass of 2 electrons with highest transverse momentum
in the background events.

Figures 4 and 5 show differences in distributions of transverse momentum and pseu-
dorapidity of signal and background samples.

Figure 4: Comparison of transverse momentum distribution for signal and background
sample.
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Figure 5: Comparison of transverse pseudorapidity for signal and background sample.

Below there are plots of quantities describing shower-shape in calorimeter (Eratio, figure
6), track quality (d0, figure 7) and track-calo matching (∆φres, figure 8) for signal and
background samples. The plots are normalized to one to allow see the differences in
distributions’ shapes.
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Figure 6: Ratio of the energy difference between the maximum energy deposit and the
energy deposit in a secondary maximum in the cluster to the sum of these
energies for signal and background samples.
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Figure 7: Transverse impact parameter relative to the beam-line for signal and back-
ground samples.
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Figure 8: ∆φ between the cluster position in the second layer of the EM calorimeter and
the momentum-rescaled track, extrapolated from the perigee, times the charge
q for signal and background samples.
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4 Input Preprocessing and Neural Network Architecture

4.1 Data Sample Balance

4.1.1 Undersampling

Training of NN is optimal if they have equal amount of signal and background events in
training set. If the data samples do not have the same size they can be balanced using
various techniques, one of them is undersampling. It means choosing random events
from bigger class to have at the end same amount of signal and background (figure 9).

Figure 9: Visualization of undersampling technique.

4.1.2 pT distribution normalization

Figure 4 shows differences in transverse momentum of signal and background sample.
Because the electron identification is supposed to be applicable in many different analyses
with different background kinematics, we do not want the neural network to use the
background pT spectrum in our training setup to help it identify electrons. Therefore
we try to eradicate any discriminating information stemming from the pT spectra of
signal and background by reweighting the spectra to look the same, it was done in three
variants.

• Training weights were calculated using formula 3 in small pT bins (1 GeV width) to
reach same reweighted pT distribution of background as the signal sample (weights
calculated with this formula were used just for background, for signal just event
weight was used ). Both sums iterate over all electron candidates in 1 GeV pT bin,∑
i ω

sig
i means sum of event weights for signal,

∑
i ω

bkg
i is calculated in a similar

way.
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fminibin =

∑
i ω

sig
i∑

i ω
bkg
i

(3)

• Weights were applied both for signal and background in 1 GeV bin with formulas
4 and 5 to make pT distribution flat.

fsig =
1∑
i ω

sig
i

(4)

fbkg =
1∑
i ω

bkg
i

(5)

• Control version, only event weights were applied, pT distributions are the same as
on figure 3.

4.2 Architecture

Figure 10: Schema of the model.
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Machine learning was implemented using Keras library with tensorflow library backended.
As it was mentioned in section 2 input for NN was the same as for LH method, addi-
tionally variables were transformed using formula 6 in order to reach distribution with
mean equal to 0 and standard deviation equal to 1 for each quantity (Keras function
”StandardScaler” was used to do it). z is variable value after transformation, x is a
value before, u is mean value of variable and s is its standard deviation

z =
x− u
s

(6)

Different model sizes were tested (4 to 10 layers with various number of neurons), the
best final version had 10 layers (8 hidden layers, number of neurons 19 → 78 → 78 →
78→ 48→ 36→ 24→ 12→ 6→ 1), what gives 21433 trainable parameters.

Loss function used in a model was binary cross entropy. All layers were using ReLU
activation function, except of output layer which was using sigmoid activation function
(the reason is that we want the neural network output value to lie within a bound
interval, namely [0, 1], the ReLU function gives a half-open interval [0,∞)). The output
should reflect the likelihood of the particle to be an electron. There were 70 of training
epochs, this number was found experimentally as big enough to converge the NN.

5 Results

In each case neural network was trained and tested in η bin from -0.7 to 0.7 and in pT
bin from 20 GeV to 60 GeV.

5.1 Same pT distribution for signal and background

The formula for reweighting transverse momentum to reach same distribution for signal
and background was described in section 4.1.2. Reweighted distributions are on figure
11.
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Figure 11: Distribution of transverse momentum reweighted with training weights.

12



Data sample was splitted into 3 parts: training, validation and testing in order to keep
opportunity to check network performance. Control plots for NN training can be seen
at figure 12. Accuracy is defined as number of well identified objects divided by number
of all objects (in this case identified means with score higher than 0.5 (for signal events)
or lower than 0.5 (for background objects)).

