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Abstract

A PIMD algorithm is developed from scratch and his functionality is tested simulating a quantum harmonic
oscillator. The algorithm is extended with a Langevin thermostat to enforce canonical distribution and with
Rattle algorithm to impose constraints. The rattle algorithm is developed both for a generic MD simulation
and for a PIMD simulation and his properties are confronted in the two cases. The algorithm is used to
initialize a system of interest that will be used in future for RPMD simulations.
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1 Theoretical introduction

1.a PIMD

It’s well known that path integral reformulation of quantum mechanics yields to

K(x′, t, x, 0) =

∫
[Dx(τ)]e−S[x(τ)]/~

where K is the propagator, S[x(τ)] the action of the path x(τ) and [Dx(τ)] indicates the set of paths starting
from x at time 0 and ending in x′ at time t.
Then considering a simple Minkowski rotation, we can obtain a partition function

Z(β) =

∮
[Dx(τ)]eiS[x(τ)]/~

where now integration is intended over all closed path of imaginary time β~.
Since we would like to compute these quantities numerically we need to discretize such equation, in particular
is straightforward to show that [1]

ZN (β) :=

(
mN

2πβ~2

)N/2 ∫
dx1 · · · dxN exp

{
−

N∑
i=1

mN

2β~2
(xi+1 − xi)2 +

β

N
V (xi)

}
−−−−→
N→∞

Z(β)

where the indexes are intended to be cyclic.
What is particularly surprising is that since(

mN

2πβ~2

)N/2
=

∫
dp1 · · · dpN

~N
exp

{
−β

N∑
i=1

p2i
2m

}
the partition function reduces to

ZN (β) =

∫
dx1 · · · dxNdp1 · · · dpN

~N
e−βNHn

Hn(x1, . . . , xN , p1, . . . , pN ) =

N∑
i=1

p2i
2m

+
mω2

N

2
(xi+1 − xi)2 + V (xi)

ωN =
N

β~
and βn =

β

N

This is actually the partition function of a classical system, a set of N masses cyclically connected by harmonic
springs with frequency ωN and immersed in a potential V canonically distributed with inverse temperature βN .
From now on, we’ll call the various masses beads or replicas while the whole chain will be referred to as necklace.

This idea provides us a method for simulating quantum systems using classical algorithms, in particular ZN (β)
could be evaluated using either a Monte Carlo sampling or a molecular dynamics simulation, we focus on the
latter option. In order to achieve ergodicity, that is to distribute the system canonically over time, the presence
of a thermostat is required, the most used are certainly the Nosé-Hoover [5] [6] and the Langevin thermostats
[7] [8], we’ll describe the second one.

1.b SDE and Langevin thermostating

Langevin equations
dq

dt
=

p

m

dp

dt
= −dV

dq
− γp+

√
2mγ

β
ξ 〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = δ(t− s)

are a set of stochastic differential equation (SDE), γ is a viscous coefficient and ξ a random variable.
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We can transform such equation into an equation concerning the density distribution of the random variable p,
such equation is known as Fokker-Plank equation [2]

∂ρ

∂t
= −p∂ρ

∂q
+

∂

∂p

[(
dV

dq
+ γp

)
ρ

]
+
mγ

β

∂2ρ

∂p2

where ρ = ρ(q, p, t|q0, p0, 0) is a conditional distribution for the stochastic variable (q, p) in the phase space. By
direct substitution it’s easy to check that

ρ = C exp

{
−β
(
p2

2m
+ V (q)

)}
is the only stationary solution and C is fixed by the normalization condition. We can work out analytically a
solution for the SDE even in the time-dependent case, we simply need a little bit of Ito calculus [2] .
If V is an harmonic potential then the Langevin equation reduce to a Ornstein-Uhlenbeck process, for which the
general SDE (in the unidimensional case) is:

dx = −kxdt+
√
DdW (t)

Where dW (t) is the differential of the Wigner process. Considering the stochastic variable y = xekt and using
Ito formula yield a very simple SDE

dy =
√
DektdW (t)

that can be integrated so that

x(t) = x(0)e−kt +
√
D

∫ t

0

e−k(t−t
′)dW (t′)

if x(0) is either Gaussian or nonrandom, the whole process is Gaussian too and thus completely specified by
mean and variance (which can be evaluated easily using Ito’s formulas for averages and correlations):

〈x(t)〉 = 〈x(0)〉e−kt

Var{x(t)} =

{
Var{x(0)} − D

2k

}
e−2kt +

D

2k

In our case x = (q, p) and the Ornstein-Uhlenbeck process is multidimensional but this doesn’t affect any
conclusion.
The exponential decaying behavior shows that, not only the stationary solution of this process is the canonical
distribution but also that any process, regardless of its initial condition, approaches the stationary solution with
a time scale dictated by the viscous coefficient.
In future sections we’ll search for optimal γ coefficient in order to find efficient integrators of the motion. For
the moment, the relevant concept is that such equation of motion effectively acts as a thermostat imposing
canonical distribution to the paths.

