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1. PDFs and the DGLAP equation

1.1. Introduction
Hadrons, especially protons and neutrons, make up a huge proportion of visible
matter and, in addition, are one of the most commonly examined objects in exper-
imental and theoretical particle physics. Formed by quarks and bound together by
gluons, hadrons are one of the best examples when studying the effects of QCD.
However, since QCD is asymptotically free, bound states like hadrons cannot be
analyzed pertubatively. Hence,when describing hadronic structures, one needs the
help of non-perturbative objects, the so-called parton distributions functions (PDFs).
These densities f describe the probability of finding a parton of the hadron, which
classically are quarks and the gluon, at a certain momentum fraction1 x. A detailled
introduction can be found in every dedicated textbook, e.g. [Peskin and Schroeder,
1995], chapter 14, and parts of chapter 17 and 18.
Consider now a process involving at least one hadron. If hadrons are non-perturbative

objects, it is not obvious that one can calculate the actual process, e.g. an electron
scattering off the hadron, perturbatively. That this is actually possible, is proven by
the famous Factorization theorem. The word "factorization" can be taken literal, as
by using this statement one is able to seperate the actual process from all hadronic
subprocesses.
One could even go one step further: There is a way to identify and calculate the

perturbative part of the hadronic structure, meaning the PDFs itself. Factoriza-
tion introduces a so-called factorization scale µ, which, as an artificial parameter,
the physical cross section must be independent of. Analogous to renormalization
group equations (RGEs), one can use this fact to introduce an equation to describe
the scaling of the PDFs, the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
equation. What is left as the non-perturbative part is the x-dependence of the PDF
at some starting scale µ0. To obtain this (analytic) expression, one needs to fit a
parameter function to experimental data.
For any desired PDF, the DGLAP equation has the form

df(x, µ)
d lnµ = P (x, µ)⊗ f(x, µ) (1.1)

The equation above introduces the so-called splitting kernels P (x, µ), which encode
1 To be more precise: The Bjorken x actually is a kinematic variable, x = − q2

2P ·q , where P and q
are the four-momenta of Proton and the momentum transfer in some arbitrary process. In the
parton model, this variable can be identified with the momentum fraction, historically denoted
by ξ.
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1. PDFs and the DGLAP equation

the relation between different PDF flavors. In general, the right-hand-side contains
a sum over all flavors, giving rise to many different kernels, but we will drop this
sum for reasons of simplicity in this chapter2. These kernel are perturbative objects,
which makes the DGLAP equation at least numerically solvable.
Due to the huge coupling strength of QCD αs, compared to e.g. αe, the dominating

diagrams for the kernels of quarks and gluons are QCD-diagrams. Figure 1.1a shows
an exemplary diagram contributing to Pqq. The objective of this work will be to
extend these graphs by QED contributions. These contributions include pure QED
graphs, see figures 1.1b, and mixed ones like figure 1.1c. Further details on efficiently
handling these graphs in every specific case can be found in chapter 4. To keep things
consistent, one needs to add new PDFs, i.e. new constituents of the hadron, when
also taking QED into account. Namely, these contributions are the fields of the
QED-Lagrangian: Leptons and the photon. These new PDFs of course also alter
the existing pure QCD sector by new splitting functions, e.g. Pgγ .

(a) Pure QCD graph. (b) Pure QED graph.

(c) Mixed QCD⊗QED graph.

Figure 1.1.: Examples for splitting functions with different interactions. The cross
at the upper ends of the graphs symbolizes the hard scattering, pertur-
bative part. There is an implicit cut through the middle of the diagram
representing a squared amplitude and putting all intermediate particles
on-shell.

After setting up all new and altered evolution equations, they will be implemented
in chilipdf, a PDF interpolator and evolver being currently in development. To
numerically solve the DGLAP equation, chilipdf uses a numerically very precise

2 Alternatively, one can think of (1.1) as an equation for a vector of PDFs, turning P into a
matrix of kernels.
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1. PDFs and the DGLAP equation

approximation with Chebychev polynomials, being explained in the next chapter.
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1. PDFs and the DGLAP equation

1.2. Discretizing the DGLAP equation in the Chebychev
basis

For now, let us turn back to the DGLAP equation, see (1.1). By expanding the PDFs
in the basis of Chebychev-polynomials one can separate the x- and µ-dependence:

f(x, µ) =
∞∑
k=0

fk(µ)Tk(x). (1.2)

In addition, by substituting (1.2) into (1.1) the DGLAP equation reduces to a dif-
ferential equation for every fk(µ)3:

dfk
d lnµ =

∞∑
k′=0

Pkk′(µ)fk′(µ), (1.3)

where
Pkk′(µ) = (1.4)

Pertubation theory implies that on can expand the splitting functions into a series
in αs:

P (x, µ) =αs(µ)P 10(x) + αe(µ)P 01(x)
+ α2

s(µ)P 20(x) + αsαeP
11(x) + α2

e(µ)P 02(x) +O(α3
s,e). (1.5)

A similar expansion is of course also valid for the Pkk′(x) coefficients.
There are two major points against numerically solving (1.3) via a well-known

Runge-Kutta algorithm. Since µ is an energy scale, the stepwidth needs to be
rather small compared to other scales if one wants to cover a wide range of values.
Additionally, P (x, µ) only depends on µ via αs(µ) and αe(µ). Therefore, changing
variables to a strong coupling would cause tremendous numerical advantages. The
reason being is that variable The coupling dependence of the leading term in (1.5)
completely or nearly cancels. This makes the kernel constant in first approximation,
which greatly improves the numerical accuracy of the Runge-Kutta algorithm. Our
choice will be αQCD

s , carrying just the QCD dependence in its β function. The
scale dependence of αQCD

s (µ) is determined by the Renormalization Group Equation
(2.12), which implies4

dfk(αQCD
s )

dαQCD
s

= 1
αQCD
s βs(αQCD

s , 0)

∞∑
k′=0

Pkk′(αs(αQCD
s ), αe(αQCD

s ))fk′(αQCD
s ). (1.6)

The original fk(µ) can then later be reobtained by substituting the solution of the
RGE, i.e. fk(µ) = fk(αQCD

s (µ)). Note that with this choice the leading term in ever

3 This means nothing less than discretising the integral of the Mellin convolution.
4 For further details on αQCD

s see chapter 2.
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1. PDFs and the DGLAP equation

Pkk′ is nearly constant, since QED corrections are small. If one would just expand
up to O(α1

s, α
0
e), the right-hand-side is yet completely constant.

