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Abstract

Spinor-helicity variables are introduced as solutions to the massless Dirac equation and
are used as a tool for calculating several scattering amplitudes. The extension to the
massive case is then examined and massless and massive variables are finally used to
construct a UV completion of general relativity.
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1. Introduction

The aim of this report is to give an introduction to the spinor-helicity formalism and its applica-
tions. This powerful tool allow to compute on-shell scattering amplitudes in a straightforward
way, usually without getting involved in long and complicate calculations with Feynman dia-
grams. Its importance is then double: on one hand, spinor-helicity formalism can be efficiently
used to compute cross section for various processes (and indeed some techniques are already
implemented in numerical codes for particle physics experiments). On the other hand, it can
give us some theoretical insights and novel ideas, as we will see later on in the report.

This work is divided as follows: in Section [2| we introduce the spinor-helicity formalism for
massless particles, following the discussion in [I]. This section is the very heart of the report,
as it contains many definitions, properties and also examples and explicit calculations: we
start from the Weyl equation and construct the spinor-helicity variables for massless fermions.
The first part of the section is pretty technical, but then we show how one can use the newly
introduced variables in some calculation in a model with a massless spin 1/2 fermion and a
massless real scalar interacting via a Yukawa coupling. After that, we introduce a proper
definition of polarization vector for spin-1 massless particles and discuss little group scaling.
Next, we develop, under certain assumptions, some recursion relations [2, [3] for the computation
of many-particle scattering amplitudes at tree level. We use them to prove the Parke-Taylor
formula [4] for maximally helicity violating (MHV) scattering amplitudes in QCDJ] In Section
we extend some of these ideas to the case of massive particles, as done in [5]: in particular,
we compute all three-particle scattering amplitudes and discuss some examples, among which
Compton scattering between photons and massive scalars, fermions and vectors.

Finally, in Section [4] we use the machinery introduced so far to discuss a possible UV com-
pletion of gravity, following the analysis made in [6]. In detail, we start studying graviton
mediated four-point tree level scattering amplitudes, in the case the external legs are SM mass-
less particles and/or gravitons. We then summarize the discussion made in [6] about the high
energy behaviour of these amplitudes, where one finds out that, under certain hypothesis of
regularity, two infinite towers of increasing masses are required to satisfy perturbative unitarity.
Those resonances modify graviton mediated scattering amplitudes by dressing them either with
Veneziano or Virasoro-Shapiro amplitudes.

In future work, we hope to extend the analysis carried out in [6] to massive external states.

2. The spinor-helicity formalism: the massless case

Throughout the report, we use the metric 7, = diag(—1,+1,+1, +1).

2.1. Spinor-helicity variables
Given a 4-vector p*, we associate two 2 X 2 matrices to it

Pap = Pu(0)y,  P¥ = pu(@)® (1)

i.e. scattering amplitudes for n gluons where 2 gluons have the same helicity and the other n — 2 gluons have

the opposite helicity.



where (o), = (1,0%),; and ()% = (1, —¢")%, o being the usual Pauli matrices. Explicitly

0 3 1 22
—p’+p° p —ip
R _ 2
Pop = ( pl 2102 po ps ) ( )

The map p* — p,; is clearly linear and has the nice property det(p,;) = —p*p,. This fact
implies that if p* is the 4-momentum of a massless particle, then the associate matrix p,; has
rank 1. We can thus represent p,; as an outer product of two 2-component spinors, which we
write as a square ket |p|, and an angle bra (p|;, i.e.

Pai = —1Pla(pl} (3)
We can also raise the indices and write

p™ = —Ip)[pl’ (4)
where [p|* = %|p|, and |p)* = 5db<p|b. Here £%° is an antisymmetric 2 x 2 matrix such that
e2=el2 = —gp=—¢j,=1.

At this point, it is very important to realize that we can choose the spinors |p|, and (p|;
as solutions of the massless Dirac equation. In detail, we can focus on the wavefunctions of
outgoing (anti-)fermions, which in the massless case satisfy the Weyl equation

ur(p)p=0,  pve(p) =0 (5)

The subscript + refers, in the massless case, to the helicity of the particle. We look for solutions
of the form

)= (b 0), G =(0 b)), ©)
)= (1) o= () )

With this ansatz for the solutions, the Weyl equation can be written as

PP =0,  (plap™ =0 (8)
PPl =0,  pyulp)’ =0 (9)

The completeness relation —p = u; uy +u_u_ is then equivalent to Eq. [3land , via the crossing
symmetry us = ve. An explicit example of this construction can be found in Appendix [A]

2.2. Basic properties of angle and square bras and kets

In applications, there are some useful and recurrent tricks with spinor-helicity variables. First,
notice that in the previous section we can allow p* to have complex values. This possibility is
clearly unphysical, as particles” 4-momenta must be real-valued. However, in some derivation
a complex-valued 4-momentum is also important. We stress that

o if p* is complex-valued, then the square and angle bra and kets are independent of each
other,



o on the other hand, if p* is real valued, then p,; and p® are Hermitian and we have the
constraints

(pla=(Pla)",  [pl" = (Ip)")" (10)
which simply mean that we can restrict our attention to v (p).

