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1. Introduction
The aim of this report is to give an introduction to the spinor-helicity formalism and its applica-
tions. This powerful tool allow to compute on-shell scattering amplitudes in a straightforward
way, usually without getting involved in long and complicate calculations with Feynman dia-
grams. Its importance is then double: on one hand, spinor-helicity formalism can be efficiently
used to compute cross section for various processes (and indeed some techniques are already
implemented in numerical codes for particle physics experiments). On the other hand, it can
give us some theoretical insights and novel ideas, as we will see later on in the report.

This work is divided as follows: in Section 2 we introduce the spinor-helicity formalism for
massless particles, following the discussion in [1]. This section is the very heart of the report,
as it contains many definitions, properties and also examples and explicit calculations: we
start from the Weyl equation and construct the spinor-helicity variables for massless fermions.
The first part of the section is pretty technical, but then we show how one can use the newly
introduced variables in some calculation in a model with a massless spin 1/2 fermion and a
massless real scalar interacting via a Yukawa coupling. After that, we introduce a proper
definition of polarization vector for spin-1 massless particles and discuss little group scaling.
Next, we develop, under certain assumptions, some recursion relations [2, 3] for the computation
of many-particle scattering amplitudes at tree level. We use them to prove the Parke-Taylor
formula [4] for maximally helicity violating (MHV) scattering amplitudes in QCD.1 In Section
3 we extend some of these ideas to the case of massive particles, as done in [5]: in particular,
we compute all three-particle scattering amplitudes and discuss some examples, among which
Compton scattering between photons and massive scalars, fermions and vectors.

Finally, in Section 4 we use the machinery introduced so far to discuss a possible UV com-
pletion of gravity, following the analysis made in [6]. In detail, we start studying graviton
mediated four-point tree level scattering amplitudes, in the case the external legs are SM mass-
less particles and/or gravitons. We then summarize the discussion made in [6] about the high
energy behaviour of these amplitudes, where one finds out that, under certain hypothesis of
regularity, two infinite towers of increasing masses are required to satisfy perturbative unitarity.
Those resonances modify graviton mediated scattering amplitudes by dressing them either with
Veneziano or Virasoro-Shapiro amplitudes.

In future work, we hope to extend the analysis carried out in [6] to massive external states.

2. The spinor-helicity formalism: the massless case
Throughout the report, we use the metric ηµν = diag(−1,+1,+1,+1).

2.1. Spinor-helicity variables
Given a 4-vector pµ, we associate two 2× 2 matrices to it

paḃ = pµ(σ
µ)aḃ , pȧb = pµ(σ̄

µ)ȧb (1)

1i.e. scattering amplitudes for n gluons where 2 gluons have the same helicity and the other n− 2 gluons have
the opposite helicity.
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where (σµ)aḃ = (1, σi)aḃ and (σ̄µ)ȧb = (1,−σi)ȧb, σi being the usual Pauli matrices. Explicitly

paḃ =

(
−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
(2)

The map pµ 7→ paḃ is clearly linear and has the nice property det(paḃ) = −pµpµ. This fact
implies that if pµ is the 4-momentum of a massless particle, then the associate matrix paḃ has
rank 1. We can thus represent paḃ as an outer product of two 2-component spinors, which we
write as a square ket |p]a and an angle bra 〈p|ḃ, i.e.

paḃ = −|p]a〈p|ḃ (3)

We can also raise the indices and write

pȧb = −|p〉ȧ[p|b (4)

where [p|a = εab|p]b and |p〉ȧ = εȧḃ〈p|ḃ. Here εab is an antisymmetric 2 × 2 matrix such that
ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1.

At this point, it is very important to realize that we can choose the spinors |p]a and 〈p|ḃ
as solutions of the massless Dirac equation. In detail, we can focus on the wavefunctions of
outgoing (anti-)fermions, which in the massless case satisfy the Weyl equation

ū±(p)/p = 0 , /pv±(p) = 0 (5)

The subscript ± refers, in the massless case, to the helicity of the particle. We look for solutions
of the form

ū+(p) =
(
[p|a 0

)
, ū−(p) =

(
0 〈p|ȧ

)
, (6)

v+(p) =

(
|p]a
0

)
, v−(p) =

(
0

|p〉ȧ
)

(7)

With this ansatz for the solutions, the Weyl equation can be written as

[p|apaḃ = 0 , 〈p|ȧpȧb = 0 (8)

pȧb|p]b = 0 , paḃ|p〉
ḃ = 0 (9)

The completeness relation −/p = u+ū++u−ū− is then equivalent to Eq. 3 and 4, via the crossing
symmetry u± = v∓. An explicit example of this construction can be found in Appendix A.

2.2. Basic properties of angle and square bras and kets
In applications, there are some useful and recurrent tricks with spinor-helicity variables. First,
notice that in the previous section we can allow pµ to have complex values. This possibility is
clearly unphysical, as particles’ 4-momenta must be real-valued. However, in some derivation
a complex-valued 4-momentum is also important. We stress that

• if pµ is complex-valued, then the square and angle bra and kets are independent of each
other,
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• on the other hand, if pµ is real valued, then paḃ and pȧb are Hermitian and we have the
constraints

〈p|ȧ = (|p]a)∗ , [p|a = (|p〉ȧ)∗ (10)
which simply mean that we can restrict our attention to v±(p).