The equation above contains two subtleties, which makes this approach harder
than it seems at first sight. First, we are forced to compute the running of αe in
terms of αs. This can only be achieved by reformulating the coupled system of RGEs
for αs and αe, which is the objective of the next chapter. In addition, the splitting
kernel now also contains pure QED and coupled QCD⊗QED effects, which will be
discussed later.
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2. Solving the coupled RGEs of QCD and
QED up to NNLO

2.1. Original version
In this chapter we will discuss the so-called iterative solutions. What motivates
an approximate analytical solution compared to a numerical, e.g. Runge-Kutta,
one, which is precise up to machine precision, is the fast evaluation of the closed
analytical form.

Before looking at αe(αs) the first step will be to solve the original system of RGEs.
We start with the coupled Renormalization Group Equations (RGE) for QCD and
QED at NNLO:

dαs
d lnµ = βs

(
αs(µ), αe(µ)

)
= −β

s
00

2π α
2
s(µ)

(
1 + εsb

s
10αs(µ) + εeb

s
01αe(µ)

+ bs20α
2
s(µ) + bs11αs(µ)αe(µ) + bs02α

2
e(µ) +O(ε3s,e)

)
(2.1)

dαe
d lnµ = βe

(
αe(µ), αs(µ)

)
=

βe00
2π α

2
e(µ)

(
1 + εeb

e
10αe(µ) + εsb

e
01αs(µ)

+ be20α
2
e(µ) + be11αe(µ)αs(µ) + be02α

2
s(µ) +O(ε3e,s)

)
(2.2)

We have introduced artificial expansion parameters εs,e for both couplings to keep
track of the order we want to expand to. Following [Billis et al., 2019], we have
defined

bs,emn ≡
1

(4π)m+n ·
βs,emn
βs,e00

(2.3)

Note that there is no asymptotic freedom in QED, hence there are no overall minus
signs in the βem,n constants. The coefficients of βe,s can be explicitly calculated by
renormalizing αs,e at the according order of the expansion.
In this report we will apply the method of iterative solutions, fully explained

in [Billis et al., 2019]. In this paper, one also can find iterative solutions of the RGE
system above up to NNLO, which we will discussed in the following.
Solving these equations up to leading order (i.e. just keeping the leading term in
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2. Solving the coupled RGEs of QCD and QED up to NNLO

both expansions) gives after a trivial integration:

αLO
s (µ) = αs(µ0)

Xs(µ, µ0) (2.4)

αLO
e (µ) = αe(µ0)

Xe(µ, µ0) , (2.5)

where

Xs,e(µ, µ0) ≡ 1 + αs,e(µ0)
2π βs,e00 ln

( µ
µ0

)
. (2.6)

The boundary conditions are given by
µ0 = mZ , (2.7)

αs(µ0) = 0.118 (2.8)

and αe(µ0) = 1
127 . (2.9)

To compute the NLO solution (i.e. the solution of order 1), we discuss the approach
for the iterative solution of an arbitrary order n: First expand the RGEs to the
appropriate order, which we have already done in equations (2.1) and (2.2) for the
NLO solution. Then substitute the in εs and εs expanded iterative solutions of order
n− 1 in all terms, while keeping the overall factor α2

s,e(µ) in front of the expansion
exact. This implies that in order to obtain the n-th order solution, one already mast
have calculated all solutions of lower order.
For the NLO case (n = 1) we are exactly in this situation. At first tackling αs(µ)

by substituting the LO solutions (2.4) and (2.5) into (2.1) (truncated by the terms
of order 2), we arrive at

αNLO
s (µ) = αs(µ0)

[
Xs(µ, µ0) + αs(µ0)

2π
(
εsb

s
10 ln(Xs(µ, µ0)) + εeb

s
0b
s
01 ln(Xe(µ, µ0))

)]−1

(2.10)
after separation of variables, changing the integration variable from lnµ to Xs(µ, µ0)
or Xe(µ, µ0) on the right-hand-side and performing the now again trivial integration.
αNLO
e (µ) can then be obtained by just interchanging s↔ e in the equation above.
Solving the full NNLO equations (2.1) and (2.2), which introduces slightly more

difficult integrals, follows exactly the same steps. We arrive at
αs(µ0)
αs(µ) =Xa + εa

αa(µ0)
4π ba10 lnXa + ε2a

αa(µ0)2

(4π)2

(
ba20

Xa − 1
Xa

+ (ba10)2 1−Xa + lnXa

Xa

)
+ εb

αa(µ0)
4π ba0 b

a
01 lnXb + ε2b

αa(µ0)αb(µ0)
(4π)2 ba0

(
ba02

Xb − 1
Xb

+ ba01b
b
10

1−Xb + lnXb

Xb

)
+ εaεb

αa(µ0)
ba0 αa(µ0)− αb(µ0)

[
α2
a(µ0)

(4π)2 (ba0)2ba10b
a
01

(
Xb

Xa
lnXb −

1−Xb

1−Xa
lnXa

)
− α2

b(µ0)
(4π)2 ba01b

b
01

(
Xa

Xb
lnXa −

1−Xa

1−Xb
lnXb

)
+ αa(µ0)αb(µ0)

(4π)2 ba0 b
a
11 ln Xa

Xb

]
,

(2.11)
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2. Solving the coupled RGEs of QCD and QED up to NNLO

where again one just needs to interchange s↔ e to obtain αNNLO
e (µ).

On page 9 of [Billis et al., 2019] one can find detailed plots concerning the accuracy
of all solutions up to NNLO by using the relative error, which will be defined in the
next chapter.