1.c Rattle algorithm

Sometimes in these simulations is important to impose certain constraints, for example, if one is simulating the
scattering of a set of particles, he might wants to ignore the energy associated to the motion of the center of
mass of the system and thus he might want to remove such degree of freedom from my simulation.
For classical systems this is done by mean of the Rattle algorithm, evaluating the generalized forces coming from
the constraints. For time-independent constraints of the form :

gi(q) = 0 for i = 1, . . . ,m

such forces must be perpendicular to the surface defined by the constraint itself (because of D’Alembert prin-
ciple). In the end we have 

dq
dt = v

M dv
dt = −∇qV (q)−

∑m
i λi∇qgi(q)

gi(q) = 0

Where the λi can be thought also as Lagrange multipliers and can be found explicitly by imposing the constraint
(third equation). Rattle algorithm simply reimposes such constraints at each step as it will be shown in more
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detail in subsequent sections.

2 Computational implementation

2.a Classical Stormer-Verlet integrator

I started implementing a classical integrator to simulate the motion of necklaces immersed in an external
potential (basically PIMD without thermalization). The integrator chosen is the Stormer-Verlet algorithm,
which is a second-order integrator meaning that at each step then the error is o(dt3) (dt is the time step in the
discretization).
Specifically the implemented algorithm at each step acts as :

Stormer-Verlet algorithm

1.

p← p−∇qV (q)
dt

2

2.

q ← q +
p

m

dt

2

3.

p← p−∇qV (q)
dt

2

To check the effective functionality of such integrator, I checked for the conservation of classical energy and
angular momentum of the system (considered completely classical at the moment) which are reported in Fig 1.
As can be seen explicitly, energy is conserved up to one part in a million while angular momentum is conserved

Figure 1: Energy and angular momentum conservation for the classical Stormer-Verlet algorithm.

up to floating-point precision for this specific case.
In general such fluctuations on energy are caused by the finite time step in the integration and can be reduced
reducing the time step as the general fluctuation goes as [9]√

(∆E2)

E
= O(dt2).

What is not obvious in general (and in general not true for all the commonly used integrators) is the conservation
of the mean value of energy, which is true for this specific algorithm for dt sufficiently small. Too big values of
dt can bring to systematic drift which have in general an exponentially divergent behavior as shown in Fig 2.
Such conservation is not obvious at all because in general small errors at each step accumulate so that trajectories
diverge exponentially from the exact ones, nevertheless such wrong trajectories still have the correct energy for
this particular integrator.
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Figure 2: Divergence of energy for too big values of dt.

To have a better visualization of what is happening I have designed an algorithm to visualize dynamically the
motion of the classical system (for clear reasons the visualization is only implemented for 2-dimensional system
and could be easily extended to 3-dimensional ones while the computing algorithm is fully generalized to any
number of dimension). Some randomly chosen frames of the video generated by this algorithms are shown in
Fig 3.

Figure 3: Some random frames of the classical evolution of 2 necklaces with 10 beads each.

2.b Classical Rattle implementation

As we said previously Rattle algorithm is a second-order integrator that at each step assures the preservation
of constraints, as can be seen, is a direct generalization of the Stormer-Verlet algorithm [4]

qn+1 = qn + dtvn+
1
2

Mvn+
1
2 = Mvn − dt

2 ∇qV (qn)− dt
2 G(qn)Tλnr

g(qn+1) = 0

Mvn+1 = Mvn+
1
2 − dt

2 ∇qV (qn+1)− dt
2 G(qn+1)Tλn+1

v

G(qn+1)vn+1 = 0

where GT (q) = ∇qg(q). The two constraints are the requirement of q to point on the constrained surface and
of v to lie on it.
In practice the algorithm at each step act as:
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Rattle algorithm

1. Evaluate λr by solving :

g

(
q + dtv − dt2

2
M−1 (∇qV (q)−G(q)Tλr

))
= 0

2.

