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Abstract

Tau leptons produced during proton-proton collisions in LHC decay before
reaching the inner layers of the CMS detector. Because of that they can only
be reconstructed through their decay products. Particles can produce signatures
very similar to the one produced by the τ decay products. An algorithm is thus
used to match the particles reconstructed in CMS to a tau. On top of that other
discriminators are needed to correct for the misidentification of other objects (jets,
muon or electrons) as tau leptons. In this report an analysis concerning electrons
mimicking hadronic τ is presented. The rate with which an electron is misidentified
as a τh (i.e. the e→ τh fake rate, in which we call τh a τ that decays hadroni-
cally) is here measured with a ”Tag & Probe” method. From the measurement a
scale factor is obtained, which has to be applied on Montecarlo simulations of the
Z → ee process in order for MC to model this misidentification rate and improve
data/MC agreement.
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1 Introduction

Among all the particles that can be generated in a proton-proton collision, just a few of
them reach the detector before decaying. All the others need to be reconstructed using
algorithms that combine energy deposits and tracks to identify the particle. It is a prior-
ity to know how much this algorithms are reliable and what is the probability for these
algorithms to fail (i.e. to misidentify a particle). Moreover, it is extremely important,
for any kind of HEP analysis, to have Montecarlo simulations that accurately reproduce
data, and to do so these simulations have to model also some potential ”mistakes” in
particle reconstruction. It is therefore necessary to measure the rates with which parti-
cles are misidentified, also in order to find scale factor to be applied on MC simulations
for a better MC-to-data agreement.

2 Motivation

By getting a glimpse of the Higgs boson possible decay modes (as predicted by the
Standard Model) it should be at least curious that the channels in which it was first
discovered by the CMS and ATLAS collaborations were H → γγ and H → ZZ → 4l
(4 lepton)[2, 3, 4], given that their branching ratios are not so large compared to other
decay modes.

Figure 1: The Higgs boson decay channels and relative branching ratios. H→ γγ belongs
to the ”Other 1%” fraction, and the predicted branching ratio is 0.2%
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However those two channels present very clear signatures compared to the ones with
higher BRs, which in turn require more complex methods to reject the dominating
backgrounds. It is now interesting and useful to study the other decay modes of the
Higgs boson in order to check SM predictions. An important process to be studied is
H → ττ , in the first place to search for deviations from the SM (BSM physics), as well
as to study the coupling of the Higgs boson to leptons, given that it is the most sensitive
channel among all the leptonic Higgs decay modes. For the analysis of H → ττ various
channels are studied, depending on the decay products of the taus:

• µe: fully leptonic

• µτh and eτh: semi-leptonic

• τhτh: fully hadronic

• µµ and ee: di-muon and di-electron not studied because of high background

The measurement presented in this report is done in the eτh channel, in which the
main backgrounds are Z → ττ (as an irreducible background), Z → ee, which plays
an important role because of the misidentification of electrons as hadronic taus, and
processes like W+Jets or QCD, in which a jet is reconstructed as an hadronic tau.

To study this Higgs decay mode in the eτh channel what we need in the first place is an
algortihm for the reconstruction of τ leptons.

3 Particle reconstruction and identification

As a starting point for the identification of particles in CMS we need to know which
signature such particles should leave in the detector. The signature is based on the
physical properties of the particle and the detector response. Moreover, for such particles
as the τ , which decays before reaching the first layer of detectors, it is even more difficult
to find an algorithm that recognizes them properly . We need to have an efficient method
to discriminate between different particles signatures.

3.1 Trigger

Due to the huge amount of events that take place in CMS, only a small fraction of them,
which is interesting to analyse, are saved; this first selection is made by the CMS trigger
system[7]. This is done in order to reduce the amount of data that have to be stored,
and to discard events which are uninteresting for a specific study.

3.2 The particle flow (PF) algorithm

After an event has been selected and saved, it has to be processed: the raw information
(i.e. tracker hits, calorimeter deposits etc.) have to be combined to produce higher
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level objects on which data analysis can be more easily performed. This is done by the
Particle-Flow (PF) algorithm[1], which uses the information taken from the trackers and
calorimeters to extract the physics objects which will be used in the analysis (we can call
them ”PF candidates”). Once an object has been identified, the corresponding tracks
and clusters are removed from the subsequent searches.