With this clarification, we can now explain the algebraic properties of the spinor-helicity vari-
ables. Given two lightlike 4-momenta pµ and qµ, we define the spinor products

〈p q〉 = 〈p|ȧ|q〉ȧ , [p q] = [p|a|q]a (11)
These products are antisymmetric under the exchange p↔ q, and in particular 〈p p〉 = [p p] = 0.
Moreover, also the “mixed” products 〈p q] and [p q〉 vanish. If pµ and qµ are real-valued, then
we also have

[p q] = (〈q p〉)∗ (12)
A very useful identity is the following

〈p q〉[p q] = 2pµqµ (13)
which, in the massless case, reduces to

〈p q〉[p q] = (p+ q)2 (14)
We also define the product

[p|γµ|q〉 = [p|a(σµ)aḃ|q〉
ḃ (15)

and a similar definition holds for 〈p|γµ|q]. We notice that [p|γµ|q] = 〈p|γµ|q〉 = 0: in general, a
square ket can be connected to another square bra only using an even number of γ-matrices, and
it can be connected to an angle bra only using an odd number of γ-matrices. Other properties
of the product [p|γµ|q〉 are

• Symmetry of square and angle variables
[p|γµ|q〉 = 〈p|γµ|q] (16)

• Conjugation property for real 4-momenta
[p|γµ|q〉 = ([q|γµ|p〉)∗ (17)

• Fierz identity: given four 4-momenta p1, p2, p3 and p4, and using the shorthand |pi] = |i],
we have

〈1|γµ|2]〈3|γµ|4] = 2〈1 3〉[2 4] (18)
and in particular

〈k|γµ|k] = 2kµ (19)

• for any 4-momentum P µ we define
[p|P |q〉 = Pµ[p|γµ|q〉 (20)

If P µ is lightlike, then
[p|P |q〉 = −[pP ]〈P q〉 (21)

Finally, for every four 4-momenta pi, i = 1, . . . , 4, the Schouten identity holds
〈n i〉〈j k〉+ 〈n j〉〈k i〉+ 〈n k〉〈i j〉 = 0 (22)

and a similar expression holds for square products.
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2.3. First examples
Let us pause for a while and see how we can apply all the new objects we introduced so far.
As a simple example, we consider a theory with Lagrangian

L = iψ̄ /∂ψ +
1

2
∂µφ ∂

µφ+ gφψ̄ψ (23)

where ψ is a Dirac field and φ a real scalar field. Consider the s-channel for the four-fermion
tree amplitude. The usual Feynman rules give then

4

3

1

2

= (ig)2ūh3(p3)vh4(p4)
−i

(p1 + p2)2
ūh2(p2)vh1(p1) (24)

where hi is the helicity of the i-th particle. Notice that we assumed that all the particles
are outcoming. We can now convert the products ūh3(p3)vh4(p4) and ūh2(p2)vh1(p1) in terms
of spinor-helicity variables, using Eq. 6 and 7: clearly, the amplitude is proportional to some
product of spinor variables of particle 3 and 4, so the amplitude is non-vanishing only if h3 = h4.
In the same way we deduce that the final result is non-zero only if h1 = h2. For example, if we
consider the case h1 = h2 = −1/2 and h3 = h4 = +1/2, we find

A4[1
−2−3+4+] = g2[4 3]

1

(p1 + p2)2
〈2 1〉 (25)

We can simplify this expression using Eq. 14 and we find

A4[1
−2−3+4+] = g2

[3 4]

[1 2]
(26)

which is a very nice and compact result! Notice also that the form of the amplitude is not
unique, i.e. we can also write the scalar propagator as 1/(p3 + p4)

2. In this case we find

A4[1
−2−3+4+] = g2

〈1 2〉
〈3 4〉

(27)

As second example, consider the two-fermion two-scalar tree amplitude. Using the Feynman
rules we obtain

iA4[φf̄
h2φfh4 ] =

2

41

3

+

2

43

1

=

= (ig)2ūh4(p4)
−i( /p1 + /p2)

(p1 + p2)2
vh2(p2) + (1 ↔ 3) (28)
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In this case we have a product of the form ūhγ
µvh′ , which is non-vanishing only if the helicities

of the two fermions are opposite. For instance, if h2 = −h4 = +1/2, we have

A4[φf̄
+φf−] = g2

〈4|p1 + p2|2]
〈1 2〉[1 2]

+ (1 ↔ 3) (29)

Using Weyl equation (which reads p2|2] = 0) and Eq. 21 we finally find

A4[φf̄
+φf−] = g2

(
〈1 4〉
〈1 2〉

+
〈3 4〉
〈3 2〉

)
(30)

These two examples are nice, as they show how we can express some simple scattering
amplitudes in a compact form, but they don’t display all the power of spinor-helicity formalism:
after all, we have simply applied Feynman rules and then converted the result in the new
formalism. Let’s try now to compute the spin sum

〈|A4[φf̄φf ]|2〉 =
∑
h2,h4

|A4[φf̄
h2φfh4 ]|2 (31)

The spin sum consists of only two terms, namely those where h2 = −h4. Let’s start with
h2 = −h4 = +1/2: since the particles have real 4-momenta, we can use the conjugation
property Eq. 12 and write

|A4[φf̄
+φf−]|2 = g4

(
〈1 4〉
〈1 2〉

+
〈3 4〉
〈3 2〉

)(
[1 4]

[1 2]
+

[3 4]

[3 2]

)
(32)

Notice now that we have 〈3 4〉[1 4] = −〈3 2〉[1 2]. In terms of the usual Mandelstam variables,
we simply find

|A4[φf̄
+φf−]|2 = g4

(s− u)2

su
(33)

The other term in the spin sum, i.e. the one with h2 = −h4 = −1/2, yields the same result,
and finally

〈|A4[φf̄φf ]|2〉 = 2g4
(s− u)2

su
(34)