2.2. Expressing αe in terms of αs

Having now the NLO solution of the original system at hand, let us change variables
in the RGE of QED. At first sight, the natural choice four the new running variable
would be the full QCD coupling. Nevertheless, it is actually more convenient to use
just the part of αs which obeys the pure QCD β-function:

dαQCD
s

d lnµ = βs(αQCD
s , 0). (2.12)

If we would now change αQCD
s , we would run into some nontrivial problems when

trying to obtain the NLO solution of αs − αQCD
s . Hence, to get rid of of the overall

α2 factor in every RGE, we first introduce new variables

re ≡
αe(µ0)
αe

− 1 (2.13)

and rs ≡
αQCD
s (µ0)
αQCD
s

− 1. (2.14)

We also added a shift and a factor to obtain as simple boundary conditions as
possible, see (2.22). This gives

drs
d lnµ = αs(µ0)βs(

αs(µ0)
rs + 1 , 0) ≡ β̃s(rs, 0). (2.15)

for the pure QCD RGE. We define a difference to the full QCD coupling,

δr = rfull
s − rs, (2.16)

to recover expressions for the original couplings:

αe(rs, re) = α0
e

re(rs) + 1 (2.17)

αs(rs, δr) = α0
s

rs + δr(rs) + 1 (2.18)

Changing variables in the remaining two equations yields

dre
drs

= β̃e(re, rs + δr)
β̃s(rs, 0)

(2.19)

dδr
drs

= β̃s(rs + δr, re)
β̃s(rs, 0)

− 1 (2.20)
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2. Solving the coupled RGEs of QCD and QED up to NNLO

Additionally, it is the simplest to change from lnµ to

t ≡ ln µ

µ0
. (2.21)

With these definitions the new boundary conditions read

rs(0) = δr(0) = re(0) = 0. (2.22)

The differential equations above remain the same since dt = d lnµ.
We will now give the iterative solution up to NNLO (computed in exactly the

same way as the ones in chapter 2.1), beginning with rs. One can show just by
resubstituting that the following results are equivalent to the ones given in chapter
2.1.

rNNLO
s (t) =βs00α

0
st+ εsb

s
10α

0
s ln
(
1 + βs00α

0
st
)

+ ε2s
(
α0
s

)2 (bs10
)2(ln

(
1 + βs00α

0
st
)
− βs00α

0
st
)

+ bs20β
s
00α

0
st

1 + βs00α
0
st

(2.23)

For the sake of clarity, from now on we use the abbreviation αs,e(µ0) ≡ α0
s,e.

The LO solutions for (2.19) and (2.20) are rather simple:

rLO
e (rs) = α0t (2.24)
δLO
r (rs) = 0, (2.25)

where we have used
α0 ≡ βe00α

0
e

βs00α
0
s

. (2.26)

Let us now solve (2.19) at NLO. If we substitute the LO solutions above the equation
reads (after some rewriting)

dre
drs

= α0α
0r2
s +

(
1 + α0 + εeb

e
10α

0
e + εsb

e
01b

e
0α

0
e

)
rs + 1 + εeb

e
10_0 + εsb

e
01α

0
s

α0r2
s +

(
1 + α0 + εsbs10b

e
0α

0
e

)
rs + 1 + εsbs10α

0
s

≡ α0fNLO
e (rs). (2.27)

Integrating gives
re(rs) = α0(FNLO

e (rs)− FNLO
e (0)

)
, (2.28)

where we defined FNLO
e fulfills d

rs
FNLO
e (rs) = fNLO

e (rs). The explicit expression of
FNLO
e (αs) is given in the appendix A.
In exactly the same way, one is able to find the NLO solution for δr(rs). The

equation

dδr
drs

=
α0r2

s +
(
1 + α0 + εsb

s
10b

e
0α

0
e + εeb

s
01b

e
0α

0
e

)
rs + 1 + εsb

s
10α

0
s + εeb

s
01α

0
e

α0r2
s +

(
1 + α0 + εsbs10b

e
0α

0
e

)
rs + 1 + εsbs10α

0
s

− 1

= fNLO
δ (rs) (2.29)
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2. Solving the coupled RGEs of QCD and QED up to NNLO

implies again a result of the form

δNLO
r (rs) = FNLO

δ (rs)− FNLO
δ (0), (2.30)

where FNLO
δ (rs) is given in appendix A.

One way to justify these results is to compare it with the solution obtained by
numerically solving the NLO system. Relative errors, defined as

∆hrel(x) ≡ |h(x)sol(µ)− h(x)num(µ)|
h(x)num(µ) (2.31)

for any function h(x) (obeying an according differential equation) relate different
iterative solutions h(x)sol(µ) to the numerical solution h(x)num(µ), which is exact
up to machine precision. Figure 2.1 shows the relative errors of αe, δr and αs. These
get compared with relative erros of iterative solutions of the original, µ dependent
coupled system of αs(µ) and αe(µ), which can be obtained in exactly the same way
as described above. For further details, see [Billis et al., 2019], chapter 2.2.
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2. Solving the coupled RGEs of QCD and QED up to NNLO

Figure 2.1.: Shown are of the relative errors in per cent of αe
(
rs(µ), rNLO

e (rs(µ))
)

(see (2.28)), with iterative (see (2.23) up to NLO) and numerical solu-
tions of rs(µ) inserted, a version of re(rs), where one expanded the inte-
grand before integrating and the iterative solution of αs(µ) (see (2.11)
up to NLO). µ ranges from 1 GeV to 100 GeV. The blue (αit

e (µ)) and
yellow (αe

(
rit
s (µ), rNLO

e (rit
s (µ))

)
) line completely overlap.

Figure 2.2.: Relative errors in per cent of δNLO
r (see (2.30)) depending on rs, which

ranges from −0.99 to 5.

