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Abstract

In this report we investigate the phenomenology implied by a model for dark
matter including a Majorana fermions with different masses and a massive gauge
boson. First we compute relic abundances for given sets of mass parameters and
coupling constants. Then we proceed to calculate the predicted sensitivities of
direct detection using neutrino experiments. Finally, we relate our results to
known bounds coming from collider experiments to identify new viable regions for
future searches.
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1 Introduction
Understanding the nature of dark matter (DM) is one of the biggest challenges of modern
physics. Constraints on its non-gravitational interactions with the standard model (SM)
have been obtained at collider experiments for masses of a few GeV. More recently, [1]
proposed a new method to probe sub-GeV DM at neutrino experiments such as Super-
Kamiokande (Super-K). This regime is classically difficult to probe due to the low energy
at the average DM velocity v ≈ 10−3. However there is an unavoidable fraction of DM
which is scattered by cosmic ray electrons, making it relativistic and hence able to be
probed by Super-K.
This project builds up on this proposal by considering an extra particle in the dark
sector with a small mass splitting. This implies that one can decay into the other and
has non-trivial consequences. As described in more detail in Section 5 the addition of the
second particle can lead to two extra Cherenkov radiation signals, which has no known
background, making it promising for potential searches. Additionally, the cosmology of
this model naturally yields correct relic abundances in relevant regions of the parameter
space without any further assumptions.
The report is organised as follows. Section 2 introduces the basic cosmology tools used to
calculate DM relic abundances. Section 3 describes the computation of cross-sections for
the relevant interactions in this project. Sections 4 and 5 present our numerical results
for viable parameters of the model against experimental constraints, and a conservative
computation of the Super-K sensitivity to these regions. Finally we conclude and discuss
further work in Section 6. We use natural units (~ = c = kB = 1) throughout this report.

2 Cosmology
As the Universe expands and its temperature decreases, the number of massive par-
ticles of a given species in thermal equilibrium decreases according to the Boltzmann
distribution. However when the rate of interactions Γ becomes comparable to the rate
of expansion H the particles stop interacting and effectively freeze-out i.e. their total
number stays constant from then on.
The time evolution of dark matter in the early Universe can be described by the Boltz-
mann equation [2]:

1

a3
d(nXa

3)

dt
= C[{nX}] (1)

where the term on the r.h.s is the collision term, which accounts for particle interactions,
a is the scale factor and nX is the dark matter number density. The form of the collision
term depends on the specific interactions, but in the simple case of

X + X̄ ↔ l + l̄

Eq.1 can be rewritten as [3]:

dNX

dx
= − λ

x2
[N2

X − (N eq
X )2] (2)
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where we have defined the number of particles in a comoving volume NX ≡ nX/s,
x ≡ MX/T and

λ ≡ 2π2

45
g∗S

M3
X〈σv〉

H(MX)
(3)

where s is the entropy density, T is the temperature, MX is the dark matter mass, g∗S is
the number of entropic degrees of freedom and H(MX) is the Hubble constant evaluated
at MX .
We take N eq

X to follow the Fermi-Dirac distribution in the non-relativistic limit (since
freeze out occurs in the non-relativistic regime x ∼ O(10)) such that

N eq
X =

g

s

(
M2

x

2πx

) 3
2

e−x (4)

where g is the number of internal degrees of freedom and the entropy is

s =
2π2

45
g∗s

(
MX

x

)3

. (5)

In general Eq.2 has to be solved numerically and its shape is shown in Figure 1.

Figure 1: Full line: Numerical solution to the Boltzmann equation. Dashed line: Boltz-
mann distribution in the non-relativistic regime.

Once we know the relic number of dark matter particles N∞
X , it is straightforward to

calculate the relic abundance ΩXh
2:

ΩXh
2 =

MXN
∞
X

ρcrit,0

2π2

45
g∗sT

3
0 (6)
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where ρcrit,0 is the current day critical density and T0 is temperature of the cosmic
microwave background.