2.4. Polarization vectors
A common choice of polarization vectors for spin-1 massless particles with momentum p =
E(sin θ cosφ, sin θ sinφ, cos θ) is

ε̃µ±(p) = ±e
±iφ

√
2
(0, cos θ cosφ± i sinφ, cos θ sinφ∓ i cosφ,− sin θ) (35)

They have the following properties

ε̃µ±(p)ε̃±µ(p) = 0 , ε̃µ±(p)pµ = 0 , ε̃µ±(p)ε̃
∗
±µ(p) = 1 (36)

In spinor-helicity formalism, polarization vectors are defined as

εµ+(p, q) = − 1√
2

〈q|γµ|p]
〈q p〉

, εµ−(p, q) = − 1√
2

〈p|γµ|q]
[q p]

(37)
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Here qµ is an additional 4-vector, called reference momentum, and it must be lightlike and not
parallel to pµ. Its presence is a consequence of gauge invariance, so we expect that all scattering
amplitudes are independent of q. Notice that Eq. 37 is a suitable definition of polarization
vectors, as one can show that

εµ±(p, q) = ε̃µ±(p) + λ±(p, q)p
µ (38)

for a proper choice of λ±(p, q). In particular, the polarization vectors in Eq. 37 satisfy Eq. 36
as well.

2.5. Little group scaling
Recall that the fundamental quantity we introduced is the matrix paḃ, which is clearly invariant
under the transformation {

|p〉 7→ t|p〉
|p] 7→ t−1|p]

(39)

for every t ∈ C\{0}. If the momentum p is real-valued, we restrict to t ∈ U(1) because of the
condition |p〉∗ = [p|. This scaling is known as little group scaling and it represents the action
of the little group of pµ 2 on the spinors |p〉, |p]. Let’s see now how the little group scaling
acts on a scattering amplitude: using Feynman rules, we can trace back the amplitude to some
diagrams made up of vertices, internal propagators and external legs. Vertices and internal
propagators are invariant under the scaling, but the external legs are not. In particular

• a scalar external leg is invariant as well,

• a spin-1/2 external leg consists either of a square or an angle spinor, and thus scales as
t−2h, h being the helicity of the associated fermion,

• a spin-1 external leg is a polarization vector of the form of Eq. 37. Again, we find the
scaling law t−2h.

Hence we conclude that a generic n-point amplitude scales as follow

An[t|1〉, t−1|1], h1; |2〉, |2], h2; . . . ; |n〉, |n], hn] = t−2h1An[|1〉, |1], h1; |2〉, |2], h2; . . . ; |n〉, |n], hn]
(40)

2.6. Further examples
Let’s now apply little group scaling to the calculation of some amplitudes. First, we derive an
important property of three-particle kinematics: if we have three lightlike 4-momenta p1, p2
and p3 which satisfy p1 + p2 + p3 = 0, then either 〈i j〉 = 0 or [i j] = 0 for all i, j. The proof
is simple: from 4-momentum conservation we have 〈1 2〉[1 2] = p23 = 0. Assume now 〈1 2〉 6= 0.
Then [1 2] = 0 and moreover

〈1 2〉[2 3] = 〈1|p1 + p3|3] = 0 (41)

2Which indeed for lightlike pµ in four dimensions is SO(2) ∼= U(1).
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and so [2 3] = 0. In the same way we prove [1 3] = 0, while if we assume [1 2] 6= 0 then 〈1 2〉 =
〈2 3〉 = 〈1 3〉 = 0. Notice also that if p1, p2, p3 are real-valued then we have 〈i j〉 = [i j] = 0 for
all i, j. In other words, a three-point massless amplitude is always vanishing for real momenta.
This is a conclusion that can be deduced in a simpler way using basic relativistic kinematics,
for example considering the process 1 + 2 → 3 in the CM reference frame. On the other
hand, a non-vanishing three-point amplitude can depend either on square brackets or angle
brackets, but not on both, and makes sense only for complex momenta. Hence it is reasonable
to conjecture the following form for a generic three-point amplitude

A3[1
h12h23h3 ] = α〈1 2〉λ12〈1 3〉λ13〈2 3〉λ23 (42)

Imposing the proper little group scaling for all the spinors we get

A3[1
h12h23h3 ] = α〈1 2〉h3−h1−h2〈1 3〉h2−h1−h3〈2 3〉h1−h2−h3 (43)

Of course, we can also reasonably conjecture that the amplitude depends on square brackets,
in this case we find

A3[1
h12h23h3 ] = α[1 2]h1+h2−h3 [1 3]h1+h3−h2 [2 3]h2+h3−h1 (44)

The correct amplitude can be found using dimensional analysis. For example [6], if the third
particle is a graviton, then α ∝ M−1

Pl . In this case the only non-vanishing amplitude occurs
when h1 = −h2 = h and we conclude

A3[1
h2−h3h3 ] = α


[1 3]2h+2[2 3]−2h+2

[1 2]2
, h3 = 2

〈1 3〉−2h+2〈2 3〉2h+2

〈1 2〉2
, h3 = −2

(45)

As a second example, consider a Yang-Mills theory with gauge group SU(N). Little group
scaling and dimensional analysis give the following form for the three-point amplitude

A3[1
−2−3+] =

〈1 2〉4

〈1 2〉〈2 3〉〈3 1〉
, A3[1

+2+3−] =
[1 2]4

[1 2][2 3][3 1]
(46)

2.7. Recursion relations
In this section we develop some powerful recursion relations for the computation of generic
n-point amplitudes. The main result is the generalization of Eq. 46 to n gluons

An[1
−2−3+ . . . n+] =

〈1 2〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉
(47)

This amplitude is known as Parke-Taylor formula [4].
Consider n lightlike 4-momenta {pµi }

n
i=1 which satisfy 4-momentum conservation

∑n
i=1 p

µ
i = 0

and suppose we want to calculate the n-point tree amplitude for n particle with those 4-
momenta, i.e. An[p

h1
1 , . . . , p

hn
n ]. Moreover, consider a set of n 4-momenta {rµi }

n
i=1 with the

following properties:
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1.
∑n

i=1 r
µ
i = 0,

2. rµi rj µ = 0 for all i, j,

3. rµi pi µ = 0 for all i (no sum over i).

