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Abstract

The τ lepton reconstruction and identification is important for many searches.
In this work, τ Isolation Discriminator capable of discrimination τ leptons from
jets using geometrical deep learning techniques is presented. The network provides
performance comparable to the performance of convolutional neural network-based
DeepPF classifier, while being able to classify events 64 times faster.
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1 Introduction

There is now a lot of interest to searches for different phenomena that include τ leptons
in its signature. One of the examples of such searches is the decay of Higgs boson (H) into
a pair of τ leptons which is the most sensitive channel for probing Higgs boson coupling
to fermions. The observation of standard model (SM) Higgs boson decaying into a pair
of τ leptons was reported in Ref. [1, 2]. Moreover, searches with τ leptons in the final
state have high sensitivity to the production of additional Higgs bosons expected in the
minimal supersymmetric standard model (MSSM). Examples of such searches can be
found in Ref. [3, 4]. In addition, searches for different particles beyond the SM benefit
significantly from any improvements made in τ lepton reconstruction and identification.

Therefore, different τ discriminators has been developed and are currently used. In our
work, we present discriminator for tau identification based on geometrical deep learning
and compare it to the official CMS τ discriminators.

1.1 The CMS Experiment

The Compact Muon Solenoid (CMS) is a general purpose detector operating at the
Large Hadron Collider (LHC) at CERN. The overall layout and a slice of a detector is
shown in the Fig. 1, 2. The CMS apparatus has an overall length of 22 m, a diameter
of 15 m, and weighs 14 000 tonnes. The central feature of the CMS apparatus is a
superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T.
Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter
(HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel flux-return yoke outside
the solenoid.

The particle-flow algorithm [5] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of
the CMS detector. The energy of photons is obtained from the ECAL measurement. The
energy of electrons is determined from a combination of the electron momentum at the
primary interaction vertex as determined by the tracker, the energy of the corresponding
ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible
with originating from the electron track. The energy of muons is obtained from the
curvature of the corresponding track. The energy of charged hadrons is determined
from a combination of their momentum measured in the tracker and the matching ECAL
and HCAL energy deposits, corrected for zero-suppression effects and for the response
function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons
is obtained from the corresponding corrected ECAL and HCAL energies.

A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [6].
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Figure 1: The CMS detector at the LHC

Figure 2: Slice showing CMS sub-detectors and how particles interact with them
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1.2 τ lepton

The τ lepton is a third generation charged lepton, with a lifetime of 2.9·10−13 s and a
mass of 1.776 GeV [7]. It is the only lepton which is heavy enough to decay hadronically.
Branching ratios of different τ decay modes are shown in Table 1. The branching ratio of
hadronic τ lepton decays is 64.8 %, thus, improvement in efficiency of tau reconstruction
in this mode can significantly improve overall tau reconstruction efficiency. Algorithm
which is currently used for the reconstruction of hadronically decaying τ is based on
particle-flow algorithm.

The hadronically decaying τ , denoted τh, are reconstructed using hadrons-plus-strips
(HPS) algorithm [8, 9]. From neutral hadrons, charged hadrons, electron and photon PF
candidates, HPS algorithm checks whether the combined topology is compatible with
one of the τh decay modes. The main challenge in τh identification is then to distinguish
it from quark and gluon jets arising in a large amounts in proton-proton collisions.

Table 1: Branching ratios (B) of different τ decay modes

Decay mode Resonance B(%)
Leptonic decays 35.2
τ− → e−ν̄eντ 17.8
τ− → µ−ν̄µντ 17.4

Hadronic decays 64.8
τ− → h−ντ 11.5
τ− → h−π0ντ ρ(770) 25.9
τ− → h−π0π0ντ a1(1260) 9.5
τ− → h−h+h−ντ a1(1260) 9.8
τ− → h−h+h−π0ντ 4.8

Other 3.3

2 Related Work

A number of different τ isolation discriminators were developed earlier and are currently
used in physical analyses at CMS. Isolation sum and MVA discriminators were proposed
in Ref. [9]. Cut-based isolation sum discriminator is computed by scale pT sums of
the charged particles and photons reconstructed using the PF algorithm with a cone
centered around the τh:

∆β = 0.20×
∑

pchargedT (dz < 0.2cm) (1)

The isolation is then defined as the following:

Iτh =
∑

pchargedT (dz < 0.2cm) + max(0,
∑

pγT −∆β) (2)
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MVA discriminator is based on boosted decision trees (BDT) and is combining the
isolation and other differential variables sensitive to the τ lifetime. In recent years, two
different discriminators based on deep neural networks (DNN) were developed. Cole-
growe proposed Deep Particle Flow (DPF) network [10], which uses representation of PF
candidates around reconstructed τ as 2D table, which is then fed into a convolutional
neural network (CNN) consisting of 10 convolutional layers and 4 fully-connected layers.
CMS Tau ID group developed DeepTau ID network, which is the current state-of-the-art
τ discriminator. We compare the performance of our network to the MVA and DPF
classifiers.

3 Network Architecture

Recent success of neural networks is partially attributed to the rapidly developing com-
putational resources, the availability of big training data and to development of archi-
tectures that can effectively extract latent representations from data with Euclidean
structure. Taking image data as an example, one can represent is as a regular grid in
a Euclidean space. Convolutional Neural Networks are able to exploit shift-invariance,
local connectivity, and compositionality of that data which allows it to extract mean-
ingful local features and results in high performance of CNNs in image processing tasks:
in most computer vision problems they by far outperform all the previously developed
methods.

