Calculation of the Beamline intensity based on
WavePropaGator interface

Nuria Olivares i Royo, Universitat Politecnica de Catalunya, Spain

Supervisor: Ruiz Lopez, Mabel

September 4, 2019

Abstract

Usually the optical design of beamlines for the Free Electron Laser is realized with
specific codes and interfaces i.e., Wave PropaGator. We developed an add-up code
based on Python structures for calculating the final photon intensity at the end of
beamlines. For this aim the reflectivity of mirrors, the dimensions of the optical
elements and the source properties are considered. Although diffraction effects
were not integrated in the code, a preliminary analysis shows that the difference
with ray-tracing calculations is not significant.

Contents

T Motivation
(1.1. WPG - WaveProperGator|
(1.2. Beamline FL241

[2. 1CS: Intensity Calculation Support|
[2.1. GUI - Graphical User Intertace]

1. Motivation

FLASH, the Free Electron Laser in Hamburg has extraordinary properties: high bril-
liance [more than 10?® ph s™! mm~2 mrad—2/0,1% Bandwidth], ultrashort pulse duration
(10-200 fs) and high repetition rate (up to 8000 pulses/s in burst mode) [1I, 2]. FLASH
operates with wavelengths in the range of the Extreme Ultraviolet (EUV) from 4.1 nm
to up to 90 nm.

The facility includes since 2014 a new experimental Hall named "Kai Siegbahn” like
the physics Nobel Prize winner. The new Hall will double the number of user stations
and nowadays FLASH operates 6 beamlines. The photon beam parameters can be cho-
sen almost independently from FLASH1 thanks to an additional variable-gap undulator.

1.1. WPG - WaveProperGator

The beamlines and the optical equipment are usually designed using specific codes.
In this sense WavePropaGator (WPQG) interface is an appropriate tool to understand
the behaviour of diffraction effects through the optics along the beamline. WPG is a
framework for Synchrotron Radiation Workshop (SRW) developed in the European XFEI
for beamline scientist [3]. The framework allows defining optics along the beamlines and
propagate a Gaussian source through them. Three main parts can be differentiated in
the WPG Scripts:

- Source: A Gaussian beam is defined in the framework using the inputs parameters
source size and divergence.

- Optical elements: A sequence of the optical elements is saved in an external file
called "beamline.py”. The file contains the information about incident angles,
distances between optical elements and dimensions among other parameters.

- Detector: The projection of the photon beam at the end of the beamline is calcu-
lated using the appropriate scaling parameters to observe the final intensity and
phase distribution.

The simulations are based on the principle of physical optics using Fast Fourier Trans-
form (FFT) and asymptotic expansion based on a propagator. The interface provides
accurate results respect to the shape and dimensions of the photon beam indeed. It
includes information about the size of the optics, angle of incidence and roughness of
the optics. WPG provides information about the phase and the intensity. However, the
latter is unfortunately given in arbitrary units and is independent on the intensity in
the input since data needed to calculate the real final photon intensity is missed, i.e.,
optical coating. An add-up code to supply with such an information the code is certainly
needed. In this sense, the ICS (Intensity Calculation Support) code development is a
very helpful tool to calculate the intensity at the end or step-by-step along the beamline.
The ICS code was tested is the beamline FL.24 located at FLASH2.

1.2. Beamline FL24

The beamline FL24 is located at FLASH2. Figure [I]shows the different optical elements
in the beamline:

21.4m 1.4m 63.4 m 1.5m 0.5m _ 2-3-4m

- - = - -

Figure 1: Sketch of Beamline FL24.

This beamline is made up of six optical elements, the first two mirrors are located in the
tunnel and the following optical elements are found in the experimental hall:

e Two offset mirrors: whose function is to eliminate the Bremsstrahlung Effect pro-
duced by the deceleration of the charged electrons. They can also be used to
correct the direction of the beam.

e An aperture: used to clip the beam when necessary.

e A planar mirror: also called pre-mirror, whose main function is to send the beam
in the direction of the Kirk-Patrick Baez (KB) optics.

e Kirk-Patrick Baez optical focusing system: which consists in two elliptical mirrors
that are disposed in a horizontal and a vertical position respectively. Their purpose
is to create the smallest focus with the maximum efficiency. In order to do so, small
grazing angles are used along all the optics of the beamline.

The reflectivity of these mirrors needs be taken in consideration in the calculation of
the final intensity as the output, to do so, three main coating materials were considered:
Platinum, Nickel and Carbon since they showed high reflectivity in the range of soft X-
rays. Figure[2|shows a comparison between the different materials and their reflectivity.

