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1. PDFs and the DGLAP equation

1.1. Introduction

Hadrons, especially protons and neutrons, make up a huge proportion of visible
matter and, in addition, are one of the most commonly examined objects in exper-
imental and theoretical particle physics. Formed by quarks and bound together by
gluons, hadrons are one of the best examples when studying the effects of QCD.
However, since QCD is asymptotically free, bound states like hadrons cannot be
analyzed pertubatively. Hence,when describing hadronic structures, one needs the
help of non-perturbative objects, the so-called parton distributions functions (PDFs).
These densities f describe the probability of finding a parton of the hadron, which
classically are quarks and the gluon, at a certain momentum fractionE] x. A detailled
introduction can be found in every dedicated textbook, e.g. [Peskin and Schroeder,
1995], chapter 14, and parts of chapter 17 and 18.

Consider now a process involving at least one hadron. If hadrons are non-perturbative
objects, it is not obvious that one can calculate the actual process, e.g. an electron
scattering off the hadron, perturbatively. That this is actually possible, is proven by
the famous Factorization theorem. The word "factorization" can be taken literal, as
by using this statement one is able to seperate the actual process from all hadronic
subprocesses.

One could even go one step further: There is a way to identify and calculate the
perturbative part of the hadronic structure, meaning the PDFs itself. Factoriza-
tion introduces a so-called factorization scale u, which, as an artificial parameter,
the physical cross section must be independent of. Analogous to renormalization
group equations (RGEs), one can use this fact to introduce an equation to describe
the scaling of the PDFs, the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
equation. What is left as the non-perturbative part is the z-dependence of the PDF
at some starting scale pg. To obtain this (analytic) expression, one needs to fit a
parameter function to experimental data.

For any desired PDF, the DGLAP equation has the form

df (z, )

“dng = P(z,p) ® f(z, 1) (1.1)

The equation above introduces the so-called splitting kernels P(z, 1), which encode

2
To be more precise: The Bjorken x actually is a kinematic variable, x = _$»w where P and ¢

are the four-momenta of Proton and the momentum transfer in some arbitrary process. In the
parton model, this variable can be identified with the momentum fraction, historically denoted

by &.
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1. PDFs and the DGLAP equation

the relation between different PDF flavors. In general, the right-hand-side contains
a sum over all flavors, giving rise to many different kernels, but we will drop this
sum for reasons of simplicity in this chapterﬂ These kernel are perturbative objects,
which makes the DGLAP equation at least numerically solvable.

Due to the huge coupling strength of QCD «y, compared to e.g. ae, the dominating
diagrams for the kernels of quarks and gluons are QCD-diagrams. Figure shows
an exemplary diagram contributing to F,,. The objective of this work will be to
extend these graphs by QED contributions. These contributions include pure QED
graphs, see figures[I.ID] and mixed ones like figure[I.Id Further details on efficiently
handling these graphs in every specific case can be found in chapter[d To keep things
consistent, one needs to add new PDFs, i.e. new constituents of the hadron, when
also taking QED into account. Namely, these contributions are the fields of the
QED-Lagrangian: Leptons and the photon. These new PDFs of course also alter
the existing pure QCD sector by new splitting functions, e.g. Py,.

*

(b) Pure QED graph.

(¢) Mixed QCD®QED graph.

Figure 1.1.: Examples for splitting functions with different interactions. The cross
at the upper ends of the graphs symbolizes the hard scattering, pertur-
bative part. There is an implicit cut through the middle of the diagram
representing a squared amplitude and putting all intermediate particles
on-shell.

After setting up all new and altered evolution equations, they will be implemented
in chilipdf, a PDF interpolator and evolver being currently in development. To
numerically solve the DGLAP equation, chilipdf uses a numerically very precise

2 Alternatively, one can think of (1.1) as an equation for a vector of PDFs, turning P into a

matrix of kernels.



1. PDFs and the DGLAP equation

approximation with Chebychev polynomials, being explained in the next chapter.



1. PDFs and the DGLAP equation

1.2. Discretizing the DGLAP equation in the Chebychev
basis

For now, let us turn back to the DGLAP equation, see (1.1). By expanding the PDFs
in the basis of Chebychev-polynomials one can separate the z- and p-dependence:

fem) =3 fuln)Th(e). (1.2)
k=0

In addition, by substituting (|1.2)) into (1.1)) the DGLAP equation reduces to a dif-
ferential equation for every fk(,u)ﬁ

af =
dlnku = k/z::O Pragr (1) frr (1), (1.3)
where
Py () = (1.4)

Pertubation theory implies that on can expand the splitting functions into a series
in ag:

Pz, p1) =0 (1) () + ove () P ()
+ a3 ()P (z) + asae P (z) + o2 (1) PP (2) + O(a3 ). (1.5)

A similar expansion is of course also valid for the Pyi/ (z) coefficients.

There are two major points against numerically solving via a well-known
Runge-Kutta algorithm. Since p is an energy scale, the stepwidth needs to be
rather small compared to other scales if one wants to cover a wide range of values.
Additionally, P(x, ) only depends on u via as(p) and ae(p). Therefore, changing
variables to a strong coupling would cause tremendous numerical advantages. The
reason being is that variable The coupling dependence of the leading term in
completely or nearly cancels. This makes the kernel constant in first approximation,
which greatly improves the numerical accuracy of the Runge-Kutta algorithm. Our
choice will be a?CD, carrying just the QCD dependence in its 8 function. The
scale dependence of ozSQCD(,u) is determined by the Renormalization Group Equation

, which impliesﬂ

dfk agCD) 1 oS
d;QCD ~ 223, (22D ) Y P (as(a2P), ae(@@P)) fir (aZP). (1.6)
S S S S 9 k/:(]

The original fj(u) can then later be reobtained by substituting the solution of the
RGE, ie. fp(n) = fu(aQP(u)). Note that with this choice the leading term in ever

This means nothing less than discretising the integral of the Mellin convolution.