Figure 2.3.: Comparison of the relative errors in per cent of αs
(
rs(µ), δNLO

r (rs(µ))
)
,

with iterative (see (2.23)) and numerical solutions of rs(µ) inserted, with
the iterative solution of αs(µ) (see (2.11) up to NLO). µ ranges from
1 GeV to 100 GeV.
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2. Solving the coupled RGEs of QCD and QED up to NNLO

It is impossible to distinguish between the errors of the iterative solutions obtained
via the r-method and directly via αs,e, which confirms the analytical equivalence of
both approaches1. Inserting the numerical solution for rs instead of the iterative
one decreases the error by roughly two orders of magnitude, thus this option will be
implemented into the final code. Exactly the same is the case for rfull

s = rs + δr.
At last, one could expand iNLO(rs) up to O(εs, εe), which leaves a rather easy

integration. This simplification costs about one order of magnitude in the relative
error. Although not necessary here, since the integration is analytically doable, this
gives an estimate for NNLO, where this is not the case anymore.
The relative error of δr lies in the region of 1%, but intrinsically goes with εe and

therefore does not have to reach as low values as e.g. re.
Via a numerical solution of the inversion of (2.15) one can deduce that these

corresponds to energies between approximately 0 GeV and 1018 GeV.
To obtain the NNLO solutions rNNLO

e (rs) and δNNLO
r (rs), we actually need to vary

the established pattern. Since in this case we deal with a fraction of β functions,
we substitute the complete iterative NLO solution (2.28). In general, with rNLO

e (rs)
and δNLO

r (rs) containing a combination of areatangiens hyperbolicus and logarithms,
the explicit integration of this expression is not possible. Hence we expand the
right-hand-sides and then perform the integration, leading to a similar shape as the
NLO-solution:

rNNLO
e = α0(FNNLO

e (rs)− FNNLO
e (0)

)
(2.32)

δNNLO
r (rs) = FNNLO

δ (rs)− FNNLO
δ (0) (2.33)

Again, FNNLO
e (rs) and FNNLO

δ (rs) are given in the appendix A.
One can compare these solutions with one of the approximations of αNNLO

e (αs) in
figure 2.1, which yields a deviation by an approximate factor of 10 with respect to
the complete iterative solution. Figure 2.4 shows the relative errors of αe, δr and αs
at NNLO.
Due to the additional expansion of the integrand, we see that the error of the

iterative solution of re(rs) increases compared to the one of αe(µ). Inserting the
numerical solution of re(µ) does not lead to such a high improvement as in the case
of NLO. The relative error of δr diverges at rs = 0, which can be traced back to to
a root of δr(rs) at this value. Apart from that, the error is comparatively high but
still in an acceptable region due to the smallness of δr ∝ εe.

To conclude, even after applying the necessary expansion of the integrand, the rel-
ative error of the iterative solution for αe(αQCD

s ) does not exceed 0.1% and therefore
is suitable for an implementation in the chilipdf code.

1 After some algebra, this equivalence can also be seen directly in the equations.
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2. Solving the coupled RGEs of QCD and QED up to NNLO

0 20 40 60 80 100

10-8

10-6

10-4

10-2

μ

Δ
α

e

rel. err. αe(rs
it (μ), re

it (rs
it (μ)))

rel. err. αe
it (μ)

rel. err. αe(rs
it (μ), re

it (rs
it (μ)))

Figure 2.4.: Shown are of the relative errors in per cent of αe
(
rs(µ), rNNLO

e (rs(µ))
)

(see (2.32)), with iterative (see (2.23) up to NNLO) and numerical solu-
tions of rs(µ) inserted, a version of re(rs), where one expanded the inte-
grand before integrating and the iterative solution of αs(µ) (see (2.11)
up to NNLO). µ ranges from 1 GeV to 100 GeV.

Figure 2.5.: Relative error of δNNLO
r (rs) (see (2.33))with rs ranges from −0.99 to 5.

Figure 2.6.: Comparison of the relative errors of αs
(
rs(µ), δNNLO

r (rs(µ))
)

(see
(2.23)), with iterative (see (2.23)) and numerical solutions of rs(µ) in-
serted, with the iterative solution of αs(µ) (see (2.11)). µ ranges from
1 GeV to 100 GeV.
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3. The evolution basis

The development of including QED interactions in splitting kernels can be com-
prehended in the publications [Roth and Weinzierl, 2004] (O(αe), photon PDF),
[Bertone et al., 2015] (O(αe), lepton PDFs), [de Florian et al., 2017b] (O(α2

e))
and [de Florian et al., 2017a] O(αeαs)).

Before discussing the QED extensions of the splitting kernels, one needs to work
out the interplay between all active PDFs in the hadron via different kernels. Besides
the classical "QCD" PDFs, the gluon g and active quarks, this also includes the
photon γ and all active leptons li. Since up and down quarks have distinct (QED-)
charges, we will distinguish between between their PDFs using an ui and di. In the
definitions above, i runs up to the according (active) flavor number nu, nd and nl.
In this physical, so-called parton basis, the evolutions equations look as follows1:

dg

dt
=Pggg + Pgγγ +

∑
f

(
Pgff + Pgf̄ f̄

)
(3.1)

dγ

dt
=Pγγg + Pγgγ +

∑
f

(
Pγff + Pγf̄ f̄

)
(3.2)

dui
dt

=Pqgg + Puγγ +
∑
f

(
Puff + Puf̄ f̄

)
(3.3)

ddi
dt

=Pqgg + Pdγγ +
∑
f

(
Pdff + Pdf̄ f̄

)
(3.4)

dli
dt

=Plgg + Plγγ +
∑
f

(
Plff + Plf̄ f̄

)
(3.5)

dūi
dt

=Pq̄gg + Pūγγ +
∑
f

(
Pūff + Pūf̄ f̄

)
(3.6)

dd̄i
dt

=Pq̄gg + Pd̄γγ +
∑
f

(
Pd̄ff + Pd̄f̄ f̄

)
(3.7)

dl̄i
dt

=Pl̄gg + Pl̄γγ +
∑
f

(
Pl̄ff + Pl̄f̄ f̄

)
(3.8)

In the equations above, we already used some simplifications: There is no difference
between different quarks when interacting with a gluon, thus just one Pqg and
1 For the sake of clarity, we write the Mellin-convolution "⊗" as a simple product. Hence, by

following the formalism established in chapter 1, we treat the kernels as matrices and PDFs as
vectors.
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3. The evolution basis