3 Co-annihilation cross section
In this project we considered a model for Majorana fermionic dark matter χ1 and χ2,
of mass m1 and m2 respectively, whose interactions are mediated by a vector field V
of mass mv which will be referred to as dark photon from now onwards. We consider a
Lagrangian density including

Lkin ⊃ −1

4
F µνFµν −

1

4
F µν
D FDµν −

ε

2
F µνFDµν −

m2
v

2
V µVµ

LDint = −iχ̄1γ
5γµVµgDχ2 − iχ̄2γ

5γµVµgDχ1

LEMint = −iqJµAµ

where F µν is the usual Field strength, F µν
D = ∂µV

ν − ∂νV
µ is the ”dark” field strength,

Jµ is the standard model current, gD is the dark coupling constant and ε is the kinetic
mixing parameter.
It is possible to diagonalize the kinetic terms by redefining the electromagnetic vector
as Âµ → Aµ + εV µ. This means that the kinetic term can now simply be written as

Lkin ⊃ −1

4
F̂ µνF̂µν −

1

4
F µν
D FDµν −

m2
v

2
V µVµ

and therefore the EM interaction term now reads

LEMint = −iqJµAµ − iqεJµVµ

This effectively introduces a new vertex that allows for the dark photon to interact with
the standard model. Therefore we add the following vertices to our standard model
quantum field theory:

χ1

χ2

V = igDγ
µ (7)

e+

e−

V = iεeγµ (8)
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These then allow us to draw 3 different tree level feynman diagrams which describe dark
matter coannihilation into dark photons or electron positron pairs.
Now, the differential cross section for a scattering process involving two incoming and
two outgoing particles is given by [4]

dσ

dΩ
=

1

2EA2EB|vA − vB|
|p1|

(2π)24Ecom

|M|2 (9)

where p1 is the momentum of either of the outgoing particles, EA and EB are the energies
of the incoming particles and M is the matrix element associated with the process.
To calculate the matrix element M to first order we consider the tree level diagrams
associated with these processes

χ1

χ2 V

χ2 V

χ1

V

V

χ2

χ2

χ2

χ1 V

χ1 V

χ1

V

V

χ2

χ2

taking care of averaging over all possible spins and polarizations of the particles involved.
For the χ1χ1 → V V and χ2χ2 → V V processes, assuming m1,m2 > mv, in the non-
relativistic limit corresponds to

〈σv(χ1χ1→V V )〉 =
8πα2

D

9

[1−m2
v/m

2
1]

1
2

m2
1

(m2
1 −m2

v)(3m
2
2 − 2m1m2 + 3m2

1 + 4mv2)

(m2
2 −m2

1 +m2
v)

2
(10)

〈σv(χ2χ2→V V )〉 =
8πα2

D

9

[1−m2
v/m

2
2]

1
2

m2
2

(m2
2 −m2

v)(3m
2
1 − 2m2m1 + 3m2

2 + 4mv2)

(m2
1 −m2

2 +m2
v)

2
(11)

where αD ≡ g2D
4π

. If, instead, the mass of the dark photon is larger than the chion
masses, the decay is usually forbidden. However, due to the exponential tail in the
energy distribution of these particles, a certain fraction of them will have enough energy
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to access this coannihilation process, and the relation of this ”forbidden channel” cross
section to the one just derived is given by

〈σvfor〉 =
neq
v

neq
χ
〈σvnorm〉 (12)

The results were checked by taking the m1 = m2 limit and comparing with the literature
[5]. For the coannihilation into positron electron pair (χ1χ2 → e+e−) the relevant
Feynman diagram is

V

χ1 e−

χ2 e+

and applying the non-relativistic limit it leads to the following cross section.

〈σv(χ1χ2→e+e−)〉 = 4πααDε
2

√
(m2 +m1)2 − 4m2

e((m1 +m2)
2 + 2me2)

(m1 +m2)((m1 +m2))2 −m2
v)

2
(13)

which also reduces to results in the literature [5] for the m1 = m2 limit.