QCD

4 For further details on a see chapter



1. PDFs and the DGLAP equation

Py is nearly constant, since QED corrections are small. If one would just expand
up to O(al, a?), the right-hand-side is yet completely constant.

The equation above contains two subtleties, which makes this approach harder
than it seems at first sight. First, we are forced to compute the running of a. in
terms of as. This can only be achieved by reformulating the coupled system of RGEs
for oy and ae, which is the objective of the next chapter. In addition, the splitting
kernel now also contains pure QED and coupled QCD®QED effects, which will be

discussed later.



2. Solving the coupled RGEs of QCD and
QED up to NNLO

2.1. Original version

In this chapter we will discuss the so-called iterative solutions. What motivates
an approximate analytical solution compared to a numerical, e.g. Runge-Kutta,
one, which is precise up to machine precision, is the fast evaluation of the closed
analytical form.

Before looking at ae(as) the first step will be to solve the original system of RGEs.
We start with the coupled Renormalization Group Equations (RGE) for QCD and
QED at NNLO:

T = (. ac()
=~ 0.021) (1 -+ €xboa 1) + ecbiron)
+ b3002 (1) + by as (1)ave (1) + bipal(w) + O(el,))  (2.1)
ddlie :Be(QE(M)acVS(N))—

() (1+ ecbfone () + esbfnons ()

+ bsoag (1) + by ae(u)ais (1) + b0 )+0(6Z’,s)) (2.2)

We have introduced artificial expansion parameters €, . for both couplings to keep
track of the order we want to expand to. Following [Billis et al., 2019|, we have
defined ) o

bfﬁen = (47T)m+n ) ﬁ;%z (23)
Note that there is no asymptotic freedom in QED, hence there are no overall minus
signs in the g7, , constants. The coefficients of . s can be explicitly calculated by
renormalizing ;. at the according order of the expansion.

In this report we will apply the method of iterative solutions, fully explained
in [Billis et al., 2019]. In this paper, one also can find iterative solutions of the RGE
system above up to NNLO, which we will discussed in the following.

Solving these equations up to leading order (i.e. just keeping the leading term in




2. Solving the coupled RGEs of QCD and QED up to NNLO

both expansions) gives after a trivial integration:

LO as (ko)
ol = — 2.4
( ) Xs(:“’u MO) ( )
LO e(po)
= —— 2.
ae (,"L) Xe(l,L’ /J/O)’ ( 5)
where
Qg el0) ,s.e H
Xse(p, o) =1+ 2;)500 1“(%)' (2.6)
The boundary conditions are given by
Ho =mz, (27)
as(po) = 0.118 (2.8)
1
and ae(po) = o (2.9)

To compute the NLO solution (i.e. the solution of order 1), we discuss the approach
for the iterative solution of an arbitrary order n: First expand the RGEs to the
appropriate order, which we have already done in equations (2.1)) and ( . ) for the
NLO solution. Then substitute the in €; and €5 expanded 1terative solutions of order
n —1 in all terms, while keeping the overall factor a? (u) in front of the expansion
exact. This implies that in order to obtain the n-th order solution, one already mast
have calculated all solutions of lower order.

For the NLO case (n = 1) we are exactly in this situation At first tackling ag(p)
by substituting the LO solutions and ( into (truncated by the terms
of order 2), we arrive at

NLO )

a0 (1) = o (pt0) [ Xa(pt o) + 22110)

1
0 (cubio I (Xt o))+ € In(Xe ()|

(2.10)

after separation of variables, changing the integration variable from In p to X (u, o)
or X.(u, po) on the right-hand-side and performing the now again trivial integration.
YO (1) can then be obtained by just interchanging s <+ e in the equation above.

Solving the full NNLO equations and , which introduces slightly more
difficult integrals, follows exactly the same steps. We arrive at

Qg Qg Qg 2 X,—1 1—-X,+InX,
) ot e 2 by X, 4 (4(5?) (aoX +(‘fo)2—X )
a 1 - X, In X
+€13044(71:0) b 1S Tn X, + €2 Mo ab ) ba( bt l;;br n b>
q(fio) [Of a(10) o274 ( b - Xy )
+ €q€ (b3) b bg1 | — In X In X,
a0 b aa(po) — (o) (477 10 X - Xa
2
o (10) 10 1 (Xa ) Mo ab aa(po)ow(po) a Xa:|
— 2o, x, — o In 22|
2.11



2. Solving the coupled RGEs of QCD and QED up to NNLO

where again one just needs to interchange s <+ e to obtain al™N:O(y).

On page 9 of [Billis et al., 2019] one can find detailed plots concerning the accuracy
of all solutions up to NNLO by using the relative error, which will be defined in the
next chapter.