Pgq is sufficient to describe this mixing, respectively. In addition, up- and down-
quarks have good quantum number also when taking QED interactions into account,
meaning that we do not have introduce splitting kernels for each individual quark,
but just for up- and down-flavors in general. This will also greatly simplify the sums
over all fermions f . Furthermore, this motivates a change of basis to make as many
of the equations above diagonal as possible. To motivate the so-called evolution
basis, we first note that kernels involving one fermion f and one gauge boson b do
not change when the fermion into an antifermion:

Pfb = Pf̄ b. (3.9)

Furthermore, charge invariance of all kernels yields

Pff̄ = Pf̄f and Pff = Pf̄ f̄ . (3.10)

This implies, that the so-called valence distribution

f− ≡ f − f̄ (3.11)

of an arbitrary fermion decouples from both the gluon and the photon:

df−

dt
= P−f f

− +
∑
f ′

∆PSff ′f ′
−
, (3.12)

where we have used some of the following common kernel definitions:

Pfifj
≡δijP Vff + PSfifj

(3.13)

Pfif̄j
≡δijP Vff̄ + PS

fif̄j
(3.14)

P±f ≡P
V
ff ± P Vff̄ (3.15)

∆Pff ′ ≡Pff ′ − Pff̄ ′ (3.16)
P ff ′ ≡Pff ′ +−Pff̄ ′ (3.17)

for arbitrary fermions fi, fj , f and f ′2. We can get rid of the sum over all fermions
f in (3.12) by taking the difference between two flavors with the same quantum
numbers, namely between two up-quarks, down-quarks or leptons. To keep these
differences as small as possible, which minimizes the numerical uncertainties of these
distributions, we take differences of consecutive flavors ordered by their mass. In
the case of all flavors active, nu = nd = nl = 3, we have the basis elements3

q−uc ≡ u− − c−, q−ct, q−ds, q
−
sb, l

−
eµ, and l−µτ . (3.18)

2 Keep in mind that for example PS
uilj

= PS
ul.

3 In the case where one of the flavor numbers is one or zero, there will be no according f−ij in
the evolution basis.
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3. The evolution basis

All these distributions evolve independently:

df−ij
dt

= P−f f
−
ij . (3.19)

Looking back again at the valence evolution (3.12), one can define the next three
basis elements

Σ−u ≡
nu∑
i

u−i , Σ−d ≡
nd∑
i

d−i , and Σ−l ≡
nl∑
i

l−i , (3.20)

which introduces minimal mixing in between only these distributions. After some
algebra we find

dΣ−u
dt

=
(
P−u + nu∆P−uu

)
Σ−u + nu

(
∆P−udΣ

−
d + ∆P−ulΣ

−
l

)
, (3.21)

and accordingly for Σ−d and Σ−l . Up to NLO, it is verified that Pff ′ = Pff̄ ′ , thus
∆PSff ′ = 0 and therefore also this chapter evolves diagonally. This would change
when going to NNLO.
Up until now, what we have covered is the so-called non-singlet chapter. If we

would we have restricted ourselves to pure QCD, there would be no mixing at all in
this region of the evolution basis. The advent of QED introduces coupling between
different evolution equations, which can be kept minimal by defining the Σ−f distri-
butions, where again f = u, d, l. Closely related to them are the so-called singlet
distributions

Σ+
f ≡

nF∑
i

f+
i , (3.22)

where
f+ ≡ f + f̄ . (3.23)

These distributions evolve as follows:

df+

dt
= P+

f f
+ +

∑
f ′

P
S
ff ′f

′+ + 2
(
Pfgg + Pfγγ

)
. (3.24)

We can now restrict the mixing of the gluon and photon distributions to as few other
ones as possible by defining the singlet distributions as above. Again, after some
algebra we find that these are the evolution equations of the second and entangled

17



3. The evolution basis

sector:

dg

dt
= Pggg + Pgγγ +

∑
f=u,d,l

PgfΣ+
f (3.25)

dγ

dt
= Pγγγ + Pγgg +

∑
f=u,d,l

PγfΣ+
f (3.26)

dΣ+
u

dt
=
(
P+
u + nuP uu

)
Σ+
u + nu

(
P udΣ+

d + P ulΣ+
l

)
+ 2nu

(
Pqgg + Puγγ

)
(3.27)

dΣ+
d

dt
=
(
P+
d + ndP dd

)
Σ+
d + nd

(
P duΣ+

u + P dlΣ+
l

)
+ 2nd

(
Pqgg + Pdγγ

)
(3.28)

dΣ+
l

dt
=
(
P+
l + nlP ll

)
Σ+
l + nl

(
P luΣ+

u + P luΣ+
u

)
+ 2nlPlγγ (3.29)

This choice of an evolution basis is not unique. E.g., in [de Florian et al., 2017b] and
[de Florian et al., 2017a], sums and differences of Σ+

u and Σu
d are used. Nevertheless,

this does not add any further decoupling but rather increases the size of the evolution
equations above.
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4. Implementation of QED and
QED⊗QCD splitting kernels

As mentioned in the end of chapter 1, we need to take care of the new arising
splitting kernels. Fortunately, these are already calculated, see [de Florian et al.,
2017a] and [de Florian et al., 2017b]. Hence, one could implement all these explicit
expressions in the according evolution equations, see chapter 3. Nevertheless, this
would result in many unnecessary matrix multiplications between kernels and PDFs.
The reason for this is that graph topologies do not change when going from pure
QCD diagrams to mixed QCD⊗QED or pure QED ones. To make this explicit, we
introduce a new notation by splitting an arbitrary kernel not only into the different
orders1, see (1.5), but also every order into the colour structure, i.e.