With this clarification, we can now explain the algebraic properties of the spinor-helicity vari-
ables. Given two lightlike 4-momenta p* and ¢, we define the spinor products

pa) = wlala®*,  [pd = [pl"9a (11)

These products are antisymmetric under the exchange p < ¢, and in particular (pp) = [pp] = 0.
Moreover, also the “mixed” products (pq] and [pgq) vanish. If p* and ¢* are real-valued, then
we also have

[pa] = ({ap))” (12)
A very useful identity is the following
(pa)lpal = 2p"q, (13)
which, in the massless case, reduces to
pa)lpd = (p+a9)? (14)
We also define the product .
[plr*la) = [p|*(0") sla)’ (15)

and a similar definition holds for (p|y*|q]. We notice that [p|v*|q] = (p|7*|¢) = 0: in general, a
square ket can be connected to another square bra only using an even number of y-matrices, and
it can be connected to an angle bra only using an odd number of y-matrices. Other properties
of the product [p|y*|q) are

o Symmetry of square and angle variables

Ph*lg) = (plr"ld] (16)
« Conjugation property for real 4-momenta
[Ph*lg) = (lalv"p))” (17)
o Fierz identity: given four 4-momenta pq, ps, p3 and p4, and using the shorthand |p;| = ],
we have
(17213 ll4] = 2(13)[24] (18)
and in particular
(k|y"|k] = 2k (19)
o for any 4-momentum P* we define
[pIPlg) = Pulplv"]q) (20)
If P* is lightlike, then
[plPlq) = =[p PI(Pq) (21)
Finally, for every four 4-momenta p;, : = 1,...,4, the Schouten identity holds
(ni)(j k) + (nj){ki) + (nk)(ij) =0 (22)

and a similar expression holds for square products.



2.3. First examples

Let us pause for a while and see how we can apply all the new objects we introduced so far.
As a simple example, we consider a theory with Lagrangian

L= i)+ 50,006 + g (23)

where v is a Dirac field and ¢ a real scalar field. Consider the s-channel for the four-fermion
tree amplitude. The usual Feynman rules give then

2 3
> ,,,,,, < = (ig)*tn, (P3)n, (pa) @1;—;2)2Uh2 (p2)vn, (p1) (24)
1 4

where h; is the helicity of the i-th particle. Notice that we assumed that all the particles
are outcoming. We can now convert the products tp,(ps)vn, (ps4) and g, (p2)vs, (p1) in terms
of spinor-helicity variables, using Eq. [6] and [7} clearly, the amplitude is proportional to some
product of spinor variables of particle 3 and 4, so the amplitude is non-vanishing only if hs = hy.
In the same way we deduce that the final result is non-zero only if hy = hy. For example, if we
consider the case hy = hy = —1/2 and hz = hy = +1/2, we find
1
—g—at ] — 42
Ay[17273747] = ¢°[4 3] o +p2)2<2 1) (25)

We can simplify this expression using Eq. and we find

34]
1—9-g+4+] = 234 26
which is a very nice and compact result! Notice also that the form of the amplitude is not
unique, i.e. we can also write the scalar propagator as 1/(ps + ps4)*. In this case we find
12)
A17273%4%) = :{12) 27

As second example, consider the two-fermion two-scalar tree amplitude. Using the Feynman

rules we obtain

iA4 [¢fh2 ¢fh4] = =
1 / 4
_ (ig)%an, <p4>%% (02) + (16 3) (28)



In this case we have a product of the form u,~y"vy,, which is non-vanishing only if the helicities

of the two fermions are opposite. For instance, if hy = —hy = +1/2, we have
T+ o 5 (4]p1 + p2|2]

Using Weyl equation (which reads p,|2] = 0) and Eq. [21| we finally find

AdJoFrof] = o (8—‘2‘; n %) (30)

These two examples are nice, as they show how we can express some simple scattering
amplitudes in a compact form, but they don’t display all the power of spinor-helicity formalism:
after all, we have simply applied Feynman rules and then converted the result in the new
formalism. Let’s try now to compute the spin sum