We now introduce a set of shifted 4-momenta, defined by

p̂µi (z) = pµi + zrµi (48)

where z ∈ C. Notice that

• the shifted momenta are lightlike,

• the shifted momenta satisfy 4-momentum conservation.

We can then study the shifted amplitude

Ân(z) = An[p̂1(z)
h1 , . . . , p̂n(z)

hn ] (49)

and this amplitude is a proper, on-shell amplitude, although evaluated for complex momenta.
As we are focusing on tree level, the amplitude is a rational function of |p̂i(z)〉 and |p̂i(z)] and
therefore is a meromorphic function of z. Now consider a pole of Ân: this pole can only be
generated by an internal propagator in the associated Feynman diagram. To be more precise,
for a given subset I ⊆ {1, . . . , n} 3 define

P µ
I =

∑
i∈I

pµi , P̂ µ
I (z) =

∑
i∈I

p̂i
µ(z) , Rµ

I =
∑
i∈I

rµi (50)

An internal propagator is necessarily of the form 1/P̂ 2
I (z) for a proper I. Now notice that P̂ 2

I (z)
is linear in z

P̂ 2
I (z) = P 2

I + 2zRµ
IPI µ (51)

In particular, for a given I we obtain a pole located at

zI = − P 2
I

2Rµ
IPI µ

(52)

and the residue of the propagator is −zI/P 2
I . If the pole associated to I is present in Ân,

then necessarily the diagrams associated to An factorise in two subdiagrams, connected by
the propagator 1/P̂ 2

I (z). Let’s denote with ÂI
L(z) and ÂI

R(z) the corresponding subamplitudes.
These amplitudes involve a lower number of particles and cannot contain themselves the internal
propagator 1/P̂ 2

I (z), thus they are regular around the pole in zI . We then conclude that

• the poles of Ân are associated to some subsets of {1, . . . , n}, and every subset of {1, . . . , n}
is associated at most to one pole of Ân,

• every pole is simple,

3We restrict to the case 2 ≤ |I| ≤ n− 2 in order to avoid trivial cases.

8



• the residue at a pole located in zI is

Res[Ân, zI ] = − zI
P 2
I

ÂI
L(zI)ÂI

R(zI) (53)

Finally, consider the function fn(z) = Ân(z)/z. Using the residue theorem we find

An = Ân(0) = Bn +
∑

ÂI
L(zI)

1

P 2
I

ÂI
R(zI) (54)

where we denoted with Bn the residue at infinity of the function fn. The sum is extended to
all the shifted, internal propagators. This relation is precisely a recursion relation, because ÂI

L

and ÂI
R are k-point tree amplitudes with k < n. Therefore, if we manage to compute Bn in an

independent way we can calculate the desired n-point tree amplitude. This task is often very
difficult, but there are several examples in which Bn = 0, as we will see soon.

2.7.1. BCFW relation

Now we set a particular choice of the auxiliary vectors ri, known as [i, j〉-shift. Consider the
following shift in the spinors

|̂i] = |i] + z|j] , |̂i〉 = |i〉 (55)
|ĵ〉 = |j〉 − z|i〉 , |ĵ] = |j] (56)

while the other spinors are left unchanged. This shift corresponds to the choice of the auxiliary
vectors

rµi = −rµj =
1

2
〈i|γµ|j] , rµk = 0 (57)

for k 6= i, j. In this case it can be shown [3] that in a Yang-Mills theory Ân(z) has the following
asymptotic behaviour:

• if (hi, hj) ∈ {(−,−), (−,+), (+,−)}, then Ân(z) = O(z−1) when z → ∞,

• if (hi, hj) = (+,−), then Ân(z) = O(z3) when z → ∞.

In the first three cases we have then Bn = 0 and the [i, j〉-shift is a suitable choice for a proper
recursion relation. This kind of recursion relation is known as BCFW relation [2]. In particular,
let’s now prove the Parke-Taylor formula. We proceed by induction: the formula is true for the
case n = 3, as already shown by little group scaling arguments. We now use a [1, 2〉-shift and
use the BCFW relation to write

An[1
−2−3+ . . . n+] =

n∑
k=4

∑
h=±

Ân−k+3[1̂
−, P̂ h

I , k
+, . . . , n+]

1

P 2
I

Âk−1[−P̂−h
I , 2̂−, 3+, . . . , (k − 1)+]

(58)
It can be shown that the n-gluon tree amplitude is vanishing if all the gluons have the same
helicity or all the gluons but one have the same helicity. Thus in the previous sum only two
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terms can be non-vanishing and we deduce

An[1
−2−3+ . . . n+] = Ân−1[1̂

−, P̂−
23, 4

+, . . . , n+]
1

P 2
23

Â3[−P̂+
23, 2̂

−, 3+]+

+ Â3[1̂
−,−P̂+

1n, n
+]

1

P 2
1n

Ân−1[P̂
−
1n, 2̂

−, 3+, . . . , (n− 1)+] (59)

In the previous equation, we also defined Pij = pi+pj. The first term must be evaluated at the
point z23 defined by P̂ 2

