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Abstract

The free-electron laser in Hamburg (FLASH) operating in the soft x-ray to extreme
ultra-violet regime allows for unprecedented experiments in materials science,
biotechnology and other fields. Running such a facility produces large amounts
of data that may hold important information about the underlying physics or the
inner workings of the machine itself. Unfortunately the sheer amount of data is
too large for classical analysis methods. Here another way is shown, analysis us-
ing machine learning. This approach gained popularity because of its usefulness
in the consumer market, where large amounts of data are acquired on a scale
never seen before. This paper shows that research facilities can also benefit from
machine learning, particularly the need for the interpretation of large amounts
of data is addressed. Uses in beam profile analysis from the FLASH facility are
shown. A convolutional neural network is introduced to label beam-profiles and
an autoencoder + principal component analysis algorithm is used to aid in data
analysis using dimensionality reduction. This work is intended for researchers
and engineers working at facilities where large and difficult to interpret data is
acquired. No previous knowledge of machine learning is assumed. Python with
Tensorflow were used, the code is available at https://github.com/Korfeusz/
DESY_photon_pulse_property_predictor.


https://github.com/Korfeusz/DESY_photon_pulse_property_predictor
https://github.com/Korfeusz/DESY_photon_pulse_property_predictor
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1 Introduction

This work is concerned with exploring the possibilities of using machine learning for
data analysis at the FLASH facility at Desy in Hamburg. But the tackled problems
extend beyond this specific use and can be useful for any research center that produces
large, multidimensional datasets. This report hopes to show that machine learning can
be helpful as a tool for data interpretation.

The Free-electron LASer in Hamburg (FLASH) can provide users with intense ultra-short
pulses in the extreme ultra-violet to soft x-ray regime. The combination of brilliance,
coherence and short pulse length allows this facility to be used in exciting experiments in
materials science, biotechnology and other areas of research [I]. Such a facility provides
users with large amounts of data for each experiment, but owing to the difficulties
in analyzing such datasets most of it is not used. Similar problems have already been
discussed for other large-scale research facilities and the scale of the acquired information
seems only to increase [2] . Therefore this is an area uniquely suited for machine learning
approaches that thrive in vast multi-dimensional difficult to interpret datasets [3].

One can think of machine learning as the process of gaining useful information from
the datasets themselves. This means a statistical information inference method where
little to no prior information is needed regarding the structure of the data. Machine
learning methods are often based on finding relationships between some set of inputs
(called features) and an output [4]. Machine learning can be divided into two groups:
supervised and unsupervised learning [5]. The first one learns by updating the internal
machine learning model by evaluating the loss between the input and a known desired
output. The second group consists of methods that create models of the data without
any explicit information of what the correct answer may be. An example of the first
type of algorithm is a convolutional neural network used for image classification. An
example of the second type is a k-nearest neighbors clustering algorithm [6]. There
is also a gray area between them, for example an autoencoder algorithm can be seen
as a quasi-unsupervised algorithm. A description of classifying convolutional neural
networks and compression autoencoders is provided here as both have been used in this
work. The main problems that can be solved by machine learning, that are useful here,
are classification and dimensionality reduction.

1.1 Convolutional neural networks for image classification

Let us imagine we have a dataset where for each item there exists a known correspond-
ing label, and the set of all possible labels is finite. Now the classification problem is
predicting the label of yet unseen examples. One way of solving this is using a multi-
layer perceptron network. In such an algorithm the input is forward propagated through
layers of non-linear transformations with many parameters, called weights, that can be
tuned to alter the output of the last layer. After this the output is compared to the
known correct answer, the loss is evaluated using a loss function and the weights are
updated using a gradient descent derived algorithm. This is used to teach the model in a
supervised way, to use this model we save the structure and weights and apply the same
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Figure 1: Diagram of the structure of a convolutional neural network. The convolutions
create a stack of feature maps, also called channels. Sub-sampling reduces
the dimensionality of each map between layers condensing the information.
(Image adapted from [7])

feed-forward transformations to a new example obtaining the label as the output of the
network. This algorithm works well, but loses information about the initial structure of
the example, as it accepts only input in the form of a vector. For images there exists
another, similar algorithm that uses 2D convolutions in the feed-forward pass to infer
useful information from the image. Each convolutional layer can consist of a stack of 2D
convolutions, a dimensionality reduction method (sub-sampling) and a nonlinear output
function. The weights to be updated are the weights in the convolutional kernels. Fig-
ure [If schematically shows the feed forward structure of a convolutional neural network.
More can be learned about convolutional neural networks (or CNNs) in [9].