(AdlofofII”) = D 1 Aulof™6 1M (31)
ha,ha
The spin sum consists of only two terms, namely those where ho = —hy. Let’s start with
hy = —hy = +1/2: since the particles have real 4-momenta, we can use the conjugation
property Eq. [12] and write
roee o (14) 0 B4 ([14] | [34]
Notice now that we have (34)[14] = —(32)[12]. In terms of the usual Mandelstam variables,
we simply find
2
L s—u
Al Frof e =g (33)
The other term in the spin sum, i.e. the one with hy = —hy = —1/2; yields the same result,
and finally
2
- s—u
(Ao foflP) = 24" (34)

2.4. Polarization vectors

A common choice of polarization vectors for spin-1 massless particles with momentum p =
E(sin 6 cos ¢, sin 0 sin ¢, cos 0) is

+ig

ei(p) ==+ c (0, cos 0 cos ¢ £ i sin ¢, cos 0 sin ¢ F i cos ¢, — sin 6) (35)

V2
They have the following properties
i) =0,  lppu=0, Ei(pei,lp) =1 (36)

In spinor-helicity formalism, polarization vectors are defined as

P _ 1 {ah*"lp] ” _ 1 (ph"ld
(p ) = V2 (qp) -(0:9) V2 lapl (37)



Here ¢* is an additional 4-vector, called reference momentum, and it must be lightlike and not
parallel to p*. Its presence is a consequence of gauge invariance, so we expect that all scattering
amplitudes are independent of ¢. Notice that Eq. is a suitable definition of polarization
vectors, as one can show that

el (p, q) = €L (p) + Ax(p, )p" (38)

for a proper choice of A (p,q). In particular, the polarization vectors in Eq. satisfy Eq.
as well.

2.5. Little group scaling

Recall that the fundamental quantity we introduced is the matrix p,;, which is clearly invariant
under the transformation
— 1

p] =t~ p]

for every t € C\{0}. If the momentum p is real-valued, we restrict to ¢ € U(1) because of the
condition |p)* = [p|. This scaling is known as little group scaling and it represents the action
of the little group of p# E] on the spinors |p), |p]. Let’s see now how the little group scaling
acts on a scattering amplitude: using Feynman rules, we can trace back the amplitude to some
diagrams made up of vertices, internal propagators and external legs. Vertices and internal
propagators are invariant under the scaling, but the external legs are not. In particular

o a scalar external leg is invariant as well,

 a spin-1/2 external leg consists either of a square or an angle spinor, and thus scales as
t=2" h being the helicity of the associated fermion,

» a spin-1 external leg is a polarization vector of the form of Eq. Again, we find the
scaling law t=2".

Hence we conclude that a generic n-point amplitude scales as follow

A1), t7HA] P [2),12), Bas s ), [n], B = 6720 A1), 1], a3 [2), 120, Bas o (), I, )

2.6. Further examples

Let’s now apply little group scaling to the calculation of some amplitudes. First, we derive an
important property of three-particle kinematics: if we have three lightlike 4-momenta py, ps
and ps which satisfy p; 4+ ps + ps = 0, then either (i j) = 0 or [i j] = 0 for all ¢, j. The proof
is simple: from 4-momentum conservation we have (12)[12] = p2 = 0. Assume now (12) # 0.
Then [12] = 0 and moreover

(12)[23] = (1|p1 +ps|3] =0 (41)

2Which indeed for lightlike p* in four dimensions is SO(2) = U(1).



and so [23] = 0. In the same way we prove [13] = 0, while if we assume [12] # 0 then (12) =
(23) = (13) = 0. Notice also that if p1, pa, p3 are real-valued then we have (i j) = [i j] = 0 for
all 4, 7. In other words, a three-point massless amplitude is always vanishing for real momenta.
This is a conclusion that can be deduced in a simpler way using basic relativistic kinematics,
for example considering the process 1 + 2 — 3 in the CM reference frame. On the other
hand, a non-vanishing three-point amplitude can depend either on square brackets or angle
brackets, but not on both, and makes sense only for complex momenta. Hence it is reasonable
to conjecture the following form for a generic three-point amplitude

As[171272303] = (1 2)M2 (1 3)M13(23)M (42)
Imposing the proper little group scaling for all the spinors we get
Ag[1M1272303] = (1 2)hs=P=ha (1 3yha=hi=ha (9 3y —ha=hs (43)

Of course, we can also reasonably conjecture that the amplitude depends on square brackets,
in this case we find

A3[1h1 2h23h3] — a[l 2]h1+h2*h3 [1 3]h1+h3*h2 [2 3]h2+h3*h1 (44)

The correct amplitude can be found using dimensional analysis. For example [6], if the third
particle is a graviton, then a o Mp_ll. In this case the only non-vanishing amplitude occurs
when h; = —hy = h and we conclude

[1 3]2h+2 [2 3] —2h+2

C hy=2

2

A3[1"27"3"] = a 3>2[I}+22]<2 3)2h+2 (45)
(12)2 ) e =2

As a second example, consider a Yang-Mills theory with gauge group SU(N). Little group
scaling and dimensional analysis give the following form for the three-point amplitude

(12)* [12]*

ECECE R S 10

As[172737] = [12][23][31]

2.7. Recursion relations

In this section we develop some powerful recursion relations for the computation of generic
n-point amplitudes. The main result is the generalization of Eq. 46| to n gluons

(12)*

An[172737..n"] = (12)(23)...(n1)

(47)

This amplitude is known as Parke-Taylor formula [4].