The PF algorithm is used to reconstruct particles which interact directly with the de-
tectors, but our analysis concerns the τ leptons, which obviously don’t belong to this
category. In order to reconstruct them one has to consider all the possible final states
that can be produced by this particle and then look for the PF candidates that match
these final states. More in details, this analysis takes place in the eτh channel, there-
fore we expect a τ decaying leptonically1 and the other decaying hadronically. In this
study we are specifically interested in the reconstruction of the latter; we must take into
account hadronic decay modes of the τ lepton and what signature they leave in CMS.

4 Hadronic τ reconstruction

We understood that the problem of τ reconstruction is a challenging one, we must start
by presenting the properties of this particle and how we can use them to detect it.

4.1 The Standard Model - Brief review

The theory that describes all known elementary particles and forces is the Standard
Model[5]. Since the τ lepton is predicted by this theory, is useful to provide a brief
introduction on it. In this theory matter is made out of 12 elementary fermionic parti-
cles divided in two main groups: 6 quarks and 6 Leptons. These fermions are further
grouped in 3 generations with increasing mass. Furthermore, there are 4 vector bosons
and 1 scalar boson (the Higgs) are present; they are the madiators of the four funda-
mental interactions that this theory describes, while the Higgs boson is responsible for
the electroweak symmetry breaking[6]. For what concerns leptons, there are 3 charged
leptons: e, µ and τ , and 3 neutral leptons: νe, νµ and ντ .

4.2 The τ lepton

The τ lepton is a third generation charged lepton, it is the most massive with a mass of
1776.86 ± 0.12MeV , and a mean life of approximately 2.9 × 10−13s. It is the only one
massive enough to decay hadronically, and it does so approximately 2/3 of the times.
For every decay a tau neutrino is present in the final state, so we must expect some
missing transverse energy in each process that include the production (and consequent
decay) of a τ . Feynmann diagram in Fig.3 is useful to visualize τ decays. The decay
always happens through weak interaction, specifically with a charged-current interaction
(W± are involved). To be more specific, τ decays leptonically in muons or electrons with

1τ → eντ ν̄e
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Figure 2: τ lepton decay modes and
branching ratios

Figure 3: Feynmann diagrams of tau decay
processes, notice the hadronic fi-
nal state with π− (du) and the
rarer K− (su)

35.2% branching ratio (17.4% muonic, 17.8% electronic), and 64.8% hadronically. The
hadronic decays consist of combinations of charged and neutral mesons plus a ντ . Mesons
involved in these decays are mostly pions and Ks, nearly only π0 for what concerns the
neutral ones; a1 and ρ resonances can take place. In Tab.1 all decay modes are shown
in details together with their branching ratios and possible resonances. In Fig.2 leptonic
modes and hadronic modes with pions in final state. The branching ratios are the same
for the charge-conjugate processes.

Table 1: τ lepton decay modes and branching ratios

Decay mode Resonance Branching ratio (%)
Leptonic 35.2
τ− → e−νeντ 17.8
τ− → µ−νµντ 17.4
Hadronic 64.8
τ− → h−ντ 11.5
τ− → h−π0ντ ρ(770) 25.9
τ− → h−π0π0ντ a1(1260) 9.5
τ− → h−h+h−ντ a1(1260) 9.8
τ− → h−h+h−π0ντ 4.8
Other 3.3
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4.3 The Hadron-Plus-Strip algorithm

