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1 Introduction

Supersymmetry (SUSY) concept was developed in the early seventies in the
context of a string theory. At that time it appeared as a pure theoretical
tool. Later on, it was realised that this symmetry may be a symmetry for
four-dimensional space-time based quantum theories. Sins that time, lots of
different models based on the supersymmetry were proposed. By providing
boson-fermion mapping it naturally solves radiative corrections by cansela-
tions between fermion- and boson-loops, so that leading order (LO) terms
remain dominant over the lower order terms; it also grants us with dark
matter candidates, it could explain hierarchy problem, and many more [1].

Supersymmetry is known to be broken symmetry. But it means that we
are not able to put constrains on masses for all the variety of particles it intro-
duces. For this reason and the fact that no supersymmetry-particle has been
observed yet (unless Higgs boson we detected is the lightest SUSY-higgs),
we conclude that masses of these particles may be well beyond the energies
available at modern accelerators. Also some of SUSY particles are expected
to interact very weakly, like neutrinos, and so disabeling us to directly de-
tect them. Nevertheless, these particles would still contribute to the deep
inelastic scattering, and thus could be detected via indirect measurements.

This analysis aims at improvement of modern techniques for indirect stud-
ies of theories like SUSY, where signal is known to be highly dominated by
various backgrounds and demands a state-of-art studies of kinematics.

2 Signal and background processes

This study is targetting the posibility to improve methods for SUSY analysis
at LHC. Considered intercation is gluino pair production with each of them
decaying to tt̄χo1, where χo1 stands for the Lightest Supersymmetry Particle
(LSP). The corresponding diagram is presented in Figure 1.

Main decay channel of the t (t̄) quarks is the weak-decay channel to
W+ (W−) boson and a b (b̄) quark. Then there is two modes of W -decays:
hadronic and leptonic. In this analysis we constrain to semi-leptonic events.

Resulting signatures for the signal events are: multiple jets originating
from W -decays and 4 b-jets, a single lepton, and missing energy in transverse
plane (MET) from ν and two χo1. Number of jets originatin from hadronic
W -decay depends on a boost of the W boson, so no tight selection can be
performed for this quantity. Another problem is bad identification efficiency
for b-jets, strong restriction on number of b-jets would dramatically reduce
statistics.
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Figure 1: Diagram for signal events

Figure 2: tt-semileptonic

The main background for this case is tt-semileptonic (Figure 2). But
due to possibility of misidentification of a lepton in W -decay, we will also
obsereve a huge influence from tt-dileptonic (Figure 3) events.

Latest 95% C.L. limits are shown on Figure 4. Monte Carlo samples used
for this study correspond to 35.9 fb−1 of data for 2016 year.

2.1 Event selection criteria

Following event selection was applied to the data. These criteria are set
due to issues with trigger-system during 2016 run, which caused exclusion of
these ranges from the data. Thus these cuts are set to match Monte Carlo
samples to the available data.

• only events with a single lepton are selected

• lepton transverse momentum, plT > 25GeV

• Number of jets with pT > 30GeV , Njets30 ≥ 5

• Second jet pT > 80

• HT > 500, where HT =
∑

Jets p
jet
T

Figure 3: tt-dileptonic
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Figure 4: CMS Preliminary: 95% C.L. limits on Mg̃ and Mχ0
1

• LT > 250, where LT = |plT |+ |MET|

• Nb−jets >= 1

3 Deep neural network and loss function

Machine leaning (ML) techniques are getting used in high energy physics
(HEP) analysis more and more today. They may dramatically simplify the
studies by introducing a way to approximate signal without going too deep
into details of physics behind the process, which sometimes becomes over
complicated and demands enormous time to be studied well enough for a
single analysis, which may even happen not to succeed. In context of HEP,
it is perfect tool to handle analysis of event kinematics, and can be combined
with the classic-approach analysis to obtain ”cleaner” base to work around.

General idea of ML is to tune an over complicated functional to derive
information of interest from a set of given features. For this reason, consid-
eration on approach for such tuning might be crucial part of ML application.
For most cases this tuning is implemented as minimization of some func-
tion, named loss function, which judjes the qualitative aspects of the output
from the ML-model. In case of classification problems, common considera-
tion for the loss function is cross entropy between the classes. Research of D.
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Krüecker and A. Elwood ([2]) highlighted that this approach may not be an
optimal choise for problem of signal identification in HEP. Instead of opti-
mizing accuracy (approximated by cross entropy) of the classifier, one could
actually consider to directly optimize discovery significance for the signal-
class. Approximation of discovery significance is given by Asimov estimate
(Equation 1).

ZA =

√√√√2

(
(s+ b)ln

[
(s+ b)(b+ σ2

b )

b2 + (s+ b)σ2
b

]
− b2

σ2
b

ln

[
1 +

σ2
bs

b(b+ σ2
b )

])
(1)

And to turn maximization problem to minimization one, loss function is
defined as lAsimov = 1/Z2

A, where square root operation is eliminated due to
performance reasons.

Inheriting approach of previous study, we also consider deep neural net-
work (DNN) approach.

4 Analysis setup

4.1 DNN structure

Following configuration for DNN-classifier was used:

• 2 fully connected hidden layers

• 256 nodes with ReLU activation in each layer

• single output with sigmoid activation

Output of the DNN is then treated as a probability of event to be a repre-
sentative of signal or background classes.

4.2 Elimination of overtraining and consideration on
optimizer

As deep neural networks are known to suffer from overtraining, 10% dropout
[3] was applied for each layer. This method prevents DNN to ”remeber” the
exact definitions of signal and background representatives, and instead forces
it to study the patterns of the classes. Yet, overtraining at some extent is
still possible because training sample is likely to have some features specific
to the particular sample (i.e. statistical fluctuations). To prevent DNN from
such overtuning, validation-based early stopping [4] is applied. With this
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approach, optimization will be stopped when no more improvement of DNN
output for validation sample is observed.

Another important step is consideration on optimizer for training. In
previous research [2], Adam [5] optimizer was used. It was observed that
training with implemented loss function ”explodes” at first iterations, unless
model was pretrained with loss ls/

√
s+b [2]. In this study, such pretraining

haven’t solved the problem, and another optimizer had to be used instead.
ADADELTA [6] algorithm has succeed with stabilization of the training with
introduced loss, and thus it was considered for the study. Nevertheless pre-
training was kept due to performance reasons, but loss for this stage was
changed to cross entropy.

4.3 DNN input features

Folowing event parameters were chosen as input to the DNN:

• Missing Energy in Transverse plane (MET)

• MT =
√
plTp

miss
T (1− cosϕ), where plT is a transverse momentum of the

lepton, and pmissT is a missing transverse momentum

• pT of a first and a second leading jets (two features)

• number of leptons in event (fixed by selection cuts)

• lepton transverse momentum (plT )

• LT

• HT

• number of identified b-jets

• number of reconstructed t/t̄-quarks

• Njets30

• ∆ϕ – angle between lepton and reconstructed W boson momentum.

• relative isolation of the lepton

• lepton mini-isolation – ratio of the amount of measured energy in a
cone to the transverse momentum of the lepton
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5 Results

6 Conclusions
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