Consider n lightlike 4-momenta {p{'}!_, which satisfy 4-momentum conservation ) ., pi' =0
and suppose we want to calculate the n-point tree amplitude for n particle with those 4-
momenta, i.e. A,[p{*,...,p"]. Moreover, consider a set of n 4-momenta {r!'}"  with the
following properties:



LY =0,
2. rf'rj, =0 for all 4, j,
3. r'p;, = 0 for all i (no sum over 7).
We now introduce a set of shifted 4-momenta, defined by
pi(2) =p; +2rf (48)
where z € C. Notice that
o the shifted momenta are lightlike,
o the shifted momenta satisfy 4-momentum conservation.
We can then study the shifted amplitude
An(z) = Au[pr(2)™, . pu(2)"™] (49)

and this amplitude is a proper, on-shell amplitude, although evaluated for complex momenta.
As we are focusing on tree level, the amplitude is a rational function of |p;(z)) and [p;(z)] and
therefore is a meromorphic function of z. Now consider a pole of A,: this pole can only be
generated by an internal propagator in the associated Feynman diagram. To be more precise,
for a given subset I C {1,...,n} [| define

PE=3"pl, PRz =) pMe),  Ri=)_ 1t (50)

iel i€l iel

An internal propagator is necessarily of the form 1/P2(z) for a proper I. Now notice that P2(z)
is linear in 2

P}(z) = P? + 2zR} Py, (51)
In particular, for a given I we obtain a pole located at
P
= —— 52
T ORI, (52)

and the residue of the propagator is —z;/P?. If the pole associated to I is present in ,Zln,
then necessarily the diagrams associated to A, factorise in two subdiagrams, connected by
the propagator 1/P2(z). Let’s denote with A (z) and AL(z) the corresponding subamplitudes.
These amplitudes involve a lower number of particles and cannot contain themselves the internal
propagator 1/ plz(z), thus they are regular around the pole in z;. We then conclude that

« the poles of A, are associated to some subsets of {1,...,n}, and every subset of {1, ... ,n}
is associated at most to one pole of A,

e every pole is simple,

3We restrict to the case 2 < |I| <n — 2 in order to avoid trivial cases.



e the residue at a pole located in zj is

Resl Ay, z1] = — 5 Af (21) Af(21) (53)
1

~

Finally, consider the function f,(z) = A, (2)/z. Using the residue theorem we find
A A 1 -
A, = A, (0) = B, + ZAg(zI)P—;Ag(zI) (54)

where we denoted with B, the residue at infinity of the function f,,. The sum is extended to
all the shifted, internal propagators. This relation is precisely a recursion relation, because fli
and /lﬁ are k-point tree amplitudes with k < n. Therefore, if we manage to compute B,, in an
independent way we can calculate the desired n-point tree amplitude. This task is often very
difficult, but there are several examples in which B,, = 0, as we will see soon.

2.7.1. BCFW relation

Now we set a particular choice of the auxiliary vectors r;, known as [i, j)-shift. Consider the
following shift in the spinors

i =1+, ) =1d) (55)
5 =1 —=2ld), 1] =1J] (56)

while the other spinors are left unchanged. This shift corresponds to the choice of the auxiliary

vectors 1

== Skl = 57
for k # 4, j. In this case it can be shown [3] that in a Yang-Mills theory A, (z) has the following
asymptotic behaviour:

o if (hi, hy) € {(=, =), (=, 4), (+, =)}, then A,(z) = O(z~!) when z — oo,
o if (hi, hy) = (+,—), then A,(z) = O(2*) when z — co.

In the first three cases we have then B,, = 0 and the [i, j)-shift is a suitable choice for a proper
recursion relation. This kind of recursion relation is known as BCEW relation [2]. In particular,
let’s now prove the Parke-Taylor formula. We proceed by induction: the formula is true for the
case n = 3, as already shown by little group scaling arguments. We now use a [1, 2)-shift and
use the BCFW relation to write

A 172737t =)0 A [ PR et A [P 27 3T (k= 1))
k=4 h=+

(58)

It can be shown that the n-gluon tree amplitude is vanishing if all the gluons have the same
helicity or all the gluons but one have the same helicity. Thus in the previous sum only two



terms can be non-vanishing and we deduce

A N 1 - AL A
Au[172737 . ont = A, 4 [17, Py, 47, ... ,n+]P—2A3[—P2§,2*, 37+
23
A . 1 - A A
+ A3[17, =P, n*]P—QAn,l[Pljl, 27,30 .. (n—1)"] (59)
1n