2.2. Expressing o, in terms of o

Having now the NLO solution of the original system at hand, let us change variables
in the RGE of QED. At first sight, the natural choice four the new running variable
would be the full QCD coupling. Nevertheless, it is actually more convenient to use
just the part of a; which obeys the pure QCD S-function:

daQCD
dlsﬁu = B:(a8°P)0). (2.12)
If we would now change a2°P, we would run into some nontrivial problems when

trying to obtain the NLO solution of as — a@CP. Hence, to get rid of of the overall
a? factor in every RGE, we first introduce new variables

Te = celo) _ 1 (2.13)
Qe
QCD
and rg = O[STJ(]/;O) -1 (2.14)
s

We also added a shift and a factor to obtain as simple boundary conditions as
possible, see (2.22]). This gives

drs s (o)
dlnu - aS(MO)BS( e + 1 )

for the pure QCD RGE. We define a difference to the full QCD coupling,

0) = Bs(rs,0). (2.15)

&y =i — (2.16)

to recover expressions for the original couplings:

0
«
e\"s, == - - 2.1
(75, 7e) re(rs) +1 (2.17)
0
as(rs, 6r) o (2.18)

- rs + 0p(rs) + 1

Changing variables in the remaining two equations yields

dre . Be(rears'+'5r)
drs B Bs(rsao)

dé, ﬂs(rs'+’5rare)__

(2.19)

d'f’s - /68 (TS7 0)

(2.20)
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Additionally, it is the simplest to change from In y to

m
t=In—. 2.21
Ko ( )

With these definitions the new boundary conditions read
rs(0) = ,(0) = r.(0) = 0. (2.22)

The differential equations above remain the same since dt = d1n p.

We will now give the iterative solution up to NNLO (computed in exactly the
same way as the ones in chapter , beginning with r;. One can show just by
resubstituting that the following results are equivalent to the ones given in chapter

21
rINEO (1) =38,0% + €,b35a0 In(1 4 B5oalt)

2
(650)* (I (1 + Bgadt) — Biadt) + boAoalt

2(,0)2
2.23
For the sake of clarity, from now on we use the abbreviation a;.(uo) = ag’e.
The LO solutions for (2.19)) and (2.20|) are rather simple:

reO(ry) = 't (2.24)
5:°(rs) =0, (2.25)

where we have used 0

€

o0 = 0% (2.26)

Bos

Let us now solve (2.19) at NLO. If we substitute the LO solutions above the equation
reads (after some rewriting)

dre o0 a%r2 + (14 a® + b5l + €:b5,05a0)rs + 1 + €b§y 0 + €505, a0
drs %72 + (1 + a® + e;b5b§al)rs + 1 + esb5a0
= o fNO (). (2.27)

Integrating gives
re(rs) = a®(FNO(rs) — FNO(0)), (2.28)
where we defined FNVO fulfills %FQNLO(TS) = fNEO(1). The explicit expression of
FNO(qy) is given in the appendix
In exactly the same way, one is able to find the NLO solution for d,(rs). The
equation

do, a%r2 + (1 + a® + €5b5pb§al + €cbf b5al) s + 1 + esbipal + €.b§; al
drs %72 + (14 a® 4 esb§pbgad)rs + 1 + €5b5,a0
= fNLO(p) (2.29)

10



2. Solving the coupled RGEs of QCD and QED up to NNLO

implies again a result of the form
SNEO (1) = FNO(ry) — FNYO(0), (2.30)

where FNO(r,) is given in appendix
One way to justify these results is to compare it with the solution obtained by
numerically solving the NLO system. Relative errors, defined as

_ @) — ) ()
M) = T )

for any function h(x) (obeying an according differential equation) relate different
iterative solutions h(x)*!(1) to the numerical solution h(z)™™(u), which is exact
up to machine precision. Figure shows the relative errors of a., d, and as. These
get compared with relative erros of iterative solutions of the original, ;1 dependent
coupled system of as(p) and a(u), which can be obtained in exactly the same way
as described above. For further details, see [Billis et al., 2019], chapter 2.2.

(2.31)

11



2. Solving the coupled RGEs of QCD and QED up to NNLO

— rel. err. ag(rs"(y), re(rs" (1))

rel. err. a, (1)

Aag

— rel. err. ae(rs"™ (W), rot(rs""™ (1))

— rel. err. ao(rs" (1), ro" (15" (1))
with expanded integrand

0 20 40 60 80 100
u

Figure 2.1.: Shown are of the relative errors in per cent of . (rs(u),reNLO(rs(,u)))

(see (2.28))), with iterative (see up to NLO) and numerical solu-
tions of r5(u) inserted, a version of r.(rs), where one expanded the inte-
grand before integrating and the iterative solution of as(p) (see (2.11)
up to NLO). u ranges from 1GeV to 100 GeV. The blue («!f(u)) and

e

yellow (ce (r;t (), PO (pit (,u)))) line completely overlap.

N

AS,

— rel. err. 6,'(r)

0.5

u

Figure 2.2.: Relative errors in per cent of 6N© (see (2.30))) depending on 74, which
ranges from —0.99 to 5.

— rel. err. ag(rs"(u), 6, (rs"(u)))

— rel. err. as"(u)

u

Figure 2.3.: Comparison of the relative errors in per cent of o (rs (1), SNLO (rs(,u))),

with iterative (see (2.23)) and fuumerical solutions of ¢ (1) inserted, with
the iterative solution of as(u) (see (2.11) up to NLO). u ranges from
1 GeV to 100 GeV.

— rel. err. ag(rs"™(u), 6, (rs""™ (1))



2. Solving the coupled RGEs of QCD and QED up to NNLO

It is impossible to distinguish between the errors of the iterative solutions obtained
via the r-method and directly via o, which confirms the analytical equivalence of
both approachesﬂ Inserting the numerical solution for r instead of the iterative
one decreases the error by roughly two orders of magnitude, thus this option will be
implemented into the final code. Exactly the same is the case for il =, +§,.

At last, one could expand iNYO(ry) up to O(es,e.), which leaves a rather easy
integration. This simplification costs about one order of magnitude in the relative
error. Although not necessary here, since the integration is analytically doable, this
gives an estimate for NNLO, where this is not the case anymore.

The relative error of 0, lies in the region of 1%, but intrinsically goes with e, and
therefore does not have to reach as low values as e.g. re.

Via a numerical solution of the inversion of (2.15)) one can deduce that these
corresponds to energies between approximately 0 GeV and 10'® GeV.