Control plots are used to look for pathological behaviors in network performance. For
example if for higher epochs validation accuracy is decreasing, validation loss function
is increasing and training accuracy is very high, overtraining might have occurred. In
this case control plots look good.

(a) Accuracy for training sample. (b) Accuracy for validation sample.

(c) Accuracy for training and validation
samples.

(d) Loss function for training and valida-
tion samples.

Figure 12: Distribution of transverse momentum reweighted with training weights.

Output of the neural network for testing sample can be seen of figure 13. For signal
events score is much closer to 1 and for background events to 0.
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Figure 13: Score distribution for signal and background events.

Of course there are still some background events with score close to 1, there is even a
peak for background around score equal to 1, It can be understood as a fraction of jets
extremely similar to electrons, which is not distinguishable for the model. Analogical
situation happens for electrons with score close to 0.

To identify electron it is necessary to put arbitral cut on score, above which we recognize
event as an electron. Value of the cut is based on specific needs of analysis. A receiver
operating characteristic3 curve is on figure 14, it shows signal efficiency εsig versus back-
ground rejection 1

εbkg
, different points correspond to different score thresholds. Signal

(background) efficiency εsig(bkg) is defined as number of signal (background) events with
score higher than threshold divided by number of all signal (background) events. In
case of background it is more convenient to use background rejection 1

εbkg
. On the plot

there are also approximate result for LH method corresponding to ”veryloose”, ”loose”,
”medium” and ”tight” working points. For all of them except of ”veryloose” (currently
it is not standard working point) neural network is performing better than LH method.

3 Further abbreviated to ROC

14



50 100 150 200 250 300
1
bkg

0.80

0.85

0.90

0.95

1.00

1.05

si
g

Figure 14: Signal efficiency versus background rejection for different score thresholds
(red dots) compared to approximate LH method results (blue crosses)

5.1.1 Transverse momentum dependence

Identification model performs different in different pT region. Transverse momentum
distributions before and after the identification can be seen on the plot 15. The plots are
weighted with event weights, they have only statistical errors and they are normalized.
Normalization allows to see better the differences in shape (if red curve is higher than
blue, more events are passing identification than when it is opposite). Score threshold
was chosen to have background rejection between ”medium” and ”tight” working point.
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(b) Background

Figure 15: pT distribution before and after the identification.

Interpretation of plot 15 is easier using plot 16, which is created by dividing number
of identified electrons by number of all electron candidates in each pT bin (in case of
background also raised to power -1).
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Figure 16: Signal efficiency and background rejection in function of pT

For low pT values signal efficiency is low but background rejection is higher, for higher
values it is opposite.

5.1.2 Pile-up dependence

Normalized distribution of number of vertexes before and after the identification can be
seen on the plot 17. Neural network performance is independent on pile-up, because
shape of distribution is almost unchanged. This is also shown on the plot 18, it contains
signal efficiency which is calculated by dividing number of identified electrons by number
of all electron candidates in each nvtx bin.
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Figure 17: Number of vertexes before and after the selection
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Figure 18: Signal efficiency in function of number of primary vertexes

5.2 No additional training weights

In case of using only event weights the results are very similar to results in section 5.1.
On plot 19 ROC curve can be seen, it is almost the same as on plot 14.
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Figure 19: Signal efficiency versus background rejection for different score thresholds
(red dots) compared to approximate LH method results (blue crosses)
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5.3 Flat pT distribution
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Figure 20: Distribution of transverse momentum reweighted with training weights.

In case of reweighting pT to reach flat distribution (figure 20) the performance of the
NN is significantly worse (21) than in case of ”same” pT distribution . With similar
signal efficiency, background rejection is much worse (different score thresholds for both
distributions were used to reach similar signal efficiency).
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Figure 21: Comparison of signal efficiency and background rejection between flat pT
reweighting and ”same” pT reweighting.

6 Summary and Outlook

• Neural networks are powerful tools with huge potential in electron identification.
They might give better results than current LH method, however their performance
have to be evaluated carefully.

• Model performance is dependent on transverse momentum of the electron, but it
is independent on pile-up level.

• The idea is to use NN with the same architecture, but trained on different pT and
η bins.
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• There are plans to test it on real data in the future.

• Adding additional input variables might bring better results (e.g. pT or raw in-
formation about cells in cluster).
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