In the previous equation, we also defined Pj; = p; +p;. The first term must be evaluated at the

point zo3 defined by P%(z33) = 0. Similarly, the second one must be evaluated at 21, defined
by PZ (z1,) = 0. Consider the latter term: the three-point amplitude is

o Pyl
Agim, — Pt o] = Lm (60)
[1P,]n1]
At the point 2, we have 0 = an X P1 * Pn, SO we find
0= (In)[1n] = (1n)[in] (61)

where we used the fact that under a [1,2)-shift the angle bra (1| is left unchanged. Thus we
deduce [1n| = 0, which implies

|Pra)[Pron] = =Pualn] = —pi|n] = [1)[In] = 0 (62)

and finally [Pln n] = 0. Hence we conclude that the amplitude [60| vanishes and, by induction
hypothesis,

(1 Py3)? 1 [Py3 3]

A, 172737 . .nT] = — — . T (63)

(Pys4)(45) ... (n1) (23)[23] [Py2][23]

with the shifted momenta evaluated at the point z53. Using now the relations
23] =[23], (Pud)[Ps2 = (34)32],  (1Pn)[3Ps] = (12)[23] (64)

Eq. finally reduces to the Parke-Taylor formula.

3. Extension to the massive case

3.1. Massive spinor-helicity variables

The main difference between the massive and the massless case is the fact that the matrix
P,i, has rank 2. In particular, in the massive case p,; is invertible and we can’t write it as an
exterior product anymore. However, linearity allows us to write p,; as a sum of two rank-1
matrices, i.e.

Pai = —Ip"laprl; (65)
with / = 1,2. In this case, the Weyl equation reads

pilp!) =mlp'la,  p®p")s = mlp")? (66)

4Notice that | — p) o |p) and | — p] o< [p]. A common convention is | — p) = —|p) and | — p] = |p].

10



t

Eoplyte )t is a Dirac spinor. We can also arrange |p’], and (p;|;

or, in other words, u’ = (|p’]

in two 2 x 2 matrices, respectively A and \. Binet theorem gives then the constraint
det A det A = m? (67)

If we impose separately det A = det A = m, then the action of the little group of p# is now given
by

Mo Wi N = (WA, (68)
where, in general, W € SL(2,C). Again, if p is real-valued we must restrict the possible little
group transformations to W € SU(2). For this reason, we refer to I, J as SU(2) indices, while
we refer to a, b as Lorentz indices.

Unfortunately, in the massive case the little group action does not imply particular scaling
laws. However, if we represent a spin-S massive state as a symmetric rank-25 SU(2) tensor, then
a scattering amplitude will be a SU(2) tensor as well. To give an example, consider a 4-point
amplitude where the first particle is massive and has spin 57, the second one is massive and
has spin Ss, and finally the third and fourth particle are massless, with helicities respectively
hs and h4. Then the scattering amplitude will be an object A with 25 4+ 25, SU(2) indices
and 2 U(1) indices, which transforms under the little group as

A{Il,-..,lzsl}{Jl,...,JQSQ}{h3}{h4} H(Wl)ﬁ o (WI)Z? > (W2):2 o <W2)jzzz « (t3>72h3 %
1 2

% (t4)_2h4 % A{I{v-'vfésl}{J{v~~~vJ§SQ}{h3}{h4} (69)

Notice now that a SU(2) index I can be generated only by the presence of a square or an angle
massive variable, but Weyl equation allows us to interchange the two kind of variables. So we
can assume without loss of generality that a massive spin-S amplitude is of the form

A{Il,...,[gs} _ ’ph]al o ‘plgs]aQSM{al,...,azs} (70)

where M is a symmetric tensor with 25 Lorentz indices. In this way, we can look for an
appropriate base (ug,v,) of C?, with a being a Lorentz index, and write in that base the most
general form of M, which is now a homogeneous polynomial of degree 25 in the variables u,,
Vg-

Finally, before we characterize all possible three-point amplitudes, we introduce a compact
notation for massive variables: we suppress SU(2) indices and use boldface for massive spinors.
For example, later on we will derive the amplitude for the Compton scattering with spin-1/2
fermion
(12)[43] + (42)[1 3]

(s —m?)(u —m?)

where, for instance, the notation (12)[4 3] means (17 2)[47 3].

Acompton[127374] = (2|(p1 — p4)[3] (71)

3.2. Three-point amplitudes

In this section we write down the most general form for all possible three-point amplitudes.
The final form is different depending on the number of massive legs and on the values of the
masses, so we separate the different cases.