As it can be observed, each of the coatings have the highest efficiency for a specific
wavelength range. Platinum is the best option if the wavelength selected is very small
(up to 2 nm), followed by Nickel that becomes the best option in the range from 2 to 5
nm. Finally for larger wavelengths (>5nm) Carbon shows a high and stable value.

; Comparison of Reflectivities of a Mirror depending on its Material

0.95 4 =

0.8 ,' 4

0.85) \ : -
7 \ Reflectivity for Platinium

Reflectivity for Nickel

Reflectivity for Carbon i

o
oo

Mirror Reflectivity
o o
o o o ~
(=] [4)] ~ (4]
T T T
L L I Il

o

o

3]
Il

05 L L | 1 Il 1 L
5 10 15 20 25 30 35 40

Wavelength [nm]

Figure 2: Reflectivity at incident angle =2 degrees for Nickel (Ni), Carbon (C) and
Platinum (Pt)

2. ICS: Intensity Calculation Support

The code is based on ray tracing technique. By using a very simple formula that considers
the reflectivity of each mirror and the fraction of the beam at the mirror clipped by the
surface of the mirror.

O.E.
I'= H pil; (1)
i=0

where I is the final intensity, p; is the reflectivity of the coatings and I; is the partial
intensity of the optical element.

If the diffraction effects are considered, the formula becomes as follows:

O.E.

i=0
where the diffraction effects are also included (D.E.;)

As an schematic way to describe it, the code obtains information from three main sources:

- CXRO Webpage: This web page contains information about the reflectivity of
the mirrors for a large range of wavelengths based on different parameters: the
material, density, roughness, polarization and the incidence angle.

- Beamline.py: This file is created in WPG and saved after running a beamline
simulation. It contains information about the sizes of the optical elements, the
incidence angle of the beam and also the distance between the optical elements.

- Graphical User Interface: Obtains the missing data needed in order to proceed: the
material of the optical elements, the path to the beamline file and the divergence
and wavelength used.

The code can be subdivided in three different parts: the GUI where the user can write
the input parameters, the main function, that analyzes the data obtained from the GUI
and also activates the Mirror Ref function, whose purpose is to obtain the refractivities
from the CXRO page.

2.1. GUI - Graphical User Interface

Figure 3| shows the graphical user interface.

This window firstly allows the user selecting the number of optical elements from the
beamline. After that the user can select the type of optical element and the coating for
them. In case of apertures, the coating is not used. The selection needs to be done in
the correct sequence of elements from the source to the detector.

Once the optical elements and their coatings are selected, one has to select the path to
the file Beamline.py. Finally, the user need to introduce the desired wavelength as well
as the divergence. Both parameters can be also found in the dedicated script of WPG.
After all the parameters are selected, the final RUN button starts the MAIN function
that leads to the corresponding final intensity at the end of the beamline

' Selection of mirrors

Number of Optical Elements: |6 3 oK

Type of optical element: Coating for the OE: _

Type of optical element: Coating for the OE: W_
Carbon

Type of optical element: Coating for the OE: Platinium

Type of optical element: Coating for the OE:

Type of optical element: Coating for the OE:

Type of optical element: Coating for the OE:

Insert File of Beamline: | //win.desy.de/home/olivaren/My Documents/beamline_ElIKE.tt Browse

Divergence= | | tuaa
Wavelength= [m

Figure 3: Print-out of the GUI for the ICS (Intensity Calculation Support) code

2.2. Main Function

The Main Function code consists in a function that processes and analyzes all the input
information to calculate the final intensity. As a first step it collects all the relevant
information (incident angle, dimensions of the optics and distances between optical el-
ements) from the ”Beamline.py” file. To do so, the code searches for specific notations
inside the "Beamline.py” file. For example, in order to find the distances between the
optical elements, the code looks for the words ”Drifts” and store the parameter written
near to it. For the angle of incidence, the information must be written as: ”theta”. And
the dimensions of the optical elements must be disposed as: "Dx” and ”"Dy”.