The algorithm used to reconstruct hadronic taus is called Hadron Plus Strip (HPS).
The decay products of the τh are mainly charged and neutral hadrons, so this algorithm
should look for the signatures of these particles. A charged hadron leaves as a signature
a track in the tracker and a deposit in ECAL and HCAL; it is also referred to as a prong.
For what concerns the neutral hadrons they are π0 nearly in 100% of the times, and are
reconstructed using strips. A strip is a narrow region in the ECAL in which deposits are
found, caracterized by short width in the η direction but a large lenght in the φ direction.
The π0 produced from the τ decays with a mean life of (8.52 ± 0.18) × 10−17s in two
photons2; at least one of the photons does pair production, the e+e− pair interacting
with the magnetic field splits along the phi direction, and a strip-like object is therefore
generated in the calorimeter. The algorithm looks for charged hadrons among all the
PF candidates and for strips; then a matching with one of the relevant τ decay modes
is required to reconstruct a τh. Moreover, the invariant mass of all charged hadrons and
recostructed π0s must be compatible with ρ or a1 mass, for the decay channel in which
there is a resonance. 4 different categories matching decay modes can be identified:

• one prong (h±): the visible mass of the reconstructed τh should be compatible
with the mass of a charged hadron (typically pion or K meson).

• one prong plus one strip (h±π0): the invariant mass should match mρ (770
MeV).

• one prong plus two strips (h±π0π0): the invariant mass should match ma1

(1260 MeV).

• 3 prongs (h±h∓h±): this can match with two different decay modes: τ− →
h−h+h−ντ and τ− → h−h+h−π0ντ , depending on whether the invariant mass of
the three prongs matches with ma1 or not.

Figure 4: Some decay modes reconstruction of HPS algorithm

2To be more precise: the Branching ratio for π0 → γγ is ∼ 99%, and the ∼ 1% Br of π0 → e+e−γ
is here neglected. Furthermore, the same effects happen with this decay products
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It can incidentally happen that another particle matches one of these requirements and
is recostructed as a τh. The main source of contamination for the HPS algorithm are
jets, muons and electrons, which are the subject of this analysis.

4.3.1 Electron faking τh

It can happen that an electron mimicks the signature of a charged hadron. Moreover,
bremsstrahlung radiation can potentially take place while the electron rapidly slows
down, and emitted photons can mimick a strip. For that reason, mainly for decay
channels with one prong and one prong plus one strip, an electron can be labeled as an
hadronic τ by the HPS algorithm.
In this case we need a discriminator to distinguish between true taus and electrons.

4.4 The DeepTau discriminator

It shouldn’t be surprising that the discrimination from different types of objects that
fake the τh signature is dependant on many variables, so a multivariate analysis is a
natural choice for solving the problem. As soon as we have to deal with 3 sources of
contamination, a Deep Neural Network with 4 possible outputs is used. The output
neurons are: true τh, electron faking τh, muon faking τh and jet faking τh. With this
setup three discriminators can be defined, depending on what source of contamination
we want to distinguish the τh from3 (i.e.: against jet, against electron, against muon).

4.4.1 Working points definition

For each discriminant what we obtain is a test statistic in which signal (true τh) and
background (one out of the three possible fakes) should be enough separated (for this
analysis: DeepTau2017v2VSe). Based on a certain efficiency that we require, a cut is
applied on the discriminant, defining two orthogonal regions. From that cut a working
point is obtained. The larger is the efficiency that we want to have, the smaller is the
background rejection, so the working point is looser; viceversa: the larger the background
rejection, the tighter is the WP. Available working points are reported for the against
electron discriminant, which is relevant for this analysis, with relative efficiencies (Tab.2).

Table 2: Working points and relative efficiencies

WP VVTight VTight Tight Medium Loose VLoose VVLoose
Efficiency 60% 70% 80% 90% 95% 98% 99%

3e.g.: the anti-electron discriminator is calculated as
pτ

pτ + pe
, in which pτ stands for the true τh

output, and so on.
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5 The Tag & Probe method

As said in Section 4.3.1, there is a nonzero probability for an electron to leave a signature
that can mimick the one left by an hadronic τ , the Tag & Probe method is suitable for
measuring this fake rate.

5.1 Event preselection

The starting point for this analysis consists of the EGamma dataset for 2018, together
with Montecarlo simulations of all relevant processes that can contribute to the final
state of interest (templates):

• Z → ee

• DY others: mainly Z → ττ

• Diboson

• W+Jets

• tt

The QCD background is evaluated with the data driven ABCD method (Section 5.1.1).

