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1 Introduction

W boson is an essential particle in the Standard Model. Precise measurement of the
mass of the W boson allows to check the consistency of the SM. One of possible ways to
measure mW is to reconstruct the spectrum of the transverse momentum of the lepton
in the following reaction: W → lν. As long as the W boson can also have the non-zero
transverse momentum, the estimation for its spectrum is also required. As a result, the
reconstruction of the pWT spectrum is essential in themW measurement. Nevertheless, the
distribution of reconstructed values differs from the distribution of true values (fig. 1).
So, we come up with the idea to build some estimator that gives the probability density
function of the pWT for each event, not just the estimated value of the pWT .

Unfolding is the process that allows to reconstruct the distribution of a specific phys-
ical quantity by using the observed distribution and knowledge about the measuring
device. For each event, it is possible to determine the probability density function of
the measured value of pWT provided that we know the true value of pWT . Indeed, Monte
Carlo simulation allows to conduct many experiments with known true values and, con-
sequently, to obtain the transfer matrix (in the case of binned variables) of the detector.
If there is much data, all we need is to inverse the transfer matrix. However, the result
of ordinary inversion is usually bad, so the process should be regularized somehow.

In this paper, machine learning methods are applied. The neural network is used
as a classifier (for individual events) that processes measured information and predicts
probabilities to fall into a given bin. Machine learning requires some events with known
target values (train data). However, if the distribution of target values among the train
data is much different from the distribution among real events, then the neural network
gives biased results. The iterative unfolding is a solution for this issue.
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Figure 1: Distributions of true (boson pT truth) and reconstructed (boson pT reco)
values of the pWT for the Monte Carlo simulation
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2 Machine learning

2.1 Classification

Classification is one of the problems in machine learning. There are much information
that we measure in every event. There is also the output variable (the bin of the true pWT )
that is known only for some events (train data generated by Monte Carlo simulation).
The purpose is to estimate probabilities (in our case) of different output values for the
rest of events (test data).

The first step is to create a model. This is a function that contains a set of free
parameters. This function takes measured variables for one event as an argument. The
output of the function is the sequence of probabilities.

The second step is to fit the free parameters. The train data is essential at this step.
Since the output of the function depends on the free parameters, the purpose is to
make this output closer to the real output values that we know for the train data. It is
important to set a proper loss function that determines how far the predictions are from
the real values. In this paper, the categorical cross entropy is used as a loss function:

H(p,q) = −
Nevt∑
e=1

Nbin∑
i=1

pei log qei ,

where:

• Nevt is the number of train events

• Nbin is the number of possible output values. In our case, it is the number of bins

• pei is the true probability of the ith value for the eth event

• qei is the predicted probability of the ith value for the eth event

The third step is to make predictions for the test data. The free parameters are set
by using the train data. So, the quality of the model for the test data is expected to be
worse than for the train data. However, the quality for the test data is an important
metric of the model. That is why we use Monte Carlo events for the test data as well
as for the train data.

2.2 Artificial neural networks

Artificial neural network is a special type of models with the large number of parameters
that are organized in an understandable structure (fig. 2). It consists of layers of neurons.
Each neuron calculates the linear combination of a free constant and outputs of neurons
from the previous layer. After that this linear combination is transformed by a non-linear
activation function. The result is the output of the neuron. The first layer consists of
the input variables. The last layer gives predictions of the model. All other layers are
called hidden. In this paper we use only one hidden layer.
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Figure 2: An artificial neural network with one hidden layer [3]

Coefficients in mentioned linear combinations should be fitted while training but the
number of layers, number of neurons in each layer and activation functions should be
set during the building of the model. The number of neurons in the input layer equals
the number of input variables, Ninp. The number of neurons in the output layer equals
Nbin, the number of bins of the true pWT . The number of neurons in the hidden layer
equal to κN2

bin where κ = 8. Such number is inspired by the response matrix in the case
of binned input. It should be reminded that in a traditional unfolding with one input
variable the general idea is to inverse the response matrix that consists of N2

bin values.
So, the neural network is expected to learn this matrix somehow. ReLU is used as an
activation function for the hidden layer:

ReLU(x) = max(0, x)

The output layer must consist of neurons that produce numbers from the interval
(0, 1). Moreover, the sum of these numbers must equal 1. Softmax fulfills the require-
ments:

softmaxi(x1, ..., xNbin
) =

exi∑Nbin

k=1 e
xk

Gradient descent allows to find approximately optimal values of the parameters of the
neural network. The general idea is to pass the train data through the neural network
and calculate gradients by using the backpropagation algorithm. One epoch is when
all train events are passed through the network. Several dozens of epochs are usually
necessary to fit the model.
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3 Unfolding

3.1 Predicting the distribution

Predicted probabilities of different bins of the true pWT for the test data are used to
estimate the pWT distribution. Namely, we calculate the sum of probabilities for all
events within each bin. As a result, these Nbin values can be considered as heights of the
histogram for the pWT . If the classifier is perfect, such estimation of the pWT distribution
is expected to be precise.