1.2 Convolutional autoencoders and principal component analysis
for dimensionality reduction

If our each example in our dataset has some number of dimensions and we want to
reduce the dimensionality while loosing as little information as possible then we have
posed a dimensionality reduction problem. This can be used to lower the stored size
of the data (compression) or for data analysis in lower, easier to interpret, dimensions.
The autoencoder can be divided into the encoder and decoder. The encoder is a neural
network that lowers the dimensionality of the input, then the decoder tries to recreate the
input. A loss evaluation function calculates some distance measure between the input
and the autoencoder output and updates the encoder and decoder weights accordingly.
Data in the bottleneck is a lossy compressed representation of the input. The final
dimensionality reduction is done using a principal component analysis algorithm (PCA).
This algorithm transforms the input data into a new set of uncorrelated variables ordered
in such a way that the first ones account for most of the variance. This transformation
can be thought of as fitting a mutlidimensional ellipsoid to mean centered data and
ordering the ellipsoid axes by their size. Taking the largest axes makes sure that most
of the variance is accounted for [8]. This procedure ensures orthogonality of the output
features providing an orthogonal low dimensional output space. Figure [2| shows this
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Figure 2: Diagram of an autoencoder and principal component analysis dimensionality
reduction algorithm.

Figure 3: Example input beam profiles for each run.

relation. More can be once again learned using [9].

2 Dataset

The data were 72000 beam profiles acquired at the FLASH2 facility. There were nine
runs where the undulator number and the electron bunch charge were changed. The
wavelength was 21.4 nm for all runs. The runs and some of their parameters are in table
[ other parameters were saved during the experiment and stored in .h5 files format
available under the directory /asap3/flash/gpfs/f121/2019/data/11007852/ internally at
DESY. The original images are cropped to 259 x 259, but not downsized. Example
images can be seen in figure |3l Some beam profiles contained noise or were empty and

therefore had to be removed form the used set, this reduced the number of examples to
64129.



Table 1: Information on the experimental runs used to obtain the data

Run e-bunch
Number of undulators | charge | Tapering | Energy [uJ] | comment
number
[nC
0 9 0.3 Yes 131
1 7 0.3 No 100
2 6 0.3 Yes 90
3 6 0.4 No 46
4 7 0.4 Yes 202
5 9 0.4 Yes 238 Donut
intensity profile
6 9 0.5 Yes 88
7 7 0.5 Yes 34
8 6 0.5 Yes 22

3 Application of machine learning to the experimental
results

This section will be divided into the classification problem of the profiles as 0-order or
higher order mode. And the dimensionality reduction problem for data analysis.

3.1 0- and higher- order mode beam profile labeling

The first part of this work concerned itself with the determination of the order of the
mode of the beam profiles. As there were over 64129 non-corrupted images their manual
labeling would be tedious, therefore a different approach was taken. First some measure
of 0-order vs higher-order mode was created for automatic label creation. Later the
automatically created labels were inserted into a convolutional neural network, so that
a more robust measure of mode order may be abstracted from the beam profiles and
their labels.

3.1.1 Automatic label creation

Two independent algorithms were created for label creation. Both based on the fact
that a symmetric 0-order mode profile will be circular in appearance. One measures the
perimeter squared over area of the profile, noticing that for a circle this should be 47
and so by subtracting this constant and taking the absolute value of the result a distance
measure is created. This process is repeated at different binarization levels and a mean
value of the distances is taken. The second method is based on the fact that a centered
ring-shaped section of a circle has a fixed ratio of area inside the ring to the rest of the
image. These two measures have been applied to all images and a threshold was applied
to both of them in order to get a mode order label. The threshold was set experimentally



through the inspection of profiles and their mode order measures. Finally a logical OR
was applied to both measures to obtain the label that will be used to train the CNN.
It is worth mentioning that the reason why a two-dimensional Gaussian was not simply
fit to the profiles and a goodness-of-fit measure used for label creation is that fitting a
two-dimensional function to such an amount of images was computationally expensive
and therefore time consuming. In total 2302 images were labeled as 0-order mode.