To obtain the NNLO solutions rYNO(r,) and NNO (1) we actually need to vary
the established pattern. Since in this case we deal with a fraction of g functions,
we substitute the complete iterative NLO solution (2:28). In general, with YO (r,)
and 0NO (r,) containing a combination of areatangiens hyperbolicus and logarithms,
the explicit integration of this expression is not possible. Hence we expand the
right-hand-sides and then perform the integration, leading to a similar shape as the
NLO-solution:

rNNLO _ (0(FNNLO (1.g) _ pNNLO(()) (2.32)

N0 (1) = N0 (r,) — FNLO(0) (2.33)

Again, FNNLO(r) and FINEO () are given in the appendix

One can compare these solutions with one of the approximations of aXN©(ay) in
figure 2.1 which yields a deviation by an approximate factor of 10 with respect to
the complete iterative solution. Figure shows the relative errors of ae, d, and a;,
at NNLO.

Due to the additional expansion of the integrand, we see that the error of the
iterative solution of r.(rs) increases compared to the one of a.(u). Inserting the
numerical solution of r.(u) does not lead to such a high improvement as in the case
of NLO. The relative error of §, diverges at r; = 0, which can be traced back to to
a root of §,(rs) at this value. Apart from that, the error is comparatively high but
still in an acceptable region due to the smallness of J, €.

To conclude, even after applying the necessary expansion of the integrand, the rel-
ative error of the iterative solution for a.(a2°P) does not exceed 0.1% and therefore
is suitable for an implementation in the chilipdf code.

1 After some algebra, this equivalence can also be seen directly in the equations.

13
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— rel. err. ag(rst (1), ret (rst (1))

106} . rel. err. a,' (1)

— rel. err. ag(rst (1), rt (rst (1))

Figure 2.4.: Shown are of the relative errors in per cent of a, (rs(,u), rEINLO(TS(,u)D

(see (2.32)), with iterative (see up to NNLO) and numerical solu-
tions of r5(u) inserted, a version of r.(rs), where one expanded the inte-
grand before integrating and the iterative solution of as(p) (see
up to NNLO). p ranges from 1GeV to 100 GeV.

1000

100

— rel. err. 6,(rs)

0.10

0.01

-1 0 1 2 3 4 5

Figure 2.5.: Relative error of 6XNMO(ry) (see (2-33)))with r ranges from —0.99 to 5.
10

0.100| A

— rel. err. ag(rs'(u), 6, (rs(u)))
— rel. err. ag'(y)

— rel. err. ag(rs""™(u), 6, (r,""™(14)))

u

Figure 2.6.: Comparison of the relative errors of as(rs(u),(?yNLo(rs(u))) (see

(2.23])), with iterative (see ) and numerical solutions of r4(u) in-
serted, with the iterative solution of a,(u) (see (2.11))). p ranges from
1GeV to 100 GeV.



3. The evolution basis

The development of including QED interactions in splitting kernels can be com-
prehended in the publications |[Roth and Weinzierl, 2004] (O(ae), photon PDF),
[Bertone et al., 2015] (O(ae), lepton PDFs), [de Florian et al., 2017b] (O(a?))
and |de Florian et al., 2017a] O(acas)).

Before discussing the QED extensions of the splitting kernels, one needs to work
out the interplay between all active PDFs in the hadron via different kernels. Besides
the classical "QCD" PDFs, the gluon ¢g and active quarks, this also includes the
photon 7 and all active leptons I;. Since up and down quarks have distinct (QED-)
charges, we will distinguish between between their PDFs using an u; and d;. In the
definitions above, i runs up to the according (active) flavor number n,,, ng and n;.

In this physical, so-called parton basis, the evolutions equations look as followsﬂ

d s

d;j: 999+Pgw7+z<ngf+ng’f) (3.1)
f

d _

CTZ: w9+Png+Z<owf+P7ff> (3.2)
f

du; .

L —Pagg + Puyy + 3 (Pusf + o) (3.3)
f

dd; ~

- qgg+Pdv'7+Z(Pdff+Pdff) (3.4)
f

dl; _

= =Pug+ Py + (P f + Py (3.5)
!

du; .

L —Puyg + Payy+ 3 (Pagf + Pogf) (3.6)
f

dd; )

o a9+ Py + Z(ngf + ngf) (3.7)
f

dl; ;

— =Pug+ Py + (P f + Py (3.8)
!

In the equations above, we already used some simplifications: There is no difference
between different quarks when interacting with a gluon, thus just one Pgg and

L For the sake of clarity, we write the Mellin-convolution "®" as a simple product. Hence, by

following the formalism established in chapter [I| we treat the kernels as matrices and PDFs as
vectors.

15



3. The evolution basis

P,, is sufficient to describe this mixing, respectively. In addition, up- and down-
quarks have good quantum number also when taking QED interactions into account,
meaning that we do not have introduce splitting kernels for each individual quark,
but just for up- and down-flavors in general. This will also greatly simplify the sums
over all fermions f. Furthermore, this motivates a change of basis to make as many
of the equations above diagonal as possible. To motivate the so-called evolution
basis, we first note that kernels involving one fermion f and one gauge boson b do
not change when the fermion into an antifermion:

be = be. (39)
Furthermore, charge invariance of all kernels yields

This implies, that the so-called valence distribution

f=f-§ (3.11)
of an arbitrary fermion decouples from both the gluon and the photon:
df_ D= S pl—
el D DY & (3.12)
f/

where we have used some of the following common kernel definitions:

— S
— 1% S
+ _pV 1%
for arbitrary fermions f;, f;, f and fﬁ We can get rid of the sum over all fermions
f in (3.12) by taking the difference between two flavors with the same quantum
numbers, namely between two up-quarks, down-quarks or leptons. To keep these
differences as small as possible, which minimizes the numerical uncertainties of these

distributions, we take differences of consecutive flavors ordered by their mass. In
the case of all flavors active, n, = ngy = n; = 3, we have the basis elementsﬁ

Que =U —C 5 oy Qggr Dy lepy> and 1. (3.18)

Keep in mind that for example Pusi ;= P3.
In the case where one of the flavor numbers is one or zero, there will be no according f;; in
the evolution basis.