23(z23) = 0. Similarly, the second one must be evaluated at z1n, defined
by P̂ 2

1n(z1n) = 0. Consider the latter term: the three-point amplitude is 4

Â3[1̂
−,−P̂+

1n, n
+] =

[P̂1n n]
3

[1̂ P̂1n][n 1̂]
(60)

At the point z1n we have 0 = P̂ 2
1n ∝ p̂1 · pn, so we find

0 = 〈1̂n〉[1̂n] = 〈1n〉[1̂n] (61)

where we used the fact that under a [1, 2〉-shift the angle bra 〈1| is left unchanged. Thus we
deduce [1̂n] = 0, which implies

|P̂1n〉[P̂1n n] = −P̂1n|n] = −p̂1|n] = |1̂〉[1̂n] = 0 (62)

and finally [P̂1n n] = 0. Hence we conclude that the amplitude 60 vanishes and, by induction
hypothesis,

An[1
−2−3+ . . . n+] =

〈1̂ P̂23〉3

〈P̂23 4〉〈4 5〉 . . . 〈n 1̂〉
· 1

〈2 3〉[2 3]
· [P̂23 3]

3

[P̂23 2̂][2̂ 3]
(63)

with the shifted momenta evaluated at the point z23. Using now the relations

[2̂ 3] = [2 3] , 〈P̂23 4〉[P̂23 2] = 〈3 4〉[3 2] , 〈1̂ P̂23〉[3 P̂23] = 〈1 2〉[2 3] (64)

Eq. 63 finally reduces to the Parke-Taylor formula.

3. Extension to the massive case
3.1. Massive spinor-helicity variables
The main difference between the massive and the massless case is the fact that the matrix
paḃ has rank 2. In particular, in the massive case paḃ is invertible and we can’t write it as an
exterior product anymore. However, linearity allows us to write paḃ as a sum of two rank-1
matrices, i.e.

paḃ = −|pI ]a〈pI |ḃ (65)
with I = 1, 2. In this case, the Weyl equation reads

paḃ|p
I〉ḃ = m|pI ]a , pȧb|pI ]b = m|pI〉ȧ (66)

4Notice that | − p〉 ∝ |p〉 and | − p] ∝ |p]. A common convention is | − p〉 = −|p〉 and | − p] = |p].

10



or, in other words, uI =
(
|pI ]ta |pI〉t ȧ

)t is a Dirac spinor. We can also arrange |pI ]a and 〈pI |ḃ
in two 2× 2 matrices, respectively λ and λ̃. Binet theorem gives then the constraint

detλ det λ̃ = m2 (67)

If we impose separately detλ = det λ̃ = m, then the action of the little group of pµ is now given
by

λI 7→ W I
Jλ

J , λ̃I 7→ (W−1)JI λ̃J (68)

where, in general, W ∈ SL(2,C). Again, if pµ is real-valued we must restrict the possible little
group transformations to W ∈ SU(2). For this reason, we refer to I, J as SU(2) indices, while
we refer to a, ḃ as Lorentz indices.

Unfortunately, in the massive case the little group action does not imply particular scaling
laws. However, if we represent a spin-S massive state as a symmetric rank-2S SU(2) tensor, then
a scattering amplitude will be a SU(2) tensor as well. To give an example, consider a 4-point
amplitude where the first particle is massive and has spin S1, the second one is massive and
has spin S2, and finally the third and fourth particle are massless, with helicities respectively
h3 and h4. Then the scattering amplitude will be an object A with 2S1 + 2S2 SU(2) indices
and 2 U(1) indices, which transforms under the little group as

A{I1,...,I2S1
}{J1,...,J2S2

}{h3}{h4} 7→(W1)
I1
I′1
. . . (W1)

I2S1

I′2S1

× (W2)
J1
J ′
1
. . . (W2)

J2S2

J ′
2S2

× (t3)
−2h3×

× (t4)
−2h4 ×A{I′1,...,I′2S1

}{J ′
1,...,J

′
2S2

}{h3}{h4} (69)

Notice now that a SU(2) index I can be generated only by the presence of a square or an angle
massive variable, but Weyl equation allows us to interchange the two kind of variables. So we
can assume without loss of generality that a massive spin-S amplitude is of the form

A{I1,...,I2S} = |pI1 ]a1 . . . |pI2S ]a2SM{a1,...,a2S} (70)

where M is a symmetric tensor with 2S Lorentz indices. In this way, we can look for an
appropriate base (ua, va) of C2, with a being a Lorentz index, and write in that base the most
general form of M, which is now a homogeneous polynomial of degree 2S in the variables ua,
va.

Finally, before we characterize all possible three-point amplitudes, we introduce a compact
notation for massive variables: we suppress SU(2) indices and use boldface for massive spinors.
For example, later on we will derive the amplitude for the Compton scattering with spin-1/2
fermion

ACompton[12
−3+4] = 〈2|(p1 − p4)|3]

〈1 2〉[4 3] + 〈4 2〉[1 3]
(s−m2)(u−m2)

(71)

where, for instance, the notation 〈1 2〉[4 3] means 〈1I 2〉[4J 3].

3.2. Three-point amplitudes
In this section we write down the most general form for all possible three-point amplitudes.
The final form is different depending on the number of massive legs and on the values of the
masses, so we separate the different cases.