Pij =
∑
c

cP cij , (4.1)

where the c are prefactors which contain all the well known color structures/SU(3)
group constants, e.g. c = CFCA. P kij will from now on be called color stripped
kernels. Their shape can be deduced by looking at the complete kernels, e.g. given
in [Ellis and Vogelsang, 1996], chapter 2.5. In the case of pure QCD, this leads to

P̂gg =αs
(
CAP

CA
gg −

4
3TFnF δ(1− x)

)
+ α2

s

(
CFTF P̂

CFTF
gg + CATFP

CATF
gg + C2

AP
C2

A
gg

)
(4.2)

P̂gq =αsCFPCF
gq10

+ α2
s

(
C2
FP

C2
F

gq + CFCAP
CFCA
gq + CFTFP

CFTF
gq

)
(4.3)

P̂qg =αsTFP TF
qg10

+ α2
s

(
CFTFP

CFTF
qg20 + CATFP

CATF
qg

)
(4.4)

1 Since just the pure QCD NNLO kernels are completely calculated up to now, here and in the
following we restrict ourselves to NLO kernels.
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4. Implementation of QED and QED⊗QCD splitting kernels

P̂qqV =αsCFPCF
qqV

+ α2
s

(
C2
FP

C2
F

qqV + CACFP
CACF
qqV + CFTFP

CFTF
qqV

)
(4.5)

P̂qq̂V =α2
s

(
C2
F −

NCCF
2

)
P 20
qq̂V (4.6)

P̂qq′S =α2
sCFTFP

CFTF
qqS (4.7)

P̂qq̂′S =α2
sCFTFP

CFTF
qq̂S = α2

sCFTFP
CFTF
qqS , (4.8)

where all other kernels, e.g. P̂γl, are zero. One can now obtain all kernels involving
QED for quarks, leptons, the gluon and the photon2 from these expressions. Ac-
cording to the order, (0, 1), (1, 1) or (0, 2), one replaces one or both gluons by a
photon, which partly or completely replaces the color by a charge structure. E.g.,
a loop over every active quark flavor, "coupling" to a gluon, gives rise to a factor
TFnF , where nF is the number of active flavors. Replacing this by a QED fermion-
photon coupling turns this into a loop over all fermions and hence produces a sum
over all squared fermionic charges as prefactor instead:

∑
f N

f
Ce

2
f , where f runs

over all lepton and quark flavors. Note that the interaction with a photon is color
degenerated3, which add a factor of N q

C = NC = 3 in the case of quarks and leaves
the leptonic case, where N l

C = 1, unchanged. Additionally, in the process called
abelization, all diagrams involving three- and four-gluon vertices inheriting from the
non-abelian SU(3) gauge invariance of QCD need to be discarded when collecting
all diagrams with at least one photon. In the end, one finds that to every abelian
QCD diagram of order (1, 0) and (2, 0) there is an unique correspondent of order
(0, 1) and (0, 2). In the case of qq-kernels at (1, 1), there are two different ways for
every pure QCD diagram leading to the same color-charge structure (see [de Florian
et al., 2017a], p. 8 for exemplary diagrams). Section III of [de Florian et al., 2017a]
gives a more detailled overview over this procedure. The kernels (reduced by the
pure QCD contributions given above) are

P̃gg =αeαsTF
∑
q

e2
qδ(1− x) (4.9)

P̃gq =αeαsCF e2
qP

C2
F

gq (4.10)
P̃qg =αeαse2

qTFP
CFTF
qg (4.11)

P̃qqV =αee2
qP

CF
qqV + α2

e

(
e4
qP

C2
F

qqV + e2
q

∑
f

Nf
Ce

2
fP

CFTF
qqV

)

+ αeαs2e2
qCFP

C2
F

qqV (4.12)

2 Pure QCD kernels for leptons and photons are of course zero.
3 It is for this reason that one also has to average over the color of incoming particles in the case

of diagrams which include QED.
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4. Implementation of QED and QED⊗QCD splitting kernels

P̃qq̄V =α2
ee

4
qP

20
qq̄V + αeαs2e2

qCFP
20
qq̄V (4.13)

P̃qq′S =α2
eNCe

2
qe

2
q′P

CFTF
qqS (4.14)

P̃qq̄′S =P̃qq′S (4.15)

P̃γγ =− αe
2
3
∑
f

Nf
Ce

2
fδ(1− x) + α2

e

∑
f

Nf
Ce

4
fP

CFTF
gg

− αeαs
∑
q

e2
qδ(1− x) (4.16)

P̃γf =αee2
fP

CF
gq + α2

e

(
e4
fP

C2
F

gq + e2
f

∑
f

Nf
Ce

2
fP

CFTF
gq

)
[
+αeαse2

fCFP
C2

F
gq

]
(4.17)

P̃fγ =αee2
fP

TF
qg + α2

ee
4
fN

f
CP

CFTF
qg[

+αeαsNCCF e
2
fP

CFTF
qg

]
(4.18)

P̃llV =αee2
l P

CF
qqV + α2

e

(
e4
l P

C2
F

qqV + e2
l

∑
f

Nf
Ce

2
fP

CFTF
qqV

)
(4.19)

P̃ll̄V =α2
ee

4
l P

20
qq̄V (4.20)

P̃ff ′S =α2
eN

f ′

C e
2
f ′P

CFTF
qqS (4.21)

P̃ff̄ ′ =P̃ff ′ (4.22)

where the terms in the square brackets only need be taken into account when the
fermion f is a quark. For the last two kernels, at least one of the fermions f or f ′
has to be a lepton. Furthermore, the complete kernels P up to NLO can be obtained
by adding P̂ and P̃ .

All this work now bears fruits when one implements the complete cernels in
chilipdf. It now becomes rather obvious, where one can factorize kernels or PDFs
to save runtime. Another possibility is to precalculate convolutions. The general
rule goes as follows: Let n be the number, a specific kernel gets convoluted with and
m the number of equations, this kernel appears in. If n > m, factorize this kernel in
every equation. If otherwise, precalculate the convolution with every PDF. If n = m,
both procedures save the same amount of evaluations. We now give every full LO
evolution equation in terms of color-stripped kernels. If one should precalculate a
certain convolution, this is indicated with square brackets, i.e.