4 Calculation of relic abundances
Using the cross-sections calculated in Section 3 along with Eqs.2,6, we can compute relic
abundances for regions of the 5-D parameter space. Since there is more than one process
taking place, we need to be careful when defining 〈σv〉. Following the approach in [6],
we define an effective cross section 〈σv〉eff :

〈σv〉eff =
N∑
i,j

〈σv〉ij
gigj
g2eff

(1 + ∆i)
3
2 (1 + ∆j)

3
2 e−x(∆i+∆j) (14)

where we have introduce the following:

∆i =
mi −m1

m1

(15)

and

geff =
N∑
i

gi(1 + ∆i)
3
2 e−x∆i (16)

The indices 〈σv〉ij correspond to the incoming particles χi, χj and we assume 〈σv〉ij =
〈σv〉ji.
Running the numerical simulation with 〈σv〉eff for fixed αD, m2

m1
, mv

m1
and varying ε, mv

we obtain lines of correct relic abundance in the mv−ε plane. These are shown in Figure
2 alongside constraints [7] in the shaded regions.
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Figure 2: Red lines: Correct relic abundances for various parameters; from left to right:
αD = 1, m2

m1
= 1.7, mv

m1
= 1.72; αD = 1, m2

m1
= 1.45, mv

m1
= 1.68; αD = 1,

m2

m1
= 1.3, mv

m1
= 1.65. Shaded lines: constraints from collider experiments and

the anomalous magnetic moment (g − 2)e.

5 Detection
For detection purposes we consider the following process: a highly relativistic χ1 particle
enters the detector tank and scatters off an electron, turning into a χ2. Whereas this
might seem like an extra requirement, it is actually a direct consequence of the model
described in section 3. If, dark matter were to be able to be directly detected, a fraction
of the particles constituting the galactic halo would also have to interact with cosmic
rays and be accelerated to relativistic speeds, allowing for a transfer of momentum in
the interaction with an electron high enough to give off Cherenkov radiation [1]. The χ2

particle then decays into χ1 and a dark photon V , which in turn decays into an electron
positron pair.
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V

χ2

e−

χ1

e−

V

χ2

χ1

e+

e−

Notice how both of the Feynman diagrams involved in this process are the same as
the one used for the χ1χ2 → e+e− coannihilation process previously discussed. In this
case, the inherently relativistic nature of the process makes the calculation of the matrix
element rather non trivial. However, we can factorize it as follows in order to simplify
the calculations [8] [9]. The matrix element associated with the process is

Mtot = εgDeū(pχ1)γ
5γµu(pχ2 )

ηµν − qµqν
(q2 −m2

v)
ū(p−)γ

νv(p+) (17)

but we recognize that the propagator can be written as a sum over polarization vectors
[10] so that

ηµν − qµqν
(q2 −m2

v)
=

1

3

∑
a

ε∗aµ(q)ε
a
ν(q) (18)

which in turn allows us to write the matrix element as

Mtot =
1

(q2 −m2
v)

1

3

∑
a

M(χ2→χ1V a)M(V a→e+e−) (19)

We still have to factorize the rest of the differential decay rate. The general formula [4]
is

dΓ =
1

2Eχ2

d3pχ1

(2π)3
1

2Eχ1

d3p+
(2π)3

1

2E+

d3p−
(2π)3

1

2E−
|Mtot|2(2π)4δ(4)(pχ2 − pχ1 − p− − p−) (20)

In order to factorize it in a useful way, we multiply it by unity written as follows [9]

1 =

∫
d3q

(2π)32Ev

dsv(2π)
4δ(4)(q − pχ2 − pχ1) (21)

where we have introduced the invariant mass of the dark photon sv = q2, with q being the
4-momentum carried by the virtual dark photon. Since the δ function in this equation
requires q = pχ2 + pχ1 we write the decay rate in the lab frame by integrating over the
momenta of all the outgoing particles to give
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Γ =
1