11



3.2.1. Three massless particles

We already studied this case using the little group scaling. We simply recall that if all coupling
constants have non-negative mass dimension, then

A3[1
h12h23h3 ] = g

{
[1 2]h1+h2−h3 [2 3]h2+h3−h1 [1 3]h1+h3−h2 , h1 + h2 + h3 > 0

〈1 2〉h3h1−h2〈2 3〉h1−h2−h3〈1 3〉h2−h1−h3 , h1 + h2 + h3 < 0
(72)

3.2.2. Two massless particles, one massive particle

In this case, if the first two particles are massless we pick the basis (|1]a, |2]a). If the massive
particle has spin S and mass m, then little group scaling fixes the symmetric tensor M to be
equal to

M{a1,...,a2S}{h1}{h2} =
g

m2S−h1−h2−1

(
[1|S+h1−h2 [2|S+h2−h1

){a1...a2S} 〈1 2〉S−h1−h2 (73)

We introduced a proper power of m in order to have a dimenionless coupling g. The corre-
sponding amplitude is therefore

A[1h12h23] =
g

m2S−h1−h2−1
[13]S+h1−h2 [23]S+h2−h1 (74)

3.2.3. One massless particle, two massive particles (different masses)

In this case we take the first particle to be massless, while the second particle has mass m2 and
spin S2 and the third one has mass m3 6= m2 and spin S3. We pick the basis (|1]a, (p2|1〉)a).
The little group scaling is no longer enough to completely determine the tensor M, which now
has the general form

M{a1,...,a2S2
}{b1,...,b2S3

}{h1} =
∑
i

gi
(
[1|S2+S3+h1(〈1|p2)S2+S3−h1

){a1,...,a2S2
}{b1,...,b2S2

} (75)

Notice that we expect to have a different coupling for every possible term. The sum is extended
to all the possible ways of distributing the 2S2+2S3 indices between the two sets {a1, . . . , a2S2}
and {b1, . . . , b2S2}, and therefore M contains in the most general case S2+S3−|S2−S3| terms.
In other words, the amplitude is the sum of 2S+1 terms, with S = min{S2, S3}. As an example,
if S2 = 2, S3 = 1 and the first particle is a photon with helicity +1, the amplitude is

A3[1
+23] = g〈12〉2[12]2[13]2 + g′〈12〉[12]3〈13〉[13] + g′′[12]4〈13〉2 (76)

Here we used the properties p2|2] ∝ |2〉 and 〈1|p2|3] ∝ 〈13〉 and we absorbed the proportionality
constants into the couplings.

3.2.4. One massless particle, two massive particles (equal masses)

In this case the previous basis is no longer available, since we have

〈1|p2|1] ∝ pµ1p2µ (77)

12



If m2 = m3 = m, then
m2 = p23 = (p1 + p2)

2 = m2 + 2pµ1p2µ (78)

and thus 〈1|p2|1] = 0, which means that the spinors |1] and p2|1〉 are not linear independent.
We denote with x the proportionality constant between them, i.e.

x =
〈k|p2|1]
m〈k 1〉

(79)

where k is an auxiliary spinor, in the same way q was an auxiliary spinor in the definition of
the polarization vectors εµ±(p, q). Notice that under the little group of p1 we have the scaling
law x 7→ t−2x. Finally, let’s write M. We can use |1], p2|1〉 and the matrix ε as basis, so now
the general form of M is

M{a1...a2S2
}{b1...b2S3

}{h1} =

S2+S3∑
i=|S2−S3|

∑
j

gi,jx
h1

(
[1|i
(
〈1|p2
m

)i

εS1+S2−i

){a1...a2S2
}{b1...b2S3

}

(80)

where, again, the second sum runs over the possible ways of distributing the indices between
particle 2 and particle 3. In particular, we define minimal coupling of a massive particle to a
photon as the choice gi,j = 0 for i > 0. This means that the three-point amplitude for a photon
and two massive particle of mass m and spin S

A3[1
+23] = x

〈23〉2S

mS−1
, A3[1

−23] = x−1 [23]
2S

mS−1
(81)

3.2.5. Three massive particles

Finally, if all the external legs are massive we do not have an obvious choice of the basis for
M. Indeed, it is easier if we write M in terms of the tensor

Tab = (p1){a ḃ(p2)
ḃ

b} (82)

Now the form of M is given by

M{a1...a2S1
}{b1...b2S2

}{c1...c2S3
} =

∑
i

∑
j

gi,j
(
T S1+S2+S3−iεi

){a1...a2S1
}{b1...b2S2

}{c1...c2S3
} (83)

3.3. Compton scattering
Let’s see how the massive spinor-helicity formalism works with an example. Consider the
Compton scattering pγ+ → pγ−, where p is a particle of mass m and spin S. In the s channel

1

42+

3−

= m2x12
x34

1

s−m2

(
〈1 pI〉[pI 4]

m2

)S

(84)
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with p = p1 + p2. If we choose the auxiliary spinors to be k12 = p3 and k34 = p2, then we have

m2x12
x34

=
[2|p1|k12〉[k34|p4|3〉

〈k12 2〉[k34 3]
= −(〈3|p1|2]2)

t
(85)

Notice that the s channel is dominant in the limit s → 0, where t → −u +m2. Moreover, the
matrix |pI〉[pI | can be explicitly computed5 and is found to be equal to

|pI ]〈pI | =
−m2|3]〈2|+ (p1|2〉)([3|p4)

〈3|p1|2]
(87)

We then get the amplitude with the correct residues in s and u

AS
Compton[12

+3−4] =
1

(s−m2)(u−m2)


(〈3|p1|2])2 , S = 0

〈3|p1|2](〈1 3〉[4 2] + [1 2]〈4 3〉) , S = 1/2

(〈1 3〉[4 2] + [1 2]〈4 3〉)2 , S = 1

(88)

If S > 1 then spurious poles appear and the discussion must be modified, but we don’t examine
this case in detail.