3.1.2 Convolutional Neural Network based labeling

Using convolutional neural networks in order to classify data as 0-order or higher order
modes has been done before [I0]. In order to get a more robust measure of 0-order vs
higher order modes a convolutional neural network was trained using the automatically
created labels. If all images would have been taken to train the model the high bias
towards higher-order mode profiles would induce a bias in the model or even make it a
viable strategy to have a constant output of higher-order mode for all inputs. Therefore
a subset of all the uncorrupted images was taken so that the 2302 profiles labeled 0-
order mode made up 20% of this subset. This subset was then split 80 — 20 into a
train and test set for the CNN. In total the train set had 8000 profiles and the test
set 2000, both having 20% of profiles labeled as 0-order mode. The profiles were then
downsized to 32 x 32 in order to make the learning faster. This size was chosen so that
the the main features and shape of the profiles are still visible. The architecture of the
CNN was two convolutional layers, one hidden dense layer and an output layer. The
first convolutional layer had a kernel size of 3 with 12 output channels, a ReLU output
function and a dropout of 0.5 was used. The second layer also had a dropout of 0.5
and the same output function, but had 24 output channels and a kernel size of 6. The
fully-connected layer had 10 neurons and a ReLLU output activation with a dropout of
0.5. The output was fed through a softmax activation. The high dropout rates are used
to not over fit the data, as the goal is to teach the network the main features of a 0-order
mode profile. The layer structure is in table 2]

3.1.3 Results

Example output images from the test set can be seen in figure dl The accuracies and
loss evaluations for the training and test set are in figure [5] These images confirm that
the algorithm converged. Confusion tables for train and test data are in tables [3| and
[l These show the accuracy on the train and test set, but also the composition of false
positives and false negatives. What can be seen in table {4| is that the number of false
positives is similar to the number of false negatives, which may mean that there is no
bias towards labeling as 0-order or higher-order mode.

3.2 Dimensionality reduction for data visualization and analysis

In order to be able to interpret the profiles in terms of FLASH2 machine settings and
the created O- vs higher-order mode measures a dimensionality reduction scheme was



Table 2: Convolutional neural network structure. The Param number column shows the
number of trainable parameters for each layer. The None in the output shape
depends on the number of images used during one forward pass. The last
number in the output shape is the number of channels in that layer. A detailed
description of the layer types can be found in the Tensorflow documentation:

[12]

Layer (type) Output Shape Param #
reshape (Reshape) (None, 33, 33, 1) 0

convad (Comv2D) ~ (Nome, 33, 33, 12) 108
batch_normalization  (Nome, 33, 33, 12) 36
activation (Activation) (Nome, 33, 33, 12) o
dropout (Dropout)  (Nome, 33, 33, 12) o
comv2d_1 (Conv2D) ~ (Nome, 17, 17, 24) 10368
batch_normalization_i (Nome, 17, 17, 24) 2
activation_i (Activation)  (Nome, 17, 17, 24) o
dropout_i (Dropout)  (Nome, 17, 17, 24) o
flatten (Flatten)  (Nome, 6936) o
dense (Dense)  (Nome, 10) 69360
batch_normalization_2 (Nome, 10) 0
activation_2 (Activation)  (Nome, 10) o
dropout_2 (Dropout)  (Nome, 10) o
demse_1 (Demse)  (Nome, 2 2




0 - order

Higher - order

Figure 4: Examples of profiles labeled as 0-order and higher order mode by the CNN
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Table 3: Confusion matrix for the training data. The numbers represent the amount of
images in this set that have been labeled correctly or incorrectly, thus showing
the number of false positives, false negatives, true positives and true negatives.

Training data Predicted
Accuracy: ‘
94.8% O-order | Higher-order

0-order 1464 136
Higher-order | 283 6117

Correct

Table 4: Confusion matrix for the test data. The numbers represent the amount of
images in this set that have been labeled correctly or incorrectly, thus showing
the number of false positives, false negatives, true positives and true negatives.

Test data Predicted

Accuracy: .