11



3.2.1. Three massless particles

We already studied this case using the little group scaling. We simply recall that if all coupling
constants have non-negative mass dimension, then

[12]Matha=ha[g 3]hatha=hi[] g]mtha=hz = py 4 hy + hy > 0

72
(12)hshi=hz(9 3)ha—ha=hs (] 3yha=hi=hs ) 4y 4 hy < 0 (72)

As[1M2m23m] = ¢ {

3.2.2. Two massless particles, one massive particle

In this case, if the first two particles are massless we pick the basis (|1]4,|2],). If the massive
particle has spin S and mass m, then little group scaling fixes the symmetric tensor M to be
equal to

M{al,...,azs}{hl}{hz} — mZS_]i_h2_1 ([1|S+h17h2 [2‘S+h27h1){a1...a25} <1 2>S*h1*h2 (73)

We introduced a proper power of m in order to have a dimenionless coupling g. The corre-
sponding amplitude is therefore

A[1h12h23] — 257}‘? - [1 3]S+h1—h2 [2 3]S+h2—h1 (74)
m?25—hi—=hz=

3.2.3. One massless particle, two massive particles (different masses)

In this case we take the first particle to be massless, while the second particle has mass ms and
spin Sy and the third one has mass mg # ms and spin S3. We pick the basis (|1]4, (p2]1))a)-
The little group scaling is no longer enough to completely determine the tensor M, which now
has the general form

M{al7~--va252}{b17---7b253}{hl} — Zgi ([1|52+S3+h1(<1’p2)52+5'3—h1){al""’a252}{blv""bQSz} (75)

Notice that we expect to have a different coupling for every possible term. The sum is extended
to all the possible ways of distributing the 25, + 2S5 indices between the two sets {a1, ..., ass,}
and {by,...,bayg, }, and therefore M contains in the most general case Sy + S3 —|Sy — S3| terms.
In other words, the amplitude is the sum of 25+ 1 terms, with S = min{.Ss, S3}. As an example,
if S5 =2, S3 =1 and the first particle is a photon with helicity +1, the amplitude is

As[1723] = g(12)2[12]*[13]* + ¢/(12)[12]3(13)[1 3] + ¢"[12]*(13)? (76)

Here we used the properties ps|2] o< |2) and (1|p2|3] o (1 3) and we absorbed the proportionality
constants into the couplings.

3.2.4. One massless particle, two massive particles (equal masses)

In this case the previous basis is no longer available, since we have

(p2[1] o< pyp2y (77)
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If my = mg = m, then

m? = pi = (p1 +p2)° = m* +2p{pay, (78)
and thus (1|ps|1] = 0, which means that the spinors |1] and py|1) are not linear independent.
We denote with x the proportionality constant between them, i.e.

(79)

where k is an auxiliary spinor, in the same way ¢ was an auxiliary spinor in the definition of
the polarization vectors €% (p, q). Notice that under the little group of p; we have the scaling
law x + t~2x. Finally, let’s write M. We can use |1], po|1) and the matrix ¢ as basis, so now
the general form of M is

{al...a252 }{b1~~~b253}

Sa+S; )
M{al...a252}{bl...b253}{h1} — 223 Zg 'I’hl [1|7, <]-|p2 €S1+52—i (80)
1’7‘7 m

1=|So—S3| J

where, again, the second sum runs over the possible ways of distributing the indices between
particle 2 and particle 3. In particular, we define minimal coupling of a massive particle to a
photon as the choice g; ; = 0 for 7 > 0. This means that the three-point amplitude for a photon
and two massive particle of mass m and spin S

(81)

3.2.5. Three massive particles

Finally, if all the external legs are massive we do not have an obvious choice of the basis for
M. Indeed, it is easier if we write M in terms of the tensor

Tab = (pl){ab(]%)b}b (82)

Now the form of M is given by

M{a1-.-azsl Hbi..basy Hercos5} Z ng (T51+52+S3—i5i){al‘““231}{bl'“b252}{cl'“c253} (83)
i
3.3. Compton scattering

Let’s see how the massive spinor-helicity formalism works with an example. Consider the
Compton scattering py™ — py~, where p is a particle of mass m and spin S. In the s channel

1 3~
iz (<1pf>[p141)5 (84

T34 8 — M2 m2

2t 4
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with p = p; + po. If we choose the auxiliary spinors to be kyo = p3 and k3y = po, then we have

212 [2|pilki)[ksalpal3)  ((3p1|2])
w3 (kknd ¢ (85)

Notice that the s channel is dominant in the limit s — 0, where ¢ — —u + m?. Moreover, the
matrix [p!)[pr| can be explicitly computed’| and is found to be equal to

—m?[3](2| + (p12))([3]p4)

') (pr] = e (57
We then get the amplitude with the correct residues in s and u
((3[pa]2])?, S=0
Al 127874) = o S (21 3)42) + 12(43). S=1/2  (85)
((13)[42] +[12](43))?, S=1

If S > 1 then spurious poles appear and the discussion must be modified, but we don’t examine
this case in detail.