4. A possible UV completion for gravity
In this section, we construct all possible scattering amplitudes for particles of spin 0, 1/2,
1 and 2, i.e. SM particles and gravitons. We restrict to the case of massless particles, or
equivalently to sufficiently high energy. Then, we study these amplitudes in order to construct
a UV completion of general relativity. More precisely, we will construct all possible four-point
scattering amplitudes mediated either by graviton or generic massive particles.

As done in [6], the following discussion is restricted to weak coupling and tree level, so the
new massive resonances should lay below the Planck mass.

4.1. Graviton mediated amplitudes
Starting from the graviton mediated amplitudes, using Eq. 45, we see that in the s channel we
have the amplitude

1+h

4+h′
2−h

3−h′

= κ2
[1 p]2h+2[2 p]−2h+2

[1 2]2
1

p2
〈3 p〉2h′+2〈4 p〉−2h′+2

〈3 4〉2
(89)

5From the definition, we have to solve

|pI ]〈pI 2〉 = −mx12|2] , |pI ]〈pI3〉 = mx34|3] (86)
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where κ =
√
8π/MPl, p = p1+p2 and where we supposed that the exchange graviton emerges

from the left vertex with positive helicity. Define now sij = (pi + pj)
2: the amplitude just

written is valid only in the limit s12 → 0, which also means s13 → −s14. Therefore, we can
always multiply the amplitude by a factor sr13s−r

14 without affecting the on-shell amplitude. All
in all, we obtain the following expression for the amplitude

AGR
h, h′ = κ2

s1−h′−r
13 s1−h′+r

14

s12
([1 4]〈2 3〉)2h(〈3|p12|4])2h

′−2h (90)

where pij = (pi − pj)/2. Notice that r must be (half-)integer if h′ is (half-)integer. Moreover,
scaling arguments require the constraint −1 + h′ ≤ r ≤ 1− h′, which means

• if h = h′ = 0, then r originates a contact term proportional to s12. In other words, the
scattering amplitude for distinguishable scalars is

AGR
0, 0, dist(s12, s13, s14) = κ2

(
s13s14
s12

− as12

)
(91)

On the other hand, the scattering amplitude for identical scalars is

AGR
0, 0, id(s12, s13, s14) = AGR

0, 0, dist(s12, s13, s14) +AGR
0, 0, dist(s13, s14, s12) +AGR

0, 0, dist(s14, s12, s13)
(92)

and thus is independent of a.

• Similarly, for spin-1/2 particles we get

AGR
1/2, 1/2, dist(s12, s13, s14) = κ2[1 4]〈2 3〉

(
s13
s12

+
b

2

)
(93)

and for identical fermions

AGR
1/2, 1/2, id(s12, s13, s14) = κ2[1 4]〈2 3〉

(
s13
s12

+
s12
s13

+ b

)
(94)

• In the other cases, we are forced to take r = 0.

4.2. Massive spin J mediated amplitudes
Consider now the amplitudes mediated by massive particles: the s channel in the case of a
mediator of mass M and spin J can be obtained by gluing together the three-point amplitudes
discussed in Eq. 74. The amplitude takes finally the form

1+h

4+h′
2−h

3−h′

= g2J
M2

s12 −M2
×
(
〈p|p12|p]
M2

)J−2h

×
(
〈p 2〉[1p]
M2

)2h

×

×
(
〈p|p43|p]
M2

)J−2h′

×
(
〈p 3〉[4p]
M2

)2h′

(95)
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The main difference between the graviton mediated amplitudes and the massive spin J mediated
amplitudes is the presence of the massive spinors |p〉, |p]. In the latter case, we need to sum
over all possible contractions of SU(2) indices. After the sum, the amplitude is

AJ
h, h′ = g2J

(2J)!!

(2J − 1)!!4J

(
[1 4]〈3 2〉
M2

)2h(〈3|p12|4]
M2

)2h′−2h
M2

s12 −M2

(
J + 2h′

J

)(
J

2h′

)−1

P
(2h′−2h,2h′+2h)
J−2h′ (x)

(96)
where P (a,b)

M are Jacobi polynomials and x = 1+2s13/M
2. Notice that for scalars the amplitude

AJ
0, 0 is proportional to the Legendre polynomial PJ(x).

4.3. Partial wave analysis and UV completion of gravity
The presence of Jacobi and Legendre polynomials suggests then a partial wave discussion: for
the process 1h2−h → 3h

′
4−h′ , we also have

x = 1− s

M2
(1− cos θ) , 〈3 1〉 =

√
s sin

θ

2
, [1 4] = 〈3 2〉 =

√
s cos

θ

2
(97)

where θ is the scattering angle in the CM reference frame. To be more precise, we can write a
decomposition of the amplitude

A1h2−h→3h′4−h′ = 16π
∑

J≥max 2h,2h′

(2J + 1)aJ(s)d
J
2h,2h′(θ) (98)

where dJa,b are the Wigner d-functions. The coefficients of the previous decomposition can be
evaluated numerically: for example, the decomposition of the graviton mediated amplitude for
distinguishable scalars is simply

a0(s) =
s(1− 6a)

96M2
Pl

, a2(s) = − s

480M2
Pl
, aK(s) = 0 (99)

if K 6= 0, 2. The growth of a2 with energy can be mitigated by introducing a spin J massive
resonance, with J ≥ 2. However, as discussed in [6], if J = 2 the divergence is cured only if
there are at most two different species of scalars. On the other hand, if J > 2 we are forced
to introduce an infinite tower of resonances of increasing higher spin. One way to solve the
problem is proposed in [6], where under certain hypothesis of regularity (which ultimately come
from unitarity, locality and causality) the proposed scattering amplitude for distinct scalars is6