What we first need is two samples of events, one coming from data, the other coming from
Montecarlo simulations, in which we require to have two particle defined as following:

• The Tag: a well identified and isolated electron

• The Probe: an hadronic τ which has passed loose preselection criteria

A first event selection is operated with a Sigle Electron Trigger. We use the Electron35
trigger (HLT_Ele35_WPTight_Gsf_v) that requires each event to have a well isolated
electron with a transverse momentum of more than 35 GeV. Now, in addition to the
Tag, which is the electron that fired the trigger, we require a particle that can be possibly
matched with at least one among all the possible hadronic decay modes of the τ that the
HPS algorithm can identify (our Probe)4. Further cuts are then applied on the samples:

• on the Tag

i) Electron PT > 35GeV

ii) Electron |η| < 2.1

iii) The electron has to match with the particle which fired the trigger in a cone
of ∆R < 0.5

4From now on the words ”electron” and ”tag” will be synonims, as well as ”hadronic tau” and
”probe”
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iv) Electron relative isolation Ie < 0.1; Ie is a variable used to discriminate
isolated electrons from electrons produced in jets

• on the Probe

i) hadronic tau PT > 20GeV

ii) hadronic tau |η| < 2.3

iii) The τh has to pass the DeepTau discriminator against Jets (Tight) and Muons
(Loose) before being checked against the electron. These WP choice is based
on working region commonly used in H → ττ analysis

iv) VVVLoose DeepTau discriminator against electron

• transverse mass mT < 30GeV , in order to avoid most of W+Jets background

• ∆R > 0.5 between tag and probe, in order to not have two collimated particles

By defining the probe particle this way we imply that it has passed ”loose” preselection
criteria

5.1.1 Stitching and data driven methods

Some procedures to improve the MC-to-data agreement are performed:
For what concerns the simulated processes in which different number of jets can take
place (i.e. W+Jets) the stitching procedure has to be done. For this processes several
MC samples are available: the ones generated with a particular number of jets (e.g.:
W+1Jet, W+2Jets, W+3Jets and W+4Jets), and the ”inclusive” samples, in which
we have all the different cases together. The stitching procedure consists of extracting
from the inclusive sample smaller subsets with a defined number of jets, by matching
the number of jets at generator level, then adding each subset with the indipendently
generated sample with the same number of jets and weighting each sample with the
cross section of that process.The aim of this procedure is to increase the statistic as
well as improving Montecarlo accuracy, as it is easier to obtain better precision for what
concerns detector performances in processes with a defined number of jets.
To estimate the QCD background a data driven ABCD mathod is used: This background
is evaluated as data−AllMCs in a control region (”anti-iso” region), then a scale factor
between the ”same sign, anti-iso” and the ”opposite sign, anti-iso” regions is calculated.
Given that the two variables (isolation and sign) are not correlated, the same scale factor
can be used to calculate the QCD background in the ”opposite sign, iso” region, which
is the region in which the measurement is done, given the background in the ”same sign,
iso” region.

At this point our samples are finally ready to undergo the selection.
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5.2 Pass/Fail regions

For both Montecarlo simulations and data, the sample is now divided in two orthogo-
nal regions, which are PASS and FAIL, depending on whether the probe particle has
passed or not the anti-electron disciminant which we are testing. The number of
events populating these two regions will depend on where the cut was applied on the
tauagainstEleRawDeepTau, i.e. on the working point. For each working point we have
a boolean variable in the NTuple which is true if the probe has passed the anti-electron
discriminant, false otherwise.
As an example visible mass plots in the pass region are shown (Fig.5).
Notice how increasing the working point’s tightness is reducing the relative contribution
of Z → ee, until the Z boson mass peak vanishes. It is also interesting to notice the
displacement of the Z boson mass peak for Z → ee and Z → ττ . In the former we don’t
have neutrinos, while in the latter both taus decay, one leptonically(τ → eντ ), the other
one hadronically, generating two neutrinos; we therefore expect missing energy, so that
the yellow peak is located at lower (visible) mass.

If a MC simulated Z → ee event passes the discriminant, it means that one electron has

been misidentified as a τh. It means that we can just calculate the misidentification rate

as the fraction of electrons which pass the anti-electron discriminator:

ε =
N pass
Z→ee

N pass
Z→ee + N fail

Z→ee
(1)

This is the pre-fit fake rate.