16



3. The evolution basis

All these distributions evolve independently:
df;;
dt

Looking back again at the valence evolution (3.12)), one can define the next three
basis elements

=P f;. (3.19)

Ny nd n
S,=) u, Sy =) di, and X =) 17, (3.20)
which introduces minimal mixing in between only these distributions. After some

algebra we find

ax;
dt

= (P, +nyAP,, )Y, +nu(AP X, + AP, %), (3.21)

and accordingly for X, and ;. Up to NLO, it is verified that Pyp = P, thus
AP}?f, = 0 and therefore also this chapter evolves diagonally. This would change
when going to NNLO.

Up until now, what we have covered is the so-called non-singlet chapter. If we
would we have restricted ourselves to pure QCD, there would be no mixing at all in
this region of the evolution basis. The advent of QED introduces coupling between
different evolution equations, which can be kept minimal by defining the 2]7 distri-
butions, where again f = u,d,[. Closely related to them are the so-called singlet
distributions

ng
SP=) (3.22)
where -
fr=f+1. (3.23)
These distributions evolve as follows:
df =S
= PRI Y P fT 4 2(Prag + Pry). (3.24)
f/

We can now restrict the mixing of the gluon and photon distributions to as few other
ones as possible by defining the singlet distributions as above. Again, after some
algebra we find that these are the evolution equations of the second and entangled

17



3. The evolution basis

sector:
dg
a 999 + Poyy + Z ngz}r (3.25)
f=u,d,l
dy
a Py + Pygg + Z Pvfz}r (3.26)
f=u,d,l
%y + B + 5 v+ P oyt
= (PF 4P ) S5 4 nu(PuaSy + PuSt) + 2nu(Pyg + Puy)  (3.27)
vy _ _ —
T: = (PJ + nded) 14 ng (PduE:[ + Pdlzf) + 2”d(quQ + Pm) (3.28)
dyt _ _ —
7; = (Pl+ + anll) 2;_ +ny (PZUE;F + Plqu> + 2 Py (3.29)

This choice of an evolution basis is not unique. E.g., in [de Florian et al., 2017b] and
|de Florian et al., 2017aj, sums and differences of ¥} and X4 are used. Nevertheless,
this does not add any further decoupling but rather increases the size of the evolution
equations above.
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4. Implementation of QED and
QED®QCD splitting kernels

As mentioned in the end of chapter [I, we need to take care of the new arising
splitting kernels. Fortunately, these are already calculated, see [de Florian et al.,
2017a] and [de Florian et al., 2017b]. Hence, one could implement all these explicit
expressions in the according evolution equations, see chapter Nevertheless, this
would result in many unnecessary matrix multiplications between kernels and PDFs.
The reason for this is that graph topologies do not change when going from pure
QCD diagrams to mixed QCD®QED or pure QED ones. To make this explicit, we
introduce a new notation by splitting an arbitrary kernel not only into the different
orderﬂ see , but also every order into the colour structure, i.e.

Py =Y P, (4.1

where the ¢ are prefactors which contain all the well known color structures/SU(3)
group constants, e.g. ¢ = CpCx. Fjj will from now on be called color stripped
kernels. Their shape can be deduced by looking at the complete kernels, e.g. given

in [Ellis and Vogelsang, 1996|, chapter 2.5. In the case of pure QCD, this leads to

R 4
Py, =ay <C’APgCgA = 3 Trmrd(1 - x)>

+a? (CFTFPQC;FTF + CATpPOATF 4 Cipgff‘) (4.2)
Py =a,CpPL,

+a; (C%Pg?f + CpOAPLT o + CFTFP;;FTF> (4.3)
Py =a,TrP,k,

+a? (CFTFngg LS CATFPquATF> (4.4)

Since just the pure QCD NNLO kernels are completely calculated up to now, here and in the
following we restrict ourselves to NLO kernels.
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4. Implementation of QED and QED®RQCD splitting kernels

» C
quv :OéSCFP qz‘r/

q
2
+a? (Cgpqqg + CaACFPA" + CFTFPq?;TF> (4.5)
- NcCp
Pyjv =a3 (C% - )Pfgv (4.6)
Pyys =a2CpTrP 5" (4.7)
Pyys ZQECFTFP(IC(}QTF = agCFTFPqugTF, (4.8)

where all other kernels, e.g. If’wl, are zero. One can now obtain all kernels involving
QED for quarks, leptons, the gluon and the photorﬂ from these expressions. Ac-
cording to the order, (0,1), (1,1) or (0,2), one replaces one or both gluons by a
photon, which partly or completely replaces the color by a charge structure. E.g.,
a loop over every active quark flavor, "coupling" to a gluon, gives rise to a factor
Trng, where np is the number of active flavors. Replacing this by a QED fermion-
photon coupling turns this into a loop over all fermions and hence produces a sum
over all squared fermionic charges as prefactor instead: ¢ Née%, where f runs
over all lepton and quark flavors. Note that the interaction with a photon is color
degeneratedﬂ, which add a factor of N4, = N = 3 in the case of quarks and leaves
the leptonic case, where NZC = 1, unchanged. Additionally, in the process called
abelization, all diagrams involving three- and four-gluon vertices inheriting from the
non-abelian SU(3) gauge invariance of QCD need to be discarded when collecting
all diagrams with at least one photon. In the end, one finds that to every abelian
QCD diagram of order (1,0) and (2,0) there is an unique correspondent of order
(0,1) and (0,2). In the case of gg-kernels at (1,1), there are two different ways for
every pure QCD diagram leading to the same color-charge structure (see [de Florian
et al., 2017aj, p. 8 for exemplary diagrams). Section III of [de Florian et al., 2017a]
gives a more detailled overview over this procedure. The kernels (reduced by the
pure QCD contributions given above) are

P,y =acasTr Z 62(5(1 — ) (4.9)
q

~ 2

Py, :aeasCFeZP;;F (4.10)

Pag ZaeasengPquFTF (4.11)

- C2 T
FPoqv :aeequif/ +ag (eépqq{/ + eg Z Née%PquI{} F>
!