After going through different filtering methods, the main information of the file is stored
in a DataFrame as the one shown in Figure [4]

Indesx Distances | Incangles | Material | Shape | X Dimension | ¥ Dimension |
Mirror 1 21.48 8.88068912 N c 8.8 8.8
Mirror 2 22.8 8.88068912 N c 8.8 8.8
Aperture 84.8 1.5788 = c a.814 a.814
Mirror 3 86.2 8.88068912 N c a.5 a.5
Mirror 4 87.7 8.88068912 N e 8.36 a.a2
Mirror 5 88.25 8.88068912 N e 8.36 a.a2

Figure 4: DataFrame containing information about the optical elements in beamline
FL24: Distances, Incidence angles, Material and Dimensions

The second step is calculating the difference between the beam size and the optical di-
mensions for each element. The output of the partial intensity of each mirror is given
as a vector that represents the percentage of area of the beam inside the area of the
element. For low divergence the beam would be smaller than the dimensions of the
optics and the so called divergence efficiency is 1 (100%).

2.3. MirrorRef Function

In order to calculate the reflectivity of the mirror coatings a new function called ” Mir-
rorRef” is used. For this case the Data Frame contains information about the reflectivity
of the optical elements for the specified coating material, obtained from the web page of
the Center of X-Ray optics (CXROED.

The interaction between the code MirrorRef and the web of CXRO is done using the
module Selenium [4]. This module allows the user pre-selecting the actions that are after
done in that web page, so the input is automatic.

'CXRO main page

http://www.cxro.lbl.gov

The function accesses to the ”thick mirror” option on the web and writes in it the given
parameters | Afterwards, it returns a data file that contains the information about
reflectivity for such a mirror. This file is used in a new DataFrame in the python main
function.

3. Results

In order to study the behaviour of the code, we analyze the total intensity at the end
of the beamline FL.24. Values are given normalized in decimals. Different cases, where
different divergences and different apertures were chosen are used.

In Table |If we compare two cases: one where the parameters used as the same as in [5]
and one where the divergence is 6=200 prad.

Optical Element Intensity Optical Element Intensity

Mirror 1 0.999947 Mirror 1 0.999947
Mirror 2 0.999947 Mirror 2 0.999947
Aperture 1 Aperture 0.681404
Mirror 3 0.999947 Mirror 3 0.999947
Mirror 4 0.999947 Mirror 4 0.999947
Mirror 5 0.999947 Mirror 5 0.999947
Total Intensity 0.999735 Total Intensity 0.681223
Divergence= 125 purad Divergence= 200 prad

Table 1: Total intensity calculated for, on the left, the case 1 with divergence §=125urad
and on the right the case 2 with divergence #=200urad. As observed the case
2 only provides approx. 70% of the initial intensity.

The intensity at the end of the beamline varies dramatically from the Case 1 to Case 2.
As observed the case 2 only provides 68% of the initial intensity. Both calculations use
the same coatings (Nickel), optical dimensions (diameter of aperture: 14 * 107%) and
the wavelength (8 nm).

The studied case 3 and case 4 compare the final intensity for different aperture diameters.
As observed the case 3 provides approx. 30% of the initial intensity. Both calculations
use the same coatings (Nickel), divergence (125 prad) and the wavelength (8 nm):

2CXRO - Thick mirror datapage

http://henke.lbl.gov/optical_constants/mirror2.html

Optical Element Intensity Optical Element Intensity

Mirror 1 0.999947 Mirror 1 0.999947
Mirror 2 0.999947 Mirror 2 0.999947
Aperture 1 Aperture 0.302846
Mirror 3 0.999947 Mirror 3 0.999947
Mirror 4 0.999947 Mirror 4 0.999947
Mirror 5 0.999947 Mirror 5 0.999947
Total Intensity 0.999735 Total Intensity 0.287959
Diameter= 14 mm Diameter= 7 mm

Table 2: Results of output intensity depending on aperture size for a wavelength of 8
nm and Divergence=150 urad

A 14 mm diameter is sufficient for a divergence smaller than 125 urad, however, the
final number of photons decreases 1/3 when the aperture is 7 mm instead.

Figure 5| shows the output result for the Total Intensity calculated with ray tracing for
a range of aperture diameter from 2 to 15 mm. We observe that the intensity is scale
down fast for aperture smaller than 10 mm at normal conditions, i.e., Divergence= 150
prad and wavelength= 8 nm.

. Output intensity of the beamline depending on aperture diameter

o o o
~ 00 ©
T T
1 1

o
>
T
I

Total Intensity at the Ouptut (Ray Tracing)
o o o
w £ (4]
T T
L L L

o
o
T
I

o
o
I

Il Il Il Il
8 10 12 14 16
Diameters for the Aperture %10

o

N
IS
=]

Figure 5: Calculation of the Total Intensity of the Beamline in the common conditions

4. Future Work: Diffraction Effects

The diffraction effects are not included in the ICS code, however since the framework
WPG is based on wave-propagation, we believe that is important to understand how
the can affect the final intensity.