[
Pabb

]
.

dgLO

dt
=αs

(
CFP

CF
gq

(
Σ+
u + Σ+

d

)
+ CAP

CA
gg g −

4
3TFnF δ(1− x)g

)
(4.23)

dγLO

dt
=αe

(
PCF
gq

(
e2
uΣ+

u + e2
dΣ+

d + e2
l Σ+

l

)
− 4

3
∑
f

Nf
Ce

2
fδ(1− x)γ

)
(4.24)
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4. Implementation of QED and QED⊗QCD splitting kernels

dΣ+
q

LO

dt
=
(
αsCF + αee

2
q

)
PCF
qq Σ+

q

+ 2nq
(
αsTF [P TF

qg g] + αeNCe
2
q [P TF

qg γ]
)
, (4.25)

where q = u, d

dΣ+
l

LO

dt
=αe

(
e2
l P

CF
qqV Σ+

l + 2nle2
l [P TF

qg γ]
)

(4.26)

d
(
Σ−q , q±ij

)LO

dt
=
(
αsCF + αee

2
q

)
PCF
qqV

(
Σ−q , q±ij

)
, (4.27)

where q = u, d and i, j are flavors

d
(
Σ−l , l

±
ij

)LO

dt
=αee2

l P
CF
qqV

(
Σ−l , l

±
ij

)
, (4.28)

where i, j are leptonic flavors

The virtual corrections proportional to δ(1−x) in the equations for g and γ become
unity matrices when going from kernels to matrices. As can be seen above, precal-
culations are only favorable in the case of P TF

qg . This is quite similar to the case of
NLO, which equations are given in appendix B.
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5. Numerical Results

We are testing the implementation with a toy model set of PDFs, which aims to
describe the proton, at the starting scale µ =

√
2GeV from [The QCD/SM Working

Group, 2002] for quarks and gluons. Due to a lack of experimental data, leptons
and the photon are set to zero at this scale.
A reliable check for the implementation are the sum rules. Since PDFs are nor-

malized with respect to the according number of partons in the proton, the integral
over the whole x range of the difference between one specific flavor and antiflavor
needs to reproduce the according number of valence particles in the proton at all
scales µ. Thus, a numerical comparison of

1∫
0

dxu−(x)− 2 = 0 (5.1)

and
1∫

0

dxd−(x)− 1 = 0 (5.2)

at starting and target scale µ0 and µ provides a good check.
Furthermore, one can make use the of the fact that the expectation value of the

momentum fraction of the proton itself needs to be 1. Momentum conservation
implies that again this needs to be true at all energies. To get the PDF of the
proton, we just add up all constituents, hence the momentum sum rule reads

1∫
0

dxx
(
g(x) + γ(x) +

∑
f=u,d,l

Σ+
f

)
−1 = 0. (5.3)

This check is of even greater importance since it directly includes the new photon
and lepton PDFs.
However, one expects deviations from these results after the evolution for one

reasons: Due two self-interactions the gluon PDF becomes steeper at high energies.
Since the numerical approximation of the integrals in the sum rules cannot start at
exactly zero1, one ignores an increasing contribution to the integral for growing µ. To
demonstrate this effect, let us start the integration at x = 10−8 and then introduce a
new subgrid ranging from x = 10−11 to x = 10−8 with 23 subpoints. In the first case,
for a pure gluon evolution at LO we fulfill the momentum sum rule with a difference
of order 10−5, in the second one we improve to 10−7. In the following numerical
1 The reason for this is that chilipdf actually works on a grid on log(x), not x itself.
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calculations we on subgrids between the values x = 10−11, 10−8, 10−4, 0.5, 1, where
the subgrids have (23, 23, 31, 23) gridpoints.

Nevertheless, one can compare this deviations with the one occuring in the case of
pure QCD. If both are of the same order of magnitude, this is a huge hint for properly
implemented evolution equations. Table 5.1 shows the numerically evaluated sum
rules at LO and NLO. As it can be seen, all sum rules are correctly reproduced after
the QCD⊗QED evolution. Another positive check was the successful reproduction
of PDFs, which were evolved by the pure QCD-evolver, at LO and NLO.
Of particular interest is table 5.2, where the different runtimes of the pure QCD

and QCD⊗QED evolvers get compared. We see, that the runtime of the QED-
enhanced evolution just increases by a factor of 3 to 4, which is much less than the
factor of a naive ansatz: If one would choose a brute-force ansatz and just evaluates
the 5 × 5 instead of the 2 × 2, just in the singlet sector at LO alone the runtime
would increase by a factor of 25

4 ≈ 6.
Summing up all the numerical results, this project can be considered a success.

The new kernels, arising from the QED interactions, were implemented properly
and the additional runtime could be significantly reduced through the usage of color
stripped kernels.

Table 5.1.: Comparing differences of sum rules at starting and target scale for pure
QCD and QCD⊗QED evolution at LO and NLO. The flavor numbers
are nu = 2 and nd = nl = 3 and the parametrizations at µ0 are described
at the beginning of this chapter. At the starting scale, the sum rules
take the values 2 −

∫
u− = 1.012 · 10−8, 1 −

∫
d− = 6.071 · 10−9 and

1−
∫
x(g + γ + Σ+

u + Σ+
d + Σ+

l ) = 2.234 · 10−8.

sum rule, order difference between sum rule
at µ0 and µ, pure QCD

difference between sum rule
at µ0 and µ, QCD⊗QED

u−, LO −3.891 · 10−8 −3.995 · 10−7

d−, LO −2.328 · 10−8 −2.343 · 10−8

momentum, LO 2.032 · 10−7 2.033 · 10−7

u−, NLO −1.645 · 10−7 −1.621 · 10−7

d−, NLO −9.731 · 10−8 −9.696 · 10−8

momentum, NLO 2.223 · 10−7 2.225 · 10−8
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5. Numerical Results

Table 5.2.: Comparing runtimes of an evolver optimized for pure QCD evolution
with the new one optimized for QCD⊗QED evolution (for nl = 0 and
nl = 3) with the approach of color stripped matrices. The runtime is
an average over 100 evolutions computed with a notebook version of an
AMD Ryzen 5 processor.

order pure QCD
evolver, in ms

QCD⊗QED
evolver, in ms,

nl = 3

relative
factor

QCD⊗QED
evolver, in ms,

nl = 0

relative
factor

LO 4.747 · 101 1.602 · 102 3.375 1.247 · 102 2.627
NLO 1.072 · 102 4.151 · 102 3.872 3.675 · 102 3.428
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A. Explicit shape of coupled RGE
solutions

In the following we will give all right-hand-sides of the NLO and NNLO solutions of
re(rs) and δr(rs) of chapter 2. The NLO solutions contain coefficients A... and B...,
which implicetly depend on the expansion parameters εs and εe.