4. A possible UV completion for gravity

In this section, we construct all possible scattering amplitudes for particles of spin 0, 1/2,
1 and 2, i.e. SM particles and gravitons. We restrict to the case of massless particles, or
equivalently to sufficiently high energy. Then, we study these amplitudes in order to construct
a UV completion of general relativity. More precisely, we will construct all possible four-point
scattering amplitudes mediated either by graviton or generic massive particles.

As done in [6], the following discussion is restricted to weak coupling and tree level, so the
new massive resonances should lay below the Planck mass.

4.1. Graviton mediated amplitudes

Starting from the graviton mediated amplitudes, using Eq. we see that in the s channel we
have the amplitude

1+h 3 I
) [1 p] 2h+2 [2 p]72h+2 i <3p>2h/+2 <4 p> —2h'+2 (89)
[12]? p? (34)
9—h 4+h’
5From the definition, we have to solve
p')(pr2) = —mx12]2],  |p"Npr3) = masal3] (86)
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where k = /87 /Mpy, p = p1 + p2 and where we supposed that the exchange graviton emerges
from the left vertex with positive helicity. Define now s;; = (p; + p;)*: the amplitude just
written is valid only in the limit s;5 — 0, which also means s;3 — —s14. Therefore, we can
always multiply the amplitude by a factor sj5s;, without affecting the on-shell amplitude. All
in all, we obtain the following expression for the amplitude
G st sl h %
AR = HQS—H(U 41(2 3))*"((3]pr2f4])*" " (90)
where p;; = (p; — p;)/2. Notice that » must be (half-)integer if 4’ is (half-)integer. Moreover,
scaling arguments require the constraint —1 + A’ < r < 1 — A/, which means

o if h = h' = 0, then r originates a contact term proportional to s13. In other words, the
scattering amplitude for distinguishable scalars is

GR 2 [ S13514
Ap'o. dist (512, 513, S14) = K ( . —aslz) (91)
12

On the other hand, the scattering amplitude for identical scalars is

GR GR GR GR
Ag'oia(512, 513, 514) = Ag 0. aist (512, 513, 514) + Ag o aise (513, 514, 512) + Ag 0, dist (5145 512, 513)

(92)
and thus is independent of a.
o Similarly, for spin-1/2 particles we get
S b
AT 1o, aist (512, 513, 514) = £[14](23) (8—13 + 5) (93)
12
and for identical fermions
s S
AT om0 = 21 4(23) (22422 1) (04)
S12 513

o In the other cases, we are forced to take r = 0.

4.2. Massive spin J mediated amplitudes

Consider now the amplitudes mediated by massive particles: the s channel in the case of a
mediator of mass M and spin J can be obtained by gluing together the three-point amplitudes
discussed in Eq. The amplitude takes finally the form

1+h 37M

_ o M ((plpelpl )T (20"
9T 510 — M2 M2 M2

9—h 4+
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The main difference between the graviton mediated amplitudes and the massive spin J mediated
amplitudes is the presence of the massive spinors |p), |p]. In the latter case, we need to sum
over all possible contractions of SU(2) indices. After the sum, the amplitude is

Al G (BABDNT (Bl M (T2 (TN paananan
L Y SV TEANSVE M? sw— 2\ g J\ew) T
(96)

where Pﬁ;’b) are Jacobi polynomials and # = 1+ 2s;3/M?. Notice that for scalars the amplitude
Aj ¢ is proportional to the Legendre polynomial Pj(x).

4.3. Partial wave analysis and UV completion of gravity

The presence of Jacobi and Legendre polynomials suggests then a partial wave discussion: for
the process 172" — 3"4="" we also have

0 0

r=1-—-"(1—cosf), (31)=+/ssin, [14]=(32) =+/scos~ (97)
M? 2 2

where 6 is the scattering angle in the CM reference frame. To be more precise, we can write a

decomposition of the amplitude

Apngonggw =160 > (2T + D)ay(s)dy, o (6) (98)

J>max 2h,2h’

where d;, are the Wigner d-functions. The coefficients of the previous decomposition can be
evaluated numerically: for example, the decomposition of the graviton mediated amplitude for
distinguishable scalars is simply

_ 5(1—6a) s

agp(s) = VR as(s) = TR0 ax(s) =0 (99)
Pl Pl

if K # 0,2. The growth of as with energy can be mitigated by introducing a spin J massive
resonance, with J > 2. However, as discussed in [6], if J = 2 the divergence is cured only if
there are at most two different species of scalars. On the other hand, if J > 2 we are forced
to introduce an infinite tower of resonances of increasing higher spin. One way to solve the
problem is proposed in [6], where under certain hypothesis of regularity (which ultimately come
from unitarity, locality and causality) the proposed scattering amplitude for distinct scalars isﬂ