To calculate the difference between the intensity given by ray tracing and wavefront
propagation, we observed the diffraction effects produced after an aperture illuminated
with a source at 21,40 m. In the near field, an aperture illuminated with coherent
radiation project an Airy disc. In other words the diffraction pattern will correspond
to the beam surrounded by several circles around it, whose size depends on the level of
diffraction. The program simulates this in a pretty accurate way as it can be seen in the
following picture:

1619 E0=00092 eV

1.50

1.25

1.00 4

0.75 1

0.50 1

0.25 1

0.00 1

=20 -10 o] 10 20

20 20 4

10

10 1

~10 1 -104

=201 =204

-:?D =10 EII llﬂ 2II:| BI_U OTS lfl:l
mim lel9

Figure 6: Beam Wavefront after an aperture of D=10 mm

10

When the image of the wavefront is zoomed in, the circular shapes around it can be
easily appreciated. In Fig. 7 we shows the diffraction rings of an aperture of 6 and 10
mm of diameter.:

(a) Aperture size = 6 mm (b) Aperture size = 6 mm
Figure 7: Diffraction Effects on Different aperture sizes
With this patterns of diffraction, a quantification of this effect is possible by processing

the images obtained. The process of obtaining a result for this effect can be summarized
in the following steps:

- Simulating two wavefronts: one which propagates through the aperture, one Gaus-
sian wavefront at the position of the aperture, but without any structure producing
in it a diffraction pattern.

- Process those images by integrating, vertically and horizontally.
- Calculating the ratio between the diffracted beam and the non-diffracted one.

By analyzing the results in the following apertures, it was observed that the diffraction
effects do make a change in the calculation of the Total Intensity, smaller than 30%:

Aperture Size 6 mm 7,50 mm 10 mm
Total Intensity (Ray Tracing) 0.22244 0.34756 0.61789
Diffraction Effects 0.8174 0.8346 0.8714

Total Intensity 0.1818 0.2901 0.5384

Table 3: Results of output intensity considering diffraction effects for different aperture
sizes.

11

5. Conclusions

The ICS code based on Python structures has been developed to calculate the total
intensity at the end of the beamlines. For this aim, the code uses information created
previously in the WPG framework. Likewise, the code collects information about the
coating efficiency from the web page of the CXRO.

We have tested ICS for different situations at the beamline FL.24. However the code can
easily applied to other beamlines with a different disposal of elements. To do that some
parameters are nonspecific to the beamline FL24.

Although the efficiency is calculated using the ray tracing method, a diffraction case was
calculated separately and compared with the results obtained in our code. We observed
that the total number of photons is reduced at least 20% respect to the ray tracing
calculation. In conclusion ICS code is a very useful tool to have a preliminary idea of
the total intensity at the end of the beamlines.

12

References

1]

Wet al Ackermann, G Asova, V Ayvazyan, A Azima, N Baboi, J Biahr, V Balandin,
B Beutner, A Brandt, A Bolzmann, et al. Operation of a free-electron laser from the
extreme ultraviolet to the water window. Nature photonics, 1(6):336, 2007.

B Faatz, E Plonjes, S Ackermann, A Agababyan, V Asgekar, V Ayvazyan, S Baark,
N Baboi, V Balandin, N von Bargen, et al. Simultaneous operation of two soft

x-ray free-electron lasers driven by one linear accelerator. New journal of physics,
18(6):062002, 2016.

Liubov Samoylova, Alexey Buzmakov, Oleg Chubar, and Harald Sinn. Wavepropaga-
tor: interactive framework for x-ray free-electron laser optics design and simulations.
Journal of applied crystallography, 49(4):1347-1355, 2016.

Richard Lawson. Web scraping with Python. Packt Publishing Ltd, 2015.

Mabel Ruiz-Lopez, Liubov Samoylova, Giinter Brenner, Masoud Mehrjoo, Bart
Faatz, Marion Kuhlmann, Luca Poletto, and Elke Plonjes. Wavefront-propagation
simulations supporting the design of a time-delay compensating monochromator
beamline at flash2. Journal of synchrotron radiation, 26(3), 2019.

13

A. ICS Codes
A.1. GUI

1 # —*— coding: utf-8 —x—

1
999 99
2
3
!