A0e = 1 + εeb
e
10α

0
e + εsb

e
01α

0
e (A.1)

A1e = 1 + be0
α0
e

α0
s

+ εeb
e
10α

0
e + εsb

e
01b

e
0α

0
e (A.2)

A2e = be0
α0
e

α0
s

(A.3)

B0e = 1 + εsb
s
10α

0
s (A.4)

B1e = 1 + be0
α0
e

α0
s

+ εsb
s
10α

0
e (A.5)

A0δ = 1 + εeb
s
01α

0
e + εsb

s
10b

e
0α

0
e (A.6)

A1δ = 1 + be0
α0
e

α0
s

+ εeb
s
01α

0
e + εsb

s
10b

e
0α

0
e (A.7)

A2δ = be0
α0
e

α0
s

(A.8)

B0δ = 1 + εsb
s
10α

0
s (A.9)

B1δ = 1 + be0
α0
e

α0
s

+ εsb
s
10b

e
0α

0
e (A.10)

The fully written out results are

FNLO
e (rs) = rs −

2A2eA0e − 2A2eB0e −A1eB1e +B2
1e

A2e
√
B2

1e − 4A2eB0e
· artanh

(
2A2ers +B1e√
B2

1e − 4A2eB0e

)

+ A1e −B1e
2A2e

· ln
(
A2er

2
s +B1ers +B0e

)
(A.11)

FNLO
δ (rs) = 2A2δA0δ − 2A2δB0δ −A1δB1δ +B2

1δ

A2δ
√
B2

1δ − 4A2δB0δ
· artanh

(
2A2δrs +B1δ√
B2

1δ − 4A2δB0δ

)

+ A1δ −B1δ
2A2δ

· ln
(
A2δr

2
s +B1δrs +B0δ

)
(A.12)
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A. Explicit shape of coupled RGE solutions

The areatangens hyperbolicus functions in the formulae above are the defined for the
absolute value of their argument being smaller than 1. E.g. for FNLO

e , this means
that rs ranges approximately from −1 to 5.5. This corresponds (using the numerical
solution of the inversion of (2.15)) to energies between 0 GeV to approximately
1018 GeV, which is the same order of magnitude as the Landau pole of QED.

FNNLO
e (rs) = rs + (α0

s)2
(
ε2s
bs20 − be02 + bs10(be01 − bs10)

1 + rs
− εeα0

e

εeb
e
20 + εsb

e
0b
e
10(bs10 − be01)

be0

(
α0
s + α0

eb
e
0rx
) )

− εeα0
s

1
be0(1 + rs)

(
α0
s + α0

eb
e
0rs
) · {εsα0

sb
e
01b

s
01

− α0
eα

0
sb
e
10

[
εeb

e
10 + εsb

e
0(bs10 − be01)

]
+ α0

e

[
α0
sb
e
10
(
εeb

e
10 + εsb

e
0(bs10 − be01)

)
− εsbe01b

s
01b

e
0

]
rs

}

× artanh
(
α0
s + α0

eb
e
0

α0
s − α0

eb
e
0

)

+ εeα
0
e

1
be0(1 + rs)

(
α0
s + α0

eb
e
0rs
) · {εsα0

sb
e
10b

s
01

− α0
e

[
εe(be10)2(1 + rs)− εsbe10b

s
01rs − εsbe0be10(be01 − bs10)(1 + rs)

]}

× artanh
(
α0
s + α0

eb
e
0 + 2α0

eb
e
0rs

α0
s − α0

eb
e
0

)

+ α0
s

2be0

{
− 2
α0
s − α0

eb
e
0
·
[
ε2eα

0
eα

0
s(be0)2 + εsb

e
0

((
α0
eb
e
0 − α0

s

)(
be01 − bs10

)
+ εeα

0
eα

0
s

(
be01b

s
01 + be10b

s
10 − be11

))]
ln(1 + rs)

+ 2εe
α0
s − α0

eb
e
0
·
[
be10
(
α0
s − α0

eb
e
0 + εsα

0
eα

0
sb
e
10
)

+ εsα
0
eα

0
sb
e
0
(
be01b

s
01 + be10b

s
10 − be11

)]
ln
(
α0
s + α0

eb
e
0rs
)

+ α0
sεe

(1 + rs)
(
α0
s + α0

eb
e
0rs
) · [εsα0

sb
e
01b

s
01 + α0

eb
e
10
(
εeb

e
10 + εsb

e
0(be10 − bs10)

)
+ α0

e

(
εe(be10)2 + εsb

e
0
(
be01(bs01 − bs10)

))
rs

]
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A. Explicit shape of coupled RGE solutions
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(A.14)

Note that are no leading rs terms in the Fδ-functions, which can be traced back to
the vanishing LO solution of δr. It is also evident that in δr all corrections are at
least of order εe. One could have expected that due to the cancellations of all pure
QCD terms in (2.20) via the −1 at the end.
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B. Full NLO color-stripped evolution
equations

Applying the techniques discussed at the end of chapter 4, we arrive at

dgNLO
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=α2
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B. Full NLO color-stripped evolution equations
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where q = u, d and q′ = d, u
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where q = u, d and i, j are flavors
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B. Full NLO color-stripped evolution equations
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where i, j are leptonic flavors
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where q = u, d and i, j are flavors
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where i, j are leptonic flavors

Again, convolutions in square brackets are evaluated first. Additionally to the proce-
dure at LO, all sums of kernels are precalculated to minimize matrix multiplications.
The added contributions proportional to δ(1−x) in the g and γ evolution equations
are there to cancel the virtual parts of PCFTF

gg . The reason for this is that there can-
not be a virtual diagram (a diagram without radiation of particles) of a gluon/photon
splitting into a photon/gluon due to conversation of color.
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