However, this estimation is biased. If some bin is more probable in the train data,
then the classifier overstates predictions of this bin for the test data. In this way, the
predicted distribution is affected by the distribution of the train data. The cause of such
effect consists in Bayes’ theorem. Let x be measured data about some test event. Then
the conditional probability density function of the pWT can be calculated by using the
following formula:

p
(
pWT |x

)
=
p
(
x|pWT

)
p
(
pWT
)

p(x)

The function p
(
x|pWT

)
can be estimated due to the train data. Unfortunately, the

prior distribution p(pWT ) can not be estimated correctly. This is why the predictions are
biased if the train data and the test data have different pWT distributions.

3.2 Iterative algorithm

Despite the fact that the predictions are far from the real values, the predicted distri-
bution is slightly better than the distribution of the train events. So, the predictions
can be used to improve the train data. Namely, we set weights for the train events that
make the distribution of the train data equal the predicted distribution.

Since the train data is changed, it is reasonable to train the model again. The new
predictions are going to be more accurate than the previous ones. Moreover, these new
predictions can be used to change the pWT distribution of the train data again.

As a result, we come up with the idea of the following iterative algorithm:

• Train the model

• Make predictions

• Change the pWT distribution (”prior”) of the train data by changing weights of the
train events

• Repeat

However, now the predicted pWT distribution of the test data has a huge impact on
the training, especially for late iterations. The problem is that small uncertainties for
the test data lead to big uncertainties for a distribution predicted on an iteration with
a large serial number. These uncertainties need to be at least estimated.
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3.3 Bootstrap

Bootstrap technique is used to estimate statistical uncertainties of the unfolding. The
general idea is to create many replicas of the test data that are slightly different. As a
result, the predicted distributions are also different. These differences allow to estimate
the standard deviation of the result.

The number of events occurred over a fixed period of time has Poisson distribution:

P (k events) = e−λ
λk

k!

Here λ is the mean number of events. It is known that the sum of independent Poisson
random variables also has Poisson distribution. Moreover, as always, the mean of the
sum is equal to the sum of the means. In this way, we set weights for every test event.
These weights have Poisson distribution with λ = 1. Since the weights are random,
replicas differ from each other. Trained models are different starting from the second
iteration because the pWT distribution of the test data influences the training process for
the second and subsequent iterations.

4 Results

4.1 The original initial prior

First of all, it is worth checking that predictions of the model are adequate if the distri-
bution of train events matches the distribution of test events. Indeed, if the model can’t
be trained even in this case, then it is necessary to change the architecture of the neural
network. Otherwise, the model is appropriate.

Let’s split randomly Monte Carlo events into three sets: train, validation and test.
The train set is used to fit the parameters of the neural network. The test set allows
to compare the unfolded (predicted) distribution with the real one. The validation set
is used to track two metrics during the training. The first metric is the loss function,
namely, categorical cross entropy. The second metric is accuracy:

Accuracy =
The number of events classified correctly

The number of all events

In this way, the validation set and the test set are not used during the training.
However, they are useful because predictions for these sets can be compared with the
true values.

After random separation, all three sets have approximately the same pWT distribution.
This is why the first iteration is expected to give the best result and the least uncertainty.
Indeed, iterations are like a random walk since the distribution of train events has been
already similar to the distribution of test events. Values of the loss function and accuracy
for different epochs can be seen on fig. 3. The pWT distribution of the test set and the
unfolded distribution are compared on fig. 4. Results show that the model is suitable
for the further testing with different prior distributions.
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Figure 3: Top: The loss function for the validation data during the training. Bottom:
Accuracy for the validation data during the training. Standard deviations were
calculated by using the bootstrap technique. The original initial prior. Input
variable: boson pT reco; the train set size: 250000 events; the validation set
size: 83333 events; the test set size: 83333 events; the number of bootstrap
replicas: 20.
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Figure 4: Top: the true pWT distribution of the test set, the initial distribution of the
train set and results of the unfolding for 10 iterations. Bottom: the ratio
unfolded distribution

true distribution
. The rightest bin is the overflow bin. The original initial

prior. Input variable: boson pT reco; the train set size: 250000 events; the
validation set size: 83333 events; the test set size: 83333 events; the number
of bootstrap replicas: 20.
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4.2 The shifted initial prior