Created on Wed Aug 21 11:33:39 2019

5 @author: olivaren
999 9

7 import tkinter

s from tkinter import ttk

o from tkinter.filedialog import askopenfilename
10 import numpy as np

12 #import os

13 from MAINDEFFUN import maindeffun
15 matr=np.empty ([2, 6], dtype=str)

17 window = tkinter.Tk()
15 window . title ("GUI")

20 def closewindow () :

21 global matr

22 global Divergence

23 global wavelen

24 global Efficiency

25 global Effi

26 for ii in range (numirr):

27 matr [0, ii]=globals () [’cb{}’.format(ii)]. get ()

28 matr[1,ii]=globals () [’cbm{}’.format (ii)]. get ()

29 Divergence=el . get ()

30 wavelen=e2. get ()

31 window . destroy ()

32 Efficiency , Effi=maindeffun (name, matr, Divergence, numirr, wavelen)
33 print (Efficiency)

34

35 def OpenFile () :

36 global name

37 name = askopenfilename (initialdir="C:/ Users/Batman/Documents/” ,

filetypes =(("Text File”, "x.txt”),(” All Files” ,”*.%x”)), title ="
Choose a file.”)

38 try:

39 with open(name,’r’) as UseFile:
10 UseFile.read ()

41 file . configure (text=name)

42 except:

13 print ("No File Selected”)

44

15 def okay ():

46 global numirr

14

48
49

50

61

62
63

64

numirr=int (spin.get ())

inih="70
for i in range (numirr):

element=tkinter . Label (window, text="Type of optical element:”, fg=
"black ’, font=(”Helvetica”, 11))

element . place (x=60, y=inih+35%1i)

typo=tkinter.StringVar ()

globals () ["cb{}’.format (i)]=ttk.Combobox(window, textvariable=typo
)

globals () [’cb{}’.format(i)][’values’]=("Mirror”, ” Aperture”, VLS
grating”)

globals () [’cb{}’.format(i)]. place(x=250, y=inih+35%i)

element=tkinter .Label (window, text="Coating for the OE:” 6 fg="’
black’, font=("Helvetica”, 11))

element . place (x=450, y=inih+35x%i)

material=tkinter.StringVar ()

globals () [cbm{}’.format (i)]=ttk.Combobox(window, textvariable=
material)

globals () [¢cbm{}’.format (i)][’ values’]=("-",” Nickel” , ”Carbon”, 7
Platinium”)

globals () [cbm{}’.format(i)]. place(x=615, y=inih+35%i)

label=tkinter.Label (window, text=’Number of Optical Elements:’, fg='black’

, font=("Helvetica”, 11))

5 label.place (x=50, y=30

)
spin = tkinter.Spinbox (window, from_=0, to=100, width=5)
spin . place (x=255, y=30)
button = ttk.Button(text = "OK’, command=okay)
button. place (x=310, y=30)

a=370

label=tkinter .Label (window, text=’Insert File of Beamline:’, fg=’black’,
font=("Helvetica”, 11))

label . place (x=60, y=a—60)

buttn=ttk . Button (window, text="Browse” , command=OpenFile)

buttn . place (x=600, y=a—60)

file = tkinter.Label(window, text='No File’, borderwidth=1, background=’
white’, relief="groove” , height=1, width=50)

file .place (x=220, y=a—56)

label=tkinter . Label (window, text=’Divergence =’, fg="black’, font=("
Helvetica”, 11))

label . place (x=60, y=a)

el = ttk.Entry (window)

el.place(x=160, y=a)

5 label=tkinter.Label (window, text=’[urad]’, fg=’black’, font=("Helvetica”,

8))
label . place (x=292, y=a)

; label=tkinter.Label (window, text=’Wavelength =’, fg=’black’, font=("

Helvetica”, 11))

15

s7 label.place (x=60, y=a+30)

ss €2 = ttk.Entry (window)

so e2.place (x=160, y=a+30)

o0 label=tkinter.Label (window, text='[nm]|’, fg=’black’, font=("Helvetica”, 8)

o1 label.place (x=292, y=a+30)

92

93 button = ttk.Button(text = "Run”, command=closewindow)
91 button . place (x=850, y=450)

95

96 window. title (’Selection of mirrors’)

o7 window . geometry (”950x500+10+10")

os window . mainloop ()

A.2. Main Function

1 # —*— coding: utf-8 —x—

299

Created on Fri Aug 23 17:27:02 2019

1
2
3
!