Remark: Z → ee is the process on which the pre-fit measurement is done since it’s
basically the only one where there are electrons faking taus in the eτ channel.

5.2.1 Data to MC disagreement

When both MC and data undergo the anti-electron discriminant we would expect that
the number of events in the pass and in the fail region should be the same for MC and
data, within statistical uncertainties. By looking at the plots for the pass region, we can
notice that the agreement between data and MC needs to be improved. To improve it we
should measure the ”real” fake rate on data and then apply the correct scale factor on
the process of interest. In fact this MC-to-data disagreement is partially or completely
removed when the scale factor r is measured and applied. r represent the ratio between
the post-fit(ε′) and the pre-fit(ε) fake rate.
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(a) VLoose (b) Loose

(c) Medium (d) Tight

(e) VTight

Figure 5: Visible mass plots for various WPs. Both MC simulated processes and data
are plotted
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It will then be applied as a weight on simulated Z → ee events in order to account for
this discrepancy. In Fig.6 plots for many variables in the pass region for the Medium
WP are shown: notice that the disagreement between data and MC often overcomes the
uncertainty bands.

5.3 The Maximum Likelihood fit

Until now we didn’t use data to measure the fake rates, since Eq.1 only uses MC sim-
ulations of signal events, and represent how MC samples behave with the anti-electron
discriminator. The ”real” misID rate has to be measured on data, and is the post-fit fake
rate. We want to obtain a measurement of the scale factor r = ε′

ε
, so that we are able

to calculate the post-fit fake rate, and we manage to do that using a multi-parameter
maximum likelihood fit in which the parameters can be labeled as:

• The parameter of interest (POI) r = ε′

ε

• An array of nuisance parameters θ which are used to account for systematic un-
certainties in the MC simulations.

Pre-fit values for all the parameters are given to the fitting program as inputs, then,
moving in the parameters space a maximum in the likelihood function is found, so that
the post-fit values are obtained. The variable chosen for the fit in this analysis is the
reconstructed invariant mass of the electron and all visible decay products of the τh
(visible mass). In order to account for differencies in performances and geometry of
the calorimeters, two regions of |η| are defined: one relative to the Barrel calorimeter:
|η| < 1.460 and the other relative to the Endcap: |η| > 1.558. A narrow gap of |η| is left
uncovered because the performance of the detector abruptly drops in that region.

5.3.1 Nuisance parameters

A way to take into account systematic uncertainties that affects our samples is to intro-
duce them as nuisance parameters for the fit. Nuisance parameter are other arguments
of the Likelihood function that are not POI, but influence the likelihood model. In Tab.3
& 4 a list of the nuisance parameters which are used in this analysis is shown, with the
relative template on which are applied and the starting value for the fit. We can in
general recognise two different types of systematic uncertainties: shape uncertainties,
which can for instance modify the position or the heigth of a peak in a certain process,
and normalization uncertainties, which instead are scale factor for the total number of
events for a simulated process.

Notice (Fig.7) that, as the fit is performed, not only Z → ee is modified, but also other
background processes are. That happens because all processes are affected by systematic
uncertainties, and if a systematic uncertainty for a certain process is modified, also the
number of events in each bin for that process changes.
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(a) η probe (b) η tag

(c) PT probe (d) PT tag

(e) Transverse mass (f) Missing transverse energy

Figure 6: Plots of several variables for data and MC samples. data
MC

shown in the bottom
plots. Shaded bands represent the statistical error on montecarlo samples
due to finite number of events, together with systematic uncertainties, while
vertical bars (barely visible) represent the statistical uncertainty on data♣

♣ Transverse mass definition:mT =
√
P eleT EmissT (1−∆Φele,met)
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Table 3: Shape uncertainties

Uncertainty Affected processes Pre-fit value

Electron energy scale Z → ee 1% B, 2.5% E 5

τh energy scale Z → ττ 1.5%
e→ τh energy scale Z → ee 3%
Visible mass resolution Z → ee 20%