2 C%
+ aeaSQeqCFquV (4.12)

Pure QCD kernels for leptons and photons are of course zero.
It is for this reason that one also has to average over the color of incoming particles in the case
of diagrams which include QED.
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4. Implementation of QED and QED®RQCD splitting kernels

P WGV a€e4P waV T aea52egCFP3q9V (4.13)
Pyys =aZNcelel PLE'™ (4.14)
P s —qufs (4.15)
Py, Z NLe3s(1 — ) + o? Z N} PSrTe
— Qg Z eq6 (1—x) (4.16)
q
Py aeefP + o (engqF —|—efZN£ PCFTF)
f
02
|:+O46C¥5€%CFPQQF:| (4.17)
Pf’y —aeefPTF + oz2e‘}NfPCFTF
[—l—ozeasNCCFez PCFTF} (4.18)
Py =acef P + a§< Cr 1 Z Nle pq?;TF) (4.19)
Dy =alel P2y, (4.20)
Pff’S =0 N ef/ch;gTF (421)
Py =Pyp (4.22)

where the terms in the square brackets only need be taken into account when the
fermion f is a quark. For the last two kernels, at least one of the fermions f or f’
has to be a lepton. Furthermore, the complete kernels P up to NLO can be obtained
by adding P and P.

All this work now bears fruits when one implements the complete cernels in
chilipdf. It now becomes rather obvious, where one can factorize kernels or PDFs
to save runtime. Another possibility is to precalculate convolutions. The general
rule goes as follows: Let n be the number, a specific kernel gets convoluted with and
m the number of equations, this kernel appears in. If n > m, factorize this kernel in
every equation. If otherwise, precalculate the convolution with every PDF. If n = m,
both procedures save the same amount of evaluations. We now give every full LO
evolution equation in terms of color-stripped kernels. If one should precalculate a
certain convolution, this is indicated with square brackets, i.e. [Pppb].

dg*© 4

“th = <C’FP§1F (Z;f + Ej{) + C’APgAg - ngnF(S(l - :U)g) (4.23)
d")/LO

=0 (PngF <e32; + eIt +efx ) Z NLe3s(1 — x) ) (4.24)
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4. Implementation of QED and QED®RQCD splitting kernels

ax+t©
a  _ 2\ pCry+
— —(asCF + aeeq)quFEq
+ 2n, <asTF[PqZFg] + ozeNceg [PqEFW]) , (4.25)
where ¢ = u, d
+LO
dzl — QPCF Z+ 2 PTF 4
—g el FvE + 2ne] [Pyl 7] (4.26)
LO
457 a5)
a7 _ 2\ pC -
- =(asCr + aced) Pt (7, ¢), (4.27)
where ¢ = u, d and i, j are flavors
LO
a(z;, i
M =t Pyt (S, 1) (4.28)
dt qqV \=l > "ij )

where ¢, j are leptonic flavors

The virtual corrections proportional to §(1 — z) in the equations for g and - become
unity matrices when going from kernels to matrices. As can be seen above, precal-
culations are only favorable in the case of PqEF . This is quite similar to the case of
NLO, which equations are given in appendix
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5. Numerical Results

We are testing the implementation with a toy model set of PDFs, which aims to
describe the proton, at the starting scale i = v/2GeV from [The QCD/SM Working
Group, 2002| for quarks and gluons. Due to a lack of experimental data, leptons
and the photon are set to zero at this scale.

A reliable check for the implementation are the sum rules. Since PDFs are nor-
malized with respect to the according number of partons in the proton, the integral
over the whole x range of the difference between one specific flavor and antiflavor
needs to reproduce the according number of valence particles in the proton at all
scales u. Thus, a numerical comparison of

1
/dxu’(x) _2-0 (5.1)
0

1
and [ dxd (x)—1=0 (5.2)
[

at starting and target scale pg and p provides a good check.

Furthermore, one can make use the of the fact that the expectation value of the
momentum fraction of the proton itself needs to be 1. Momentum conservation
implies that again this needs to be true at all energies. To get the PDF of the
proton, we just add up all constituents, hence the momentum sum rule reads

1
/ drz(g(x) +v(z) + Y Tf)-1=0. (5.3)
0

f=ud)l

This check is of even greater importance since it directly includes the new photon
and lepton PDFs.

However, one expects deviations from these results after the evolution for one
reasons: Due two self-interactions the gluon PDF becomes steeper at high energies.
Since the numerical approximation of the integrals in the sum rules cannot start at
exactly zer(ﬂ one ignores an increasing contribution to the integral for growing p. To
demonstrate this effect, let us start the integration at z = 10~® and then introduce a
new subgrid ranging from z = 107! to z = 10~® with 23 subpoints. In the first case,
for a pure gluon evolution at LO we fulfill the momentum sum rule with a difference
of order 107°, in the second one we improve to 10~7. In the following numerical

! The reason for this is that chilipdf actually works on a grid on log(z), not x itself.
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5. Numerical Results

calculations we on subgrids between the values = 10~1,1078,107%,0.5, 1, where
the subgrids have (23,23, 31, 23) gridpoints.