However, there are a lot of tasks where data has non-Euclidean structure. For exam-
ple, data can be represented as a graph which can be irregular and have varying size,
which means that most operations widely used for data on Euclidean domain, such as
convolutions, can not be used for this data and one need specific operations to efficiently
extract features from such a data. Recently there is a growing interest in extending deep
learning approaches for such a data.

Another example of non-Euclidean data is a point cloud - scattered collections of
points which comprise the output of the most 3D sensors. Qu and Gouskos, inspired by
the notion of point cloud, proposed to represent jets as an unordered set of its constituent
particles, effectively a ”particle cloud” [11]. Such particle cloud representation of jets
is efficient in incorporating raw information of jets and also explicitly respects the per-
mutation symmetry. This enables them to achieve state-of-the-art performance on two
representative jet tagging benchmarks. We adopt their approach for τ discrimination
task.

3.1 Edge Convolution

Different ways to generalize convolutions for using on point clouds were developed. In
our work we use the EdgeConv layer, which has been proposed by Y. Wang et. al in
Ref. [12].

For EdgeConv operation, the point cloud is first represented as a directed graph -
points are the vertices of the graph, and each vertex is connected with its k nearest neigh-
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bours. For each edge of the graph, the edge features is computed as a eij = hΘ(xi, xj),
where xi and xj are the points connected by the edge, and hΘ is a function parametrized
by parameter vector Θ. Function hΘ is usually implemented as a multi-layer perceptron
(MLP). EdgeConv operation is defined by applying a symmetric aggregation operation �
(e.g.

∑
or max)(see Fig. 3):

x′i = �hΘ(xi, xj) (3)

Figure 3: Left: An example of computing an edge feature. Right: Visualisation of Edge-
Conv operation.

There are different ways in which arguments can be fed into MLP, and in our work
we use asymmetric edge function, which explicitly combines global shape structure with
local neighbourhood information:

hΘ(xi, xj) = h̄Θ(xi, xj − xi) (4)

4 Evaluation

4.1 Monte Carlo Samples

For training and testing of the neural network, the samples from 2016 MC was used.
True τ were selected from Drell-Yan MC samples, fake ones from W+jet MC samples. In
both cases, only decays into one charged hadron (decay mode 0), one charged hadron and
a neutral pion (decay mode 1), or three charged hadrons (decay mode 10) are selected
(see Fig. 4). Reweighting is applied to samples in order to flatten in tau pT spectrum.

4.2 Results

Final architectures used in performance evaluation are shown at Fig. 5. Both networks
consist of few EdgeConv layers followed by channel-wise global mean pooling and fully
connected classifier layers. Number of nearest neighbours used (denoted as k) and output
sizes for all the MLP used in models (both in EdgeConv layers and in classifier) is
also shown at Fig. 5. For ECN with 3 layers, dynamic graph is used - knn-graph is
recomputed before each EdgeConv layer. Networks were implemented using PyTorch
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Figure 4: Tau decay modes used in our work

Table 2: Performance comparison for τ / jet discrimination

Architecture ROC AUC score
MVA 0.792
DPF 0.863

DPF + MVA 0.892
ECN (1 layer) 0.883
ECN (3 layers) 0.898

Geometric library [13]. Neural networks were trained with stochastic gradient descent
(SGD) optimiser using cosine annealing learning rate [14] with initial learning rate of 0.1
for 50 epoch with batch size equal 512. The cosine annealing LR is defined as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

Tcur
Ti

π)), (5)

where Tcur is the number of current epoch and Ti is the specified number of epochs.
The ROC curves for MVA, ensemble of MVA and DPF and ECN are shown at the

figure 6. The results are summarised in the Table 2.

Table 3: Number of parameters and inference time per object for different models

Architecture Number of parameters Time [ms]
DPF 8838945 166

ECN (1 layer) 49283 0.6
ECN (3 layers) 223939 2.6
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Figure 5: Left: Single fully-connected layer; Center: ECN with 1 conv layer; Right:
ECN with 3 conv layers
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(a) ECN with 1 EdgeConv layer
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(b) ECN with 3 EdgeConv layers

Figure 6: Inverted ROC curves
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5 Model complexity

Another important characteristic for network usage in analysis is the time needed to
process one event. As most of the CMS analyses use a lot of data, tau tagging with
highly time-consuming classifier would be unreasonable. One of the simplest ways to
reduce time consumption is to reduce number of learnable parameters in the network
thus reducing number of operations required to produce the output.

Comparement of the number of learnable parameters and the amount of time for
evaluation per event for DPF network and our network can be found in the Table 3.
Time was measured on CPU Intel Xeon E5-2650 using one thread and batch size of
2048.

6 Conclusion

In this work particle cloud approach was applied to the tau discrimination task. Geomet-
rical neural network with particle cloud data representation achieved performance close
to the one of conventional deep convolutional neural network while having much smaller
number of parameters and working faster. Further improvement of performance can
be achieved by optimising hyperparameters of the model, e.g. number of layers, batch
size, learning rate and the number of nearest neighbours used to make knn-graph. In
addition, the same architecture can be used to make multiclass classifier to discriminate
τh from jets, e and µ.
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