Table 4: Normalization uncertainties

Uncertainty Affected processes Pre-fit value

Integrated luminosity All MCs 2.6%
Electron isolation/identification/trigger All MCs 2%
Tau identification All MCs 3%
tt̄ cross section tt̄ 10%
Diboson and single-top cross section Diboson 10%
W+Jets normalization W+Jets 20%
QCD normalization QCD 20%
DY normalization DY Others 3%
Z → ee normalization Z → ee 6%

5.3.2 Binned Maximum Likelihood

In this particular case we are not trying to fit a histogram (MCs) on a smooth function

which depends on some parameters, but on another histogram (data) instead. What we

need is a Likelihood function as shown in Eq. 2

L (r,θ) =

Nbins∏
i=1

Poisson(ni|ν(r,θ))× p(θ̃|θ) (2)

in which:

• i is the index running on bins of the histograms

• Nbins is the total number of bins

• θ̃ is the estimator of the parameter array θ
5E: Endcap, B: Barrel
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(a) Loose, Barrel, pre-fit (b) Loose, Barrel, post-fit

(c) Medium, Barrel, pre-fit (d) Medium, Barrel, post-fit

(e) Tight, Barrel, pre-fit (f) Tight, Barrel, post-fit

(g) Medium, Endcap, pre-fit (h) Medium, Endcap, post-fit

Figure 7: Pre-fit / Post-fit plots. Notice how all background processes vary and not only
Z → ee, especially in tighter WPs, in which the relative contribution of signal
events is smaller

16



• Poisson(ni|νi(r,θ)) is the Poisson distribution with mean value νi(r,θ), which is
the number of events expected in the i-th bin by the Montecarlo simulation with
that parameters.

• p(θ̃|θ) is the a priori distibution for the nuisance parameter array

Some plots are shown for various working points in Fig.7, in order to understand how
the fit modifies MC samples.

5.3.3 Combine

COMBINE is the program which we use for the fit. It takes as inputs the starting points
for all parameters, which are the values listed for the systematic uncertainties, and a
pre-fit POI r, usually chosen close to 1. The program maximizes the likelihood function
in the parameter space, with expedients to avoid stopping in relative maxima, and then
gives back the parameters that maximize the function.

6 Results

The output of the fitting program is the scale factor r, together with the post-fit values
for all nuisance parameters. In tables 5 and 6 fake rates measurements are shown.

Table 5: Scale factors and fake rates in Barrel region. Error bars for post-fit FR have
been symmetrized
postfitFR = prefitFR× scalefactor

BARREL (|η| < 1.460) pre-fit FR post-fit FR scale factor
VVLoose (4.5± 0.5)× 10−2 (5.8± 0.7)× 10−2 r = 1.280+0.014

−0.015
VLoose (2.4± 0.3)× 10−2 (3.3± 0.4)× 10−2 r = 1.368+0.029

−0.033
Loose (1.0± 0.1)× 10−2 (1.31± 0.18)× 10−2 r = 1.31+0.05

−0.05
Medium (3.9± 0.4)× 10−3 (5.0± 0.9)× 10−3 r = 1.35+0.09

−0.09
Tight (1.14± 0.13)× 10−3 (1.5± 0.4)× 10−3 r = 1.32+0.22

−0.22
VTight (4.8± 0.5)× 10−4 (7± 3)× 10−4 r = 1.4+0.4

−0.4
VVTight (2± 0.2)× 10−4 (2.1± 0.7)× 10−4 r = 1.4+0.9

−0.9

These scale factor values are the first step for a CMS recommentation, to be applied on
MC simulated Z → ee process for analysis using 2018 data that involve reconstructed
τh objects.
For almost every working point and in both Barrel and Endcap, the measured scale
factor exceeds one, which means that MC simulations were underestimating the fake rate
before fit. By looking at the scale factor we can clearly see a trend in the uncertainty,
which increases as the WP gets tighter. While the results for looser working points are
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Table 6: Scale factors and fake rates in Barrel region. Error bars for post-fit FR have
been symmetrized
postfitFR = prefitFR× scalefactor