Nevertheless, one can compare this deviations with the one occuring in the case of
pure QCD. If both are of the same order of magnitude, this is a huge hint for properly
implemented evolution equations. Table shows the numerically evaluated sum
rules at LO and NLO. As it can be seen, all sum rules are correctly reproduced after
the QCD®QED evolution. Another positive check was the successful reproduction
of PDFs, which were evolved by the pure QCD-evolver, at LO and NLO.

Of particular interest is table where the different runtimes of the pure QCD
and QCD®RQED evolvers get compared. We see, that the runtime of the QED-
enhanced evolution just increases by a factor of 3 to 4, which is much less than the
factor of a naive ansatz: If one would choose a brute-force ansatz and just evaluates
the 5 x 5 instead of the 2 x 2, just in the singlet sector at LO alone the runtime
would increase by a factor of 24—5 =~ 6.

Summing up all the numerical results, this project can be considered a success.
The new kernels, arising from the QED interactions, were implemented properly
and the additional runtime could be significantly reduced through the usage of color
stripped kernels.

Table 5.1.: Comparing differences of sum rules at starting and target scale for pure
QCD and QCD®QED evolution at LO and NLO. The flavor numbers
are n,, = 2 and ng = n; = 3 and the parametrizations at ug are described
at the beginning of this chapter. At the starting scale, the sum rules
take the values 2 — [u~ = 1.012-107%, 1 — [d~ = 6.071 - 1079 and
1—[fa(g+~y+3) +35 + %) =2.234-1075.

sum rule. order difference between sum rule difference between sum rule
’ at po and p, pure QCD at po and u, QCD®QED

u~, LO —3.891-10°8 —3.995- 1077

d=, LO —2.328 1078 —2.343-1078
momentum, LO 2.032-1077 2.033-1077

u~, NLO —1.645-1077 —1.621-1077

d—, NLO —9.731-1078 —9.696 - 1078
momentum, NLO 2.223-1077 2.225-1078
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5. Numerical Results

Table 5.2.: Comparing runtimes of an evolver optimized for pure QCD evolution
with the new one optimized for QCD®QED evolution (for n; = 0 and
n; = 3) with the approach of color stripped matrices. The runtime is
an average over 100 evolutions computed with a notebook version of an
AMD Ryzen 5 processor.

pure QCD QCD@QED relative QCD@.QED relative
order . evolver, in ms, evolver, in ms,
evolver, in ms factor factor
n =3 n; =20
LO 4.747 - 10! 1.602 - 10* 3.375 1.247 - 10° 2.627
NLO| 1.072-10? 4.151 - 102 3.872 3.675 - 102 3.428
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A. Explicit shape of coupled RGE
solutions

In the following we will give all right-hand-sides of the NLO and NNLO solutions of
re(rs) and d0,(rs) of chapter [2l The NLO solutions contain coefficients A and B._,
which implicetly depend on the expansion parameters €5 and e..

Age = 1+ 05900 + €,b§, o (A1)
0
Ale — 1 + bo 8 + Eebloag + 63 be 0 (A2)
0
ae
Age = 000 (A.3)
Boe = 1 + esbpal (A.4)
0
Aps =1+ eebglae + esbb5al (A.6)
0
A =1 +b€ —i—eebma + esbb5al (A7)
0
Ags = b 0 (A.8)
Bos =1+ esb‘{oag (A.9)
0
Bps=1+b5%¢ a0 + esbipbGal (A.10)

The fully written out results are

FNEO(r ) = 1y —

2A26A06 - 2A2eBOe - AleBle + B%e . artanh( 2A26rs + Ble )

AZ@ B%e — 4A2€Boe B%e - 4AQeBOe

A, — B
+ 1‘;T216 +In(Ager? + Biers + Boe) (A.11)
€
2A05A0s — 2A55Bos — A1sB B2 24 B
F(%\ILO( J) = 25 Aos 25 Bos 16015 + Dy -artanh( 25Ts + Bis >
Ags\/ B35 — 4A25Bos \/ Bis — 4425 Bos
Ai;; — B
+ h;T%w In(Agsr? + Bugrs + Byy) (A.12)



A. Explicit shape of coupled RGE solutions

The areatangens hyperbolicus functions in the formulae above are the defined for the
absolute value of their argument being smaller than 1. E.g. for Fé\ILO, this means
that r4 ranges approximately from —1 to 5.5. This corresponds (using the numerical
solution of the inversion of ) to energies between 0GeV to approximately
10'® GeV, which is the same order of magnitude as the Landau pole of QED.

s s -

FNNLO (1) — 4 (a0)? (62 b3 — b + bin (b1 — bio) e €ebyg + €sbGbio(blo — b&))
b b6 (0 + b )

€. !
be(1+ 7s)(af + albgrs)

01e 1.8

) {63%501 01
_ OObe be, + be(s_be)
Qe g1 | €eb1p T €509\ 010 01

+ a [ a9b5o (ecbo + x5 (blo — b)) — esbib3b6] }

0 O7e

ay + agb,

x artanh 8782
oy — agbg

1
0
5 (14 15) (aQ + albgrs)

+ €cx . {6304219?0681

— af[ec(bSo)? (1 +7,) — eubfobiirs — €ubEblo (b1 — blo) (1 +7.)] }

0 Oze 0ze
o + o gbg + 2a,bgrs
X artanh( 5 ag — aobee
s e”0
i Ckg . 2 . |:62a0a0(be)2+6 be((aobe _QO)( e 18 )
2b8 ag_a(e)bg e“e™s\Y0 sY0 e”0 s 01 10
+ecalal Bty + bty — 86,)) | (1 + 1,
2. e (.0 0pe 0,0p¢
+ OéO _ a()b(e) ’ 10 (as — @0 + EsQe Oy 10)
s e