(100)

) [12, (Mt + M2s — M*(nM* + Mg))
S

Ao,o,dist o K2 (t_u —as o g = ~
Hk:1<5 — kM?) H£:1<t — (M? — Mg)

Here M2, M? and M2 are parameters, which for the moment are unconstrained. The main
feature of this modified amplitude is the presence of two towers of infinite resonances in s and

t, with masses K ) X
M? =nM?, M? = M§ +nM? (101)

6Since we are focusing on the process 12 — 34, we use usual Mandelstam variables instead of s;j variables.
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A similar discussion can be made for the other amplitudes: in each case, the amplitude given
by Eq. is modified by a proper multiplicative factor, which depends generically on the
symmetry properties that we require from the corresponding amplitude. The infinite products
in Eq. can be related to the Gamma function via Euler’s definition of I'. Therefore, if we
define

. s .t M? M2
S=ap tam T P Tap (102)
(1 -3 —nt U
e,%o (S, t) — ( 8) ( + 0 n ) ’ A@—Zl,’yo—O(S’t) _ AVZ(S7t) (103)

(1 +nv —nt — 3)

L(14290)T(1 4+~ — @)T(1 + 7 — (1 - 3)

g ) w Sat>u :A’YOZO S,t,u
L1+ @+ 5)0(1+1+ 7)1+ 5+ 27) vs( ) vs ( )

(104)
then the UV-completed amplitudes are summarized in Tab. [l The presence of the Gamma

%08(87 t: u) =

AV H Scalar ‘ Fermion ‘ Vector ‘ Graviton
Scalar || AR Ayg [ ASRAY | ASRAT, | AR Ay
Fermion AR Ay | ASRATY | AR Ay
Vector AGRAVZ AGRAVS
Graviton ACR Ayg

Table 1: UV completion of graviton mediated amplitudes.

functions allows the amplitudes to be in agreement with causality, both in the Regge limitﬂ
and in the hard scattering limi‘ﬂ A numerical partial wave analysis can be done on these new
amplitudes. The main results are

o there are infinite resonances, with both integer and half-integer spin,

 unitarity imposes positivity constraints on the coefficients a;(s), which imply

2 22 3
§§b§€7 77:17 ’70<_ (105)

0<a<?2
_a_ ) 2

On the other hand, if we consider the amplitudes computed using the Feynman rules obtained
from general relativity minimally coupled to matter, we find

a=0, b== (106)

So either we have to modify Einstein-Hilbert action or we need to modify the UV completion
here proposed. A possible change in Einstein-Hilbert action is presented at the end of [6] and
the deviation is possible if space-time has torsion in addition to curvature.

Ti.e. s — 00, § — 0, with t = —ssin? §/2 fixed. In this case the amplitude should be o(s?).
8i.e. 5§ = 00, t — 00, with @ fixed. In this case the amplitude decays exponentially in s.
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5. Conclusion

In this report, we introduced spinor-helicity formalism, both in the massless and in the massive
case. We presented all possible three-point amplitudes and then we showed how they can
be used to construct a UV completion of tree level GR scattering amplitudes for massless
external particles. In future, we hope to extend the discussion to external massive particles.
An important question about the uniqueness of the bottom-up construction of UV completed
scattering amplitudes is still unanswered, but it’s beyond the purpose of this report.
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A. Explicit example of spinor-helicity massless variables

Let us consider the most general lightlike, real-valued 4-momentum

p"* = E(1,sin 0 cos ¢, sin 0 sin ¢, cos 0) (107)
Then Eq. [1] reads
s2 —Sp/2Co 2644¢
Dyy = _QE( . or 128/ ) (108)
6/2Cg/2€ Co/2
. 2 —i¢p
pit = —2F ( oy ) (109)
S9/2Cg/2€ 592

where we used the shorthands sin o = s, and cosa = ¢,. If we write

p)* = ( g > (110)

then the Weyl equation p ;| p)i’ = 0 reads

As?, — B —i¢
e B ) )
—Asgach e’ + Bcg/2

We can pick A and B such that

0t =veE (2, ) (112)

59/26

In exactly the same way, we can solve the other Weyl equations and write

Sg/2€ Co/2 Co/2
(113)
From Eq. and it now clear that |p], = ({pls)* and |p)% = ([p|*)*. Moreover
— —i¢
C 59/2€ i
o =2F —S9/2€"? ¢
[pla(pl; ( o) ) ( —=s0p26™ cop2 )
—DPab (114)

and a similar calculation shows that |p)%[p|® = —p?.
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