92.1% 0-order | Higher-order

Correct 0-order 331 69
Higher-order | 90 1510

created. First a convolutional autoencoder network was used to initially reduce the
dimensionality. Later a PCA algorithm was used to further reduce the dimensions to two.
PCA was chosen as the final step to ensure orthogonality of the resultant dimensions. In
this way a two dimensional space was created in which each image can be represented as
a single point. The pipeline of this algorithm can be seen in figure[6] The layer structure
of the autoencoder is shown in table |5, The smallest data dimensionality is 8 x 8 x 4,
this is the bottleneck and from there the lower dimensional representations are taken to
the PCA algorithm. The input and output layer sizes are the same, because the input

and correct label are the same image.
Autoencoder -
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Figure 6: The autoencoder and PCA algorithm diagram showing the dimensions at var-
ious steps.
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Table 5: Autoencoder structure. The Param number column shows the number of train-
able parameters for each layer. The None in the output shape depends on the
number of images used during one forward pass. The last number in the out-
put shape is the number of channels in that layer. A detailed description of the
layer types can be found in the Tensorflow documentation: [12].

Layer (type) Output Shape Param #

input_1 (InputLayer) [(None, 32, 32, 1)] 0 N
comv2d (Conv2D) ~ (Nome, 32, 32, 16) 160
max_pooling2d (MaxPooling2?D) (Nome, 16, 16, 16) o
batch_normalization ~  (Nome, 16, 16, 16) 64
comv2d_1 (Comv2D)  (Nome, 16, 16, 4) 580
max_pooling2d 1 (Nome, 8, 8, 4 o
batch_normalization_i (Nome, 8, 8, 4) 16
conv2d_2 (Conv2D)  (Nome, 8, 8, 4) 148
up_sampling2d (UpSampling2D) (Nome, 16, 16, 4) o
batch_normalization.2  (Nome, 16, 16, 4) 16
comv2d_3 (Conv2D) ~ (Nome, 16, 16, 16) 592
up_sampling2d 1 (Nome, 32, 32, 16) o
batch_normalization.3 (Nome, 32, 32, 16) 64
comv2d_4 (Conv2D)  (Nome, 32, 32, 1) 145
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Figure 7: Loss evaluations during training.

3.2.1 Results

The loss evaualions over epoch number is presented in figure[7] the values converge during
training. The PCA output space itself can be seen in figure [§l Here the usefulness of
this method comes from adding a third dimension to this output space in order to be
able to interpret the data in terms of various other parameters. The PCA output space
with with points color coded by different parameters can be seen in figure [0 Several
conclusions can be made from the principal component analysis plots shown in figure [0
Looking at plot [9a] containing the PCA output space color coded by the run numbers
we can notice that images contained in a single run cluster together implying similarity
between examples from a single run. On the same plot it can also be seen that three
distinct clusters form, one containing runs 0,2 and 5, one containing just run number 7
and one containing the rest of the runs. This implies an inherent similarity between beam
profiles from within one cluster when we take the distance in the principal components
space to be a measure of similarity due to some unknown features. This features can
be found by analyzing the PCA output space color coded by different parameters and
looking for relations between the clustering and the distribution of those features in
the principal component space. Another thing to note is the bunching of 0-order mode
labeled images in plot Ob] This shows, that there is a relationship between the found
principal components and the predicted label. This information is especially useful for
machine operation, as it may help find the settings that provide a higher likelihood of
producing 0-order mode beam profiles. Finally from plot [9c| where profile intensities are
shown in the PCA space we can see that a structure formed where the intensities fall
from left to right in each of the discussed clusters. There is more interpretation that
can be done here and also more data that could be chosen as the color axis to aid in
the understanding of the underlying physics. Here just some examples of what could be
inferred were given.
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Figure 8: The PCA output space. The percentages in parentheses on the axes are the
explained variances by each axis.

4 Final remarks and future work

This work should be considered preliminary. It was argued that using machine learning
to gain insight into large datasets is a viable strategy. Also because the FLASH facility
produces large amounts of multidimensional data it is well suited for the use of machine
learning. Information gained through ML can be used both for machine control and
for getting a better understanding of the underlying physics. Further insights into the
relations between the FLASH2 beam line settings and the resultant beam profiles can
be researched and may be of importance for further operation and for the beam quality
that can be provided to the user. An example of this would be the prediction of pulse
properties from machine settings and easy-to-do diagnostics [11]. Another direction of
further development could be a split of the higher-order modes into more specific free
electron laser modes.
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Figure 9: PCA plots with various

(f) Electron bunch charge, see table

parameters used as the color dimension.
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