ENDCAP (|η| > 1.558) pre-fit FR post-fit FR scale factor
VVLoose (8.7± 0.9)× 10−2 (1.14± 0.13)× 10−1 r = 1.318+0.016

−0.017
VLoose (4.4± 0.5)× 10−2 (5.8± 0.8)× 10−2 r = 1.314+0.033

−0.039
Loose (1.9± 0.2)× 10−2 (2.7± 0.5)× 10−2 r = 1.38+0.07

−0.08
Medium (9± 1)× 10−3 (1.21± 0.12)× 10−2 r = 1.35+0.13

−0.12
Tight (2.7± 0.3)× 10−3 (4± 1)× 10−3 r = 1.51+0.27

−0.29
VTight (9.3± 1.1)× 10−4 (6.5± 6.5)× 10−4 r = 0.7+0.8

−0.7
VVTight (4.2± 0.5)× 10−4 (4.2± 4.2)× 10−4 r = 1.0+1.6

−1.0

(a) VTight WP in Barrel region (b) VVTight WP in Barrel region

(c) VTight WP in Endcap region (d) VVTight WP in Endcap region

Figure 8: pre-fit plots for tightest working points

satisfactory6, if we look at the scale factors for VTight and VVTight WPs we see that
the uncertainty is too large: in the barrel region the relative uncertainty reaches almost

6Relative uncertainties acceptably small
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65%, in the endcap region the result is even consistent with zero. We can explain this
type of result by looking at the pre-fit plots of the visible mass for VTight and VVTight
working points (Fig.8).
As the working point become more and more tight the relative contribution of signal
events rapidly decreases, as the background rejection of the anti-electron discriminator
increases. At some point the amount of signal events is so little that the value of the
POI r doesn’t really matter for the fit, as the MC-to-data disagreement is mainly due to
other process and not Z → ee, which contribute with a negligible number of events. In
general, we can suppose that the trend in uncertainties could be related to the decreasing
total number of events, which makes statistical uncertainties larger (look at the y-axis
scale in Fig.8c and Fig.8d).

To come to conclusion, a first look at the new DeepTau discriminator was given, fake
rates and scale factor for Z → ee were measured, with quite accurate results for all WP
below VTight. For the VTight and VVTight WPs we can conclude that the background
rejection of the discriminator is so high that the number of electron that end up in the
pass region is almost negligible.

7 The (old) MVA discriminator

In this study we gave a first look at the DeepTau discriminator in the eτh channel,
measuring its fake rates and scale factors. The Tag & Probe was already succesfully
used to measure these scale factors for the previous τh discriminator used in CMS, that
is referred to as the MVA discriminator (MVArun2v1DBoldDMwLT). It was also based on
a multivariate analysis, but it used a Boosted Decision Tree instead of a DNN. It was
interesting during this analysis to see how differently these two discriminators behave on
the samples. In this small section we make a comparison between MVA and DeepTau
discriminators for anti-electron and anti-jet.

(a) MVA (b) DeepTau

Figure 9: visible mass for Loose WP against electron, Tight WP against jet

At a first glance (Fig.9) we see that the background rejection of the DeepTau is clearly
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greater than the MVA one for the same WP. Just by looking at the y-axis scale it is clear
that the number of events in the pass region is strongly reduced for nearly every process.
Especially for the Z → ee process, it looks like the ability to reject the background is
improved.
Some interesting features were found in the |η| plots (Fig.10), in which the shape is
considerably changing between the two discriminators. This could be due to the different
eta ranges used during the training of the neural network. Notice the absence of a net
distinction between the Barrel and Endcap region which was instead clearly evident in
the MVA.

(a) MVA (b) DeepTau

Figure 10: |η| of the probe for Medium WP against electron, Tight WP against jet

We then noticed that, for what concerns the against jet discriminator, the Tight WP
for MVA is more similar to the Medium for DeepTau than the Tight (Fig.11). This is
another evidence that DeepTau is more ”powerful”(in terms of background rejection)
than MVA, for both against-electron and against-jet discriminators.

(a) MVA-Tight against jets (b) DeepTau-Medium against jets (c) DeepTau-Tight against jets

Figure 11: transverse mass, Tight WP against electron
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