A0, 0, dist ∝ κ2
(
tu

s
− as

) ∏∞
n=1(M

2t+ M̂2s−M2(nM̂2 + M̂2
0 ))∏∞

k=1(s− kM2)
∏∞

`=1(t− `M̂2 − M̂2
0 )

(100)

Here M2, M̂2 and M̂2
0 are parameters, which for the moment are unconstrained. The main

feature of this modified amplitude is the presence of two towers of infinite resonances in s and
t, with masses

M2
n = nM2 , M̂2

n = M̂2
0 + nM̂2 (101)

6Since we are focusing on the process 1 2 → 3 4, we use usual Mandelstam variables instead of sij variables.
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A similar discussion can be made for the other amplitudes: in each case, the amplitude given
by Eq. 95 is modified by a proper multiplicative factor, which depends generically on the
symmetry properties that we require from the corresponding amplitude. The infinite products
in Eq. 100 can be related to the Gamma function via Euler’s definition of Γ. Therefore, if we
define

s̃ =
s

M2
, t̃ =

t

M2
, η =

M2

M̂2
, γ0 =

M̂2
0

M2
(102)

Aη,γ0
VZ (s, t) =

Γ(1− s̃)Γ(1 + ηγ0 − ηt̃)

Γ(1 + ηγ0 − ηt̃− s̃)
, Aη=1,γ0=0

VZ (s, t) = AVZ(s, t) (103)

Aγ0
VS(s, t, u) =

Γ(1 + 2γ0)Γ(1 + γ0 − ũ)Γ(1 + γ0 − t̃)Γ(1− s̃)

Γ(1 + ũ+ γ0)Γ(1 + t̃+ γ0)Γ(1 + s̃+ 2γ0)
, Aγ0

VS(s, t, u) = Aγ0=0
VS (s, t, u)

(104)
then the UV-completed amplitudes are summarized in Tab. 1. The presence of the Gamma

AUV Scalar Fermion Vector Graviton
Scalar AGRAVS AGRAγ0

VS AGRAγ0
VS AGRAVS

Fermion AGRAVZ AGRAη,γ0
VZ AGRAVS

Vector AGRAVZ AGRAVS
Graviton AGRAVS

Table 1: UV completion of graviton mediated amplitudes.

functions allows the amplitudes to be in agreement with causality, both in the Regge limit7

and in the hard scattering limit8. A numerical partial wave analysis can be done on these new
amplitudes. The main results are

• there are infinite resonances, with both integer and half-integer spin,

• unitarity imposes positivity constraints on the coefficients aJ(s), which imply

0 ≤ a ≤ 2 ,
2

3
≤ b ≤ 22

5
, η = 1 , γ0 <

3

2
(105)

On the other hand, if we consider the amplitudes computed using the Feynman rules obtained
from general relativity minimally coupled to matter, we find

a = 0 , b =
1

2
(106)

So either we have to modify Einstein-Hilbert action or we need to modify the UV completion
here proposed. A possible change in Einstein-Hilbert action is presented at the end of [6] and
the deviation is possible if space-time has torsion in addition to curvature.

7i.e. s → ∞, θ → 0, with t = −s sin2 θ/2 fixed. In this case the amplitude should be o(s2).
8i.e. s → ∞, t → ∞, with θ fixed. In this case the amplitude decays exponentially in s.
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5. Conclusion
In this report, we introduced spinor-helicity formalism, both in the massless and in the massive
case. We presented all possible three-point amplitudes and then we showed how they can
be used to construct a UV completion of tree level GR scattering amplitudes for massless
external particles. In future, we hope to extend the discussion to external massive particles.
An important question about the uniqueness of the bottom-up construction of UV completed
scattering amplitudes is still unanswered, but it’s beyond the purpose of this report.
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A. Explicit example of spinor-helicity massless variables
Let us consider the most general lightlike, real-valued 4-momentum

pµ = E(1, sin θ cosφ, sin θ sinφ, cos θ) (107)

Then Eq. 1 reads

paḃ = −2E

(
s2θ/2 −sθ/2cθ/2e−iφ

−sθ/2cθ/2eiφ c2θ/2

)
(108)

pȧb = −2E

(
c2θ/2 sθ/2cθ/2e

−iφ

sθ/2cθ/2e
iφ −s2θ/2

)
(109)

where we used the shorthands sinα = sα and cosα = cα. If we write

|p〉ȧ =
(
A
B

)
(110)

then the Weyl equation paḃ|p〉ḃ = 0 reads(
As2θ/2 −Bsθ/2cθ/2e

−iφ

−Asθ/2cθ/2eiφ +Bc2θ/2

)
= 0 (111)

We can pick A and B such that

|p〉ȧ =
√
2E

(
cθ/2
sθ/2e

iφ

)
(112)

In exactly the same way, we can solve the other Weyl equations and write

[p|a =
√
2E

(
cθ/2

sθ/2e
−iφ

)T

, |p]a =
√
2E

(
−sθ/2e−iφ

cθ/2

)
, 〈p|ȧ =

√
2E

(
−sθ/2eiφ
cθ/2

)T

(113)
From Eq. 112 and 113 it now clear that |p]a = (〈p|ȧ)∗ and |p〉ȧ = ([p|a)∗. Moreover

|p]a〈p|ḃ = 2E

(
−sθ/2e−iφ

cθ/2

)(
−sθ/2eiφ cθ/2

)
= −paḃ (114)

and a similar calculation shows that |p〉ȧ[p|b = −pȧb.
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