5 @author: olivaren

6 NN

7 #from mirrorRef2 import thickmirror2

s #import numpy as np

#import pandas as pd

10 #import math

11 def maindeffun (name, matr, Divergence, numirr, wavelen):
12 from mirrorRef2 import thickmirror2
13 import numpy as np

14 import pandas as pd

15 import math

9

16 # FIXED PARAMETERS:

17 lambdamin="2.0"

18 lambdamax="40.0"

19 lambdanum="100"’

20 density=—1

21 roughness="0.3"

22 # VARIABLES (ASKED IN THE GUI) :

23 p01:1

24

25 # MATR, OBTAINED IN GUI: WE WILL SUPOSE NO VLS GRATINGS

26 f=open (name, "1r”)

27 mylines = [] # Declare an empty list named
mylines .

28 with open (’beamline EIIKB.txt’, ’rt’) as myfile: # Open lorem.txt for
reading text data.

29 for myline in myfile: # For each line, stored as
myline ,

30 mylines.append (myline) # add its contents to mylines

31 f.close ()

32 +#

16

33 # OBTAIN GENERAL PARAMETERS: (obtains general parameters of the
beamline . text)

34 distances =|]

35 angles =[]

36 incangles =[]

37 leng=len (mylines)

38 dhnx:H

39 dhny:ﬂ]

10

a1 for linea in range(leng):

42 mylines [linea]=mylines [linea |. strip ()

13 if mylines|[lineal]=="#——1.1. Distances BF

11 distances.append(mylines[linea+1].split () [2])

15 if mylines[linea]. find (" Drift (”)!=-1:

16 a=mylines[linea | [mylines[linea]. find (’Drift (’)+len (’'Drift ()
:].split () [0].strip (',) .strip(’) ")

a7 distances .append(a)

48 if mylines[lineal]=="#——1.2. Angles 2g #Obtain
different angles that can be a parameter

19 for n in range(5):

50 angles.append (mylines [linea+4n+2])

51 angles [n]J=angles[n]. split () [1]

52 angles [n]=angles [n]. strip ("=")

53 angles [n]=str (float (angles[n]))

54 if mylines[linea]. find (’theta=") = —1: #This line
obtains the name of the angle of incidence in each mirror

55 incangles.append(mylines[linea])

56 if mylines[linea]. find ("Dx”)!=—1:

57 try:

58 dimx . append (str (float (mylines[linea].split () [4].strip(’,")
.strip (’Dx="))))

59 dimy . append (str (float (mylines[linea]. split () [5].strip(’) ")
.strip ("Dy="))))

60 except:

61 dimy . append (str (float (mylines[linea].split () [6].strip(’)")
-strip ('Dy="))))

62 lastmirrortoscreen=distances [len (distances) —1]

63 distances=distances [0:len(distances) —1]

64 # This filter finds if the angle is the one selected and obtains non—
repeated parameters:

65 values =[]

66 for ii in range(len(incangles)):

67 incangles[ii]=incangles[ii].strip(”,”)

68 incangles[ii]=incangles[ii].split(’=")[1]

69 for linea in range(leng):

70 if mylines|[linea].find (incangles[ii]+'=") != —1:
71 values .append (mylines[linea|)

values=list (set (values))

AW N

valueangles=np. zeros ((len (values) ,3), dtype=object)
5 for k in range(len(values)):

b A B

17

76 values [k]=values [k]. split ()

7 values [k][0]=values[k][0]. strip ("=")

78 values [k]|[2]=values [k][2]. strip ("#")

79 valueangles [k,0]=str (values [k][0])

80 valueangles [k,1]=values [k][1]

81 valueangles [k,2]=values [k][2]

82 if valueangles [k][2]=="[rad]’

83 valueangles [k,1]=math.radians (float (valueangles[k,1]))

84 valueangles [k,2]="[deg]’

85 # Assigns a value of theta for each mirror:

86 for j in range(len(incangles)):

87 for u in range(len(valueangles)):

88 if incangles|[j]==valueangles[u][0]:

89 incangles|[j]=valueangles [u][1]

9 =i

91 # ANALIZE TYPE OF OPTICAL ELEMENTS:

92 Material=[" ’]*numirr #Material of each mirror

93 Shapes=[’c’|*numirr #Shape circular or elliptical

94 typo=|] #Indexing of the mirrors

95 for ii in range(numirr):

96 if matr[0,ii]=="M":

o7 typo.append (’Mirror +str (ii))

08 for linea in range(40,leng):

99 if mylines|[linea].find(’ mirror’)!= —1:

100 Material [ii]=matr[1, ii]

101 if matr[0,ii]=="A": # Angle of inc of Apertures is 90(normal
inc.) and with circular shape. Considers only one aperture for typo

102 typo.append (’ Aperture’)

103 for linea in range(0,leng):

104 if mylines|[lineal]== '#Aperture

105 Material [ii]=matr |1, ii]

106 if mylines|[linea+1].find (”shape="c’”)!= —1:

107 if mylines|[linea+1].find ("Dx”)!= —1:

108 Shapes[ii]="c¢’

109 incangles.insert (ii ,math.pi/2)

110 for j in range(numirr):

111 if dimx[j]!=dimy][j]:

112 Shapes[j]="e’

113 dimy=dimy [0: numirr]

114 dimx=dimx [0: numirr]

115 distances=distances [0: numirr]

116 incangles=incangles [0: numirr |

117 # CREATE DATAFRAME WITH INFO

118 d={’Material *: Material , 'Incangles’: incangles, ’X Dimention’: dimx,
'Y Dimention’:dimy , ’Distances’:distances, ’Shape’:Shapes}

119 Information=pd.DataFrame(data=d, index=typo)

20

121 #

18

122 # DIFFRACTION EFFICIENCY

123 # Sum distances so that there is the total value from source to mirror

124 for 1 in range(1l,Information.shape[0]):

125 Information [’Distances’][1l]=float (Information [’ Distances’|[1])+
float (Information [’Distances ’|[1 —1])

126 #Create vector with the diffraction efficiencies:

127 DiffEff=|]

128 for k in range(Information.shape[0]):

129 Beam=float (Information [’Distances’][k])*math.tan(float (Divergence)
/2x1e—6)

130 Proj=abs (math. sin (float (Information [Incangles’][k])))*«Beam

131 if Information [’ Shape’][k]|=="c :

132 if Proj/float (Information|[’X Dimention’][k])*2>1: #mirror
smaller than beam

133 DiffEff.append ((float (Information [’X Dimention’][k]) /2/
Proj) x%2)

134 elif Proj/float (Information[’X Dimention’][k])/2<=1:

135 DiffEff.append (1)

136 elif Information[’Shape’]|[k]=="e :

137 if Proj/float (Information[’Y Dimention’][k])*2>1:

138 DiffEff.append(float (Information [’X Dimention’][k])*float (
Information [Y Dimention’][k])/2/Proj=*x2)

139 elif Proj/float (Information|[’X Dimention’][k])/2<=1:

140 DiffEff.append (1)

141 # Supposing normal incidence in the apperture: area of ap=0.0001539
and aera of beam=0.01306

142 # Obtains from the web the different Reflectivities:

143 Ref=pd.DataFrame ()

144 for w in range(Information.shape[0]):

145 if Information.index [w]=="Aperture’:

146 ref=[1]x(int (lambdanum)+1) #list de 1

147 elif Information.index[w]|!="Aperture’:

148 if Information|[Material’][k]J=="N":

149 material="Ni’

150 ref ,wave=thickmirror2 (lambdamin, lambdamax, lambdanum, pol

, density , material, roughness, angle=str (Information|[’Incangles’][w]))

151 if Information[’ Material’][k]=="P":

152 material="Pt’

153 ref ,wave=thickmirror2 (lambdamin, lambdamax, lambdanum, pol
, density , material, roughness, angle=str (Information[’Incangles’][w]))

154 if Information[’Material’][k]=="C":

155 material="C"’

156 ref ,wave=thickmirror2 (lambdamin, lambdamax, lambdanum, pol
, density , material , roughness, angle=str (Information[’ Incangles’][w]))

157 if Information|[Material’][k]=="-":

158 print (’Error: Lacking material of mirror ’+str(k))

159 Ref[’Mirror ’+str(w+1)] = pd.Series(ref)

160

161 #0nly in order to create the titles for the columns:

19

162 vec=list (Ref.columns)

163 for i in range(Ref.shape[l]—1):

164 if Information.index[i]=="Aperture’:
165 vec[i]="Aperture’

166 for a in range(i,len(vec)—1):

167 vec [a+1]="Mirror ’+str (a+1)
168 Ref. columns=vec

169 Ref.index=wave

170 vec.append (' Total Efficiency ’)

171

172 # Create Dataframe that accumulates the diff. eff. for each lambda:
173 Effofeachmirror=pd.DataFrame ()

174 for 1 in range(Ref.shape[1l]):