The results of the unfolding with the original initial prior distribution are unreasonably
optimistic. In the real life, we do not know the pWT distribution as long as our ultimate
purpose is to measure it. However, the pWT distribution among train events can be
slightly changed. Then the results of the unfolding will be worse but metrics will be
more realistic. Let p0(p

W
T ) be the original probability density function of the pWT among

train events. It can be shifted to the right by 5%:

p1(p
W
T ) =

p0(p
W
T /1.05)∫ +∞

0
dx p0(x/1.05)

=
p0(p

W
T /1.05)

1.05

In practice, we build the histogram of 1.05pWT and use it as the initial prior distribution.
It means that the appropriate weights of the train events need to be set before the first
iteration. The results are shown on fig. 5, 6. Predictions are worse than for the original
initial prior distribution. However, now the differences between iterations are visible.
Nevertheless, the initial distribution is still very similar to the distribution among test
events.

4.3 The flat initial prior

For the next test, it is worth trying to make as few assumptions about the true pWT
distribution as possible. We set the weights of the train events to make the initial
distribution flat. Besides, we should make the probability of the overflow bin equal to a
nonzero value. Otherwise test events that fall into the overflow bin would be processed
incorrectly. For this reason, the initial probability of the overflow bin is set into 0.01.
The results are shown on fig. 7, 8.

4.4 1D vs 2D unfolding

An opportunity to process multiple input variables is an advantage of artificial neural
networks. Until now, we have considered 1D-unfolding: only one input variable, namely,
the reconstructed pWT that is named boson pT reco. However, as shown on fig. 7, 8, this
information is not enough to obtain a precise estimation of the true pWT distribution.
Among measured variables there is the hadronic recoil, or sumEt, that is approximately
equal to the true pWT . It can be used during the training and making the predictions.
The results are shown on fig. 9, 10.
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Figure 5: Top: The loss function for the validation data during the training. Bottom:
Accuracy for the validation data during the training. The prior is shifted by
5%. Input variable: boson pT reco; the train set size: 250000 events; the
validation set size: 83333 events; the test set size: 83333 events; the number
of bootstrap replicas: 20.
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Figure 6: Top: the true pWT distribution of the test set, the initial distribution of the
train set and results of the unfolding for 10 iterations. Bottom: the ratio
unfolded distribution

true distribution
. The rightest bin is the overflow bin. The prior is shifted

by 5%. Input variable: boson pT reco; the train set size: 250000 events; the
validation set size: 83333 events; the test set size: 83333 events; the number
of bootstrap replicas: 20.
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Figure 7: Top: The loss function for the validation data during the training. Bottom:
Accuracy for the validation data during the training. The flat initial prior.
Input variable: boson pT reco; the train set size: 250000 events; the validation
set size: 83333 events; the test set size: 83333 events; the number of bootstrap
replicas: 20.
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Figure 8: Top: the true pWT distribution of the test set, the initial distribution of the
train set and results of the unfolding for 10 iterations. Bottom: the ratio
unfolded distribution

true distribution
. The rightest bin is the overflow bin. The flat initial prior.

Input variable: boson pT reco; the train set size: 250000 events; the validation
set size: 83333 events; the test set size: 83333 events; the number of bootstrap
replicas: 20.
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Figure 9: Top: The loss function for the validation data during the training. Bottom:
Accuracy for the validation data during the training. The flat initial prior.
Input variables: boson pT reco, sumEt; the train set size: 250000 events; the
validation set size: 83333 events; the test set size: 83333 events; the number
of bootstrap replicas: 20.
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Figure 10: Top: the true pWT distribution of the test set, the initial distribution of the
train set and results of the unfolding for 10 iterations. Bottom: the ratio
unfolded distribution

true distribution
. The rightest bin is the overflow bin. The flat initial prior.

Input variables: boson pT reco, sumEt; the train set size: 250000 events; the
validation set size: 83333 events; the test set size: 83333 events; the number
of bootstrap replicas: 20.
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5 Summary

Machine learning is useful for the iterative unfolding. The application of this method
to the ATLAS measurement of the pWT works properly. Statistical uncertainties can be
estimated through bootstrap replicas. The results can be improved by adding new input
variables.

Further study will consist in optimization of the network architecture, finding the
optimal binning and the optimal set of input variables. Besides, systematic uncertainties
should be included into analysis.
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