6Eχ2

∫
dsv

2π(sv −m2
v)

2

×
∫

d3pχ1

(2π)32Eχ1

∫
d3q

(2π)32Ev

(2π)4δ(4)(pχ2 − pχ1 − q)
∑
a

|M(χ2→χ1V a)|2

×
∫

d3p+
(2π)32E+

∫
d3p−

(2π)32E−
(2π)4δ(4)(q − p− − p+)

∑
a

|M(V a→e+e−)|2

Both the second and the third line of this equation are Lorentz invariant. We therefore
choose to compute the second one in the χ2 rest frame (pχ2 = (m2,0)))and the third one
in the V rest frame (q = (

√
sv,0)). Collapsing the integrals on the δ functions, taking

care of introducing the relevant factors in order to change their arguments, [11] ensures
conservation of Energy and momentum at each vertex of the interaction, leading to the
following

Γ =
g2Dε

2e2

192π3

∫
dcosθ

2

∫ (m2−m1)2

4m2
e

dsv
((m1 +m2)

2 − sv)((m2 −m1)
2 + 2sv)

Eχ2(sv −m2
v)

2

(
1 +

2me2

sv

)
×
[(

1− 2(m2
1 + sv)

m2
2

+
(m2

1 − sv)
2

m4
2

)(
1− 4m2

e

sv

)]1/2
To evaluate the integral, we operate a variable substitution in order to render the angular
dependence of sv explicit

sv = q2 = (pχ2 − pχ1)
2 = m2

2 +m2
1 − 2(Eχ2Eχ1 − |p|χ2 ||pχ1 |cos(θ)) (22)

After integrating over the angle θ, we effectively get the differential decay rate dΓ/dKχ1

where Kχ1 = Eχ1 −m1 is the kinetic energy of the outgoing χ1 particle which, due to
conservation of energy, has a one to one relationship with the energy of the electron
positron pair. The probability of detection of an interaction is therefore given by

P =

∫ Kmax

0

1

Γ

dΓ

dKχ1

(23)

where Kmax = Eχ2 − m1 − Ethreshold, with Ethreshold ≈ 10MeV being the minimum
energy necessary for the electron pair to give off Cherenkov radiaton and be detected at
the Super-K experiment. This accounts for the fact that it is less likely for low energy
interactions to be detected and more likely for more energetic ones.
The expected number of events that should have been detected is then given by

N =

∫ t+T

t

dt

∫
dK1

∫
dKe Φ(K1)

dσ

dK1dKe

P(K1,Ke) (24)

where T is the run time of the experiment. Since σ ∝ ε2 and Φ ∝ ε2 we have N ∝ ε4.
This effectively enables us to draw a sensitivity curve in mv − ε parameter space for a
given choice of mass ratios. As it can be seen in Figure 3, this overlaps with the correct
relic abundance lines that we have computed for some mass ratios.
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(a) (b)

Figure 3: Red lines: Correct relic abundance for (a) αD = 1, m2

m1
= 1.7, mv

m1
= 1.72,

(b) αD = 1, m2

m1
= 1.45, mv

m1
= 1.68. Shaded lines: constraints from collider

experiments and the anomalous magnetic moment (g−2)e. Green Shaded line:
Super-Kamiokande sensitivity.

6 Conclusion
In conclusion we have shown how a model for dark matter with an effective Lagrangian
such as the one described in section 3 succeeds in reproducing the observed relic abun-
dances for regions of parameter space overlapping with the sensitivity of direct detection
searches using neutrino experiments. This opens up the possibility to probe dark matter
masses at a scale previously inaccessible to direct detection in a virtually background free
environment. Similar calculations could also be performed considering a larger range of
mass ratios opening up the possibility to test the aforementioned models, and one could
also think to introduce a wider range of new particles in the dark sector and use the
same techniques to infer detector sensibilities.
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