175 di=[]

176 for o in range(Ref.shape[0]):
177 di.append(float (Ref.iloc[o,1])*float (DIiffEff[1]))

178 Effofeachmirror ["Mirror ’'+str(1+1)] = pd. Series(di)
179 total =[]

180 for q in range(Ref.shape[0]):

181 total .append (Effofeachmirror.iloc[q,:].prod())

182 Effofeachmirror [Total Eff’] = pd.Series(total)

183 Effofeachmirror . columns=vec

184 Effofeachmirror . index=wave

185

186 # Select the lambda:

187 for p in range(Effofeachmirror.shape[0]):

188 if float (wavelen)=—float (Effofeachmirror.index[p]):
189 Reflectivity=list (Effofeachmirror.iloc [p])

190 break

191 elif float(wavelen)>float (Effofeachmirror.index[p]) and float (
wavelen)<float (Effofeachmirror.index [p+1]):

192 Reflectivity=(Effofeachmirror.iloc [p]+Effofeachmirror.iloc [p])
/2

193 break

194

195 return Reflectivity , Effofeachmirror

A.3. MirrorRef

1 # —*— coding: utf-8 —x—
2 799N

3 Created on Fri Jul 26 08:44:36 2019
1+ @author: olivaren

¢ import pandas as pd

7 from selenium import webdriver

s from webdriver_manager.chrome import ChromeDriverManager
9 from selenium .webdriver.support.ui import Select

10 from selenium .webdriver.common. keys import Keys

11 submission_dir = ’completed_assignments’

15 def thickmirror2 (lambdamin, lambdamax, lambdanum, pol, density , material ,
roughness , angle):

20

e e e e e
© 0w N O U A

N
1 g w N = o

WO N NN NN NN N
© O N o o w N

60

webthickmirror="http://henke.1lbl.gov/optical constants/mirror2.html’
driver = webdriver.Chrome(ChromeDriverManager () .install ())

driver = webdriver.Chrome ()

driver.get (webthickmirror)

Selecting Variable Options

formula_box = driver.find_element_by_name (’ Formula’)

formula_box.clear ()

formula_box.send_keys(material)

density_-box = driver.find_element_by_name (’Density)

density_box.clear ()

density_box.send_keys(density)

roughness_box = driver.find_element_by_name (’Sigma’)

roughness_box. clear ()

roughness_box.send_keys(roughness)

pol_box = driver.find_element_by_name (’Pol’)

pol_box.clear ()

pol_box.send_keys(pol)

select = Select(driver.find_element_by_name(’Scan’))

select .select_by_value ("Wave’)

lambdamin_box = driver.find_element_by_name ('Min’)

lambdamax_box = driver.find_element_by_name ('Max’)

step_box = driver.find_element_by_name (’Npts’)

lambdamin_box . send_keys (Keys .BACKSPACE*2)

lambdamin_box.send_keys (lambdamin)

lambdamax_box.send_keys (Keys .BACKSPACE*4)

lambdamax_box . send_keys (lambdamax)

step_box .send _keys (Keys .BACKSPACE«3)

step_box.send_keys (lambdanum)

angle_box = driver.find_element_by name (’Fixed’)

angle_box.clear ()

angle_box.send_keys (angle)

enter_button = driver.find_element_by_xpath(”/html/body/form/input”)

enter_button. click ()

in case of pop ups: alert = driver.switch_to_alert ()

driver.switch_to_window (driver.window_handles[1])

link = driver.find_element_by_link_text(’data file here’)

link . click ()

url = driver.current_url

test = pd.read_csv(url, skiprows=2, names=["WIl'])
test .dropna(inplace = True)

new = test ["WI”].str.split(” 7, n = 4, expand = True)
new . drop (new. columns [[0,1,2]], axis=1, inplace=True)
new.columns=[’Wavelength’, ’'Refl’]

new [’Wavelength’] = pd.to_numeric(new[’Wavelength’])
new | 'Refl’] = pd.to_numeric (new|’ Refl’])

Reflectivity=new. Refl. tolist ()
Wave=new . Wavelength. tolist ()
return Reflectivity ,Wave
driver.close ()

21

	Motivation
	WPG - WaveProperGator
	Beamline FL24

	ICS: Intensity Calculation Support
	GUI - Graphical User Interface
	Main Function
	MirrorRef Function

	Results
	Future Work: Diffraction Effects
	Conclusions
	ICS Codes
	GUI
	Main Function
	MirrorRef