+ esadadbf (51601 + bigbTo — bil)] ln(ag + agbgrs)
e,

_|_
(1+7s)(aQ + aQbrs)

sty + albio et + ect(bio — b))

+ 0 (ec(b50)? + et 061 05 — Vi)

y 111((1 +75) (a2 + a2b§rs) ) }

= (A.13)
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A. Explicit shape of coupled RGE solutions

0,0

NNLO _ 0 Qe Olg s 1.8 s
F (rs) = agee Eebe 0 0pe : (bo1 10 — 02)
o\ Qg + QeOpTs

alby [ecalbiy + a (ecbSo(1 +75) + € (bo + 2birs — b1 (1+7)) ) |

b(1 4 75)(ad + adbgrs)

x {artanh<a§+a‘;’bs> + artanh <a2 + albg + 2042()87”8”

al — alb§ al — alb§
0.0(1e 1s S 1.8 s
g (b6108; + 163 — biy) n(1
— €5 5 e n(1l+ry)
o — abf
bs be bs _ bs S _"_ bS
01 0121 — %01910 T 011
- [6 + esalal T o In(a? + a2b§rs)
bO Og — aebo

adbg, [Esagbfo + ol (Ee To(147s) + €5 (bg; — b5 + bglrs))}
205(1 + rs) (¥ + aQbgrs)

x m((l 1) (a0 + actirs) ) } (A.14)

af
Note that are no leading r, terms in the Fjs-functions, which can be traced back to
the vanishing LO solution of §,. It is also evident that in J, all corrections are at
least of order €.. One could have expected that due to the cancellations of all pure

QCD terms in ([2.20]) via the —1 at the end.
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B. Full NLO color-stripped evolution
equations

Applying the techniques discussed at the end of chapter [, we arrive at

dgNt© crC CrT 2 pCF\ (vt o st
—— =03 | (CrOaPgr o + CrTmpPr™ + CpPy” ) (S5 +54)
CpTp CaTp 2 pC%
+ CFTFTLFng + CATFTLFng + Cy Py )g
2
+ a0 <C’FPQC¢;~,F (632: + eiZj)
—|—CFNCZe(?PgCgFTFV+4C’FNCZe§5(1 —x)y (B.1)
q q
—4TF2625(1 — x)g) (B.2)
q
N0 £ .2 pCpTr (2 It | 25
=l Y NPt (2 +e3ng +en))
f

02
+ Pyg” ((agei + ozsaeCFei) uF+ (ageé + asaeCFez) ST+ aie?Eﬁ)
+ PgC;FTF (asozeTF Z egg + az Z Née‘}xy)
q f
+ agad Z eg (Tpd(l —x)g
q

— CpNgd(1 — x)’y) (B.3)
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B. Full NLO color-stripped evolution equations

+NLO
a5

T :2nq<(0630FTF + OésOéeTFeg) [P(EFTFQ] + OégCATF[PgC(’]ATFg])

+ 2nyNe (ozZe;1 + asaeCFe?,) [quFTF’Y]

CrTr 2 2 2v+
+2nqP s (aeNCeqelEl

+ (agCFTF + agechegx>Z;>,

C2
+a2(CEPLL + CrTpnpPgi™ + CrCaPyiC

NcCry 02 CpT
+(CE - : ) Pay + 2n,CpTrPOE™ ) S

Cc? Cc?
+ asae2eiCr Pyt + P ) S

T anNCPCFTF)

qqV qqS

c2 c2
+a? (eg (Piev + Py
CpT,
+e2 > NLeFPr F) Sy (B.4)
f
where ¢ =u, d and ¢ =d, u

+NLO

s o
ldit =a? (27116? [quFTF’y]
+ 2mef P (258 + €3n))

CE

C2
+ (e?L (quf/ + quf/ + 2n1PqZ§TF)

C
+ef > NEed Pt ) syt (B.5)
7
NLO
d(zanm)
dt

NCcF)PC%>

9 qqV

2
:{ag (c%qu{, + CrTpnpPat/" + CrCaPgi — (CF -

2 C? C?
+ asa620peq (qu€, — qu€/>

2( 4 pCt Ci 2 f 2 pCpT. -
Tae (64 (qul‘w/ - Pqél‘w/) e ZNCequql‘w/ F> }(2‘1 ’ qij)
!
(B.6)

where ¢ = u, d and ¢, j are flavors
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B. Full NLO color-stripped evolution equations

1o Yig C2 CrT
T :042(6? (qul\:/ qu) +e€ ZNé qul‘?/ F) <Zl ) lzj) (B7>
where i, j are leptonic ﬂavors
oy _ i C%P CrTrnpPSE 4+ CpCoPEEA
dt = F qV + Crlpng qaqV + qqV

NcC c2

2 CVUF

+(Cr - =5 )qug)
Cc? Cc?

+ ase2Cred Pyt + Py )

2 a(pC3 2 CrT.
+ o2 (eq (qu@ + quv) +e2 > NLetPSx F) }q% (B.8)
f

where ¢ = u, d and i, j are flavors

dl+NLO
c
T = (e? (P v T qu) te Z quip/TF> L (B.9)

where i, j are leptonic ﬂavors

Again, convolutions in square brackets are evaluated first. Additionally to the proce-
dure at LO, all sums of kernels are precalculated to minimize matrix multiplications.
The added contributions proportional to §(1 — ) in the g and - evolution equations
are there to cancel the virtual parts of P;;F TF The reason for this is that there can-
not be a virtual diagram (a diagram without radiation of particles) of a gluon/photon
splitting into a photon/gluon due to conversation of color.
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