v ← v − dt

2
M−1∇qV (q)− dt

2
M−1G(q)Tλr

3.
q ← q + dtv

4. Evaluate λv by solving :

G(q)

(
v − dt

2
M−1∇qV (q)− dt

2
M−1G(q)Tλv

)
= 0

5.

v ← v − dt

2
M−1∇qV (q)− dt

2
M−1G(q)Tλv

Solving the implicit equations to evaluate λr in the most general case would require the utilization of Newton
method at each step which would probably become the most expensive part of the algorithm, fortunately for
linear or quadratic constraints (and technically also cubic and quartic, but I haven’t implemented them explic-
itly) such equation can be solved analytically thus removing this burden (notice that, since 5th grade or more
equations cannot be solved algebraically, such idea cannot be further generalized).

As an archetype of the general linear and quadratic constraint, I’ll show explicitly how to evaluate λr in order
to constrain a centroid position or the distance between two centroids.

2.b.1 Fixed centroid

Let qa,i indicate the position of the i-th replica of the a-th necklace, then the requirement of the a-th centroid
to be fixed is given by

g1(q) =

∑
i qa,i
N

= 0

Let’s say we’re in 3 dimensions just for sake of clarity, then since that vectorial constraint can be written as 3
different constraint we’re supposed to find 6 Lagrange multiplier λrx, λry, λrz,λvx, λvy, λvz which we collectively
call λr and λv.
By direct evaluation (

G(q)Tλr
)
c,i

=

{
0, c 6= a
λr, c = a

We can rewrite the first constraint as

cn + vnc dt− dt2

2
M−1

(∑N
i ∇qV (qna,i)

N
+G(q)Tλnr

)
= 0

where we indicated with c and vc position and velocity of the centroid, then direct evaluation of the Lagrange
multiplier is straightforward (it’s easier to evaluate directly M−1G(q)Tλnr since that’s what appears in the
formula for updating velocities)
The constraint on velocities is

0 = vn+1
c = v

n+ 1
2

c − dt

2

∑N
i M

−1∇qV (qn+1
a,i )

N
− dt

2
M−1λn+1

v

that is once again a trivial linear equation for M−1λn+1
v . The correctness of the algorithm is checked both

qualitatively thanks to the video visualization (some frames are shown in Fig 4) and quantitatively by controlling
that the energy remains conserved and plotting explicitly the position of the fixed centroid, as shown in Fig 5a
and Fig 5b.
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Figure 4: Some random frames of the classical evolution of 2 necklaces, one of which has his centroid constrained.

(a) Energy and angular momentum.
(b) Centroid position conservation (along x-
axis).

Figure 5: Rattle algorithm for fixed centroid results.

Fixing the position in a place different than 0 is straightforward and simply account for changing λr formula
by cn → cn − c0.

2.b.2 Fixed length between centroids

By the same token, in the quadratic case

g1(q) =
1

2

(∣∣cn+1
a − cn+1

b

∣∣2 − l2) = 0

since it’s only one constraint we’ll have only two Lagrange multiplier λr and λv. By direct derivation it’s clear
that

(G(q)λr)c,i =

 0, c 6= a ∧ c 6= a
(ca − cb)λr, c = a
(cb − ca)λr, c = b

and the first constraint is rewritten as

∣∣∣∣∣(cna − cnb ) + dt (vnca − vncb)−
dt2

2
M−1

N∑
i

(∇qV (qna,i)−∇qV (qnb,i)

N

)
− dt2

2
M−1 (cna − cnb )

N
λr

∣∣∣∣∣
2

− l2 = 0

Thus defining

A = (cna − cnb ) + dt (vnca − vncb)−
dt2

2
M−1

N∑
i

(∇qV (qna,i)−∇qV (qnb,i)

N

)
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B =
dt2

2
M−1 (cna − cnb )

N

one get
|A+Bλr|2 − l2 = A2 −B2λ2r + 2A ·Bλr − l2 = 0

Which is just a second-order equation for λr with solutions

λr =
−A ·B ±

√
(A ·B)2 −B2(A2 − l2)

B2

For dt = 0 there is no constraining force, assuming λr(dt) as an analytical function of dt, for small enough
values od dt such multipliers must be small too, thus the appropriate solution is the one with smaller absolute
value. The second constrain is (

cn+1
a − cn+1

b

)
·
(
vn+1
ca − vn+1

cb

)
= 0

(
cn+1
a − cn+1

b

)
·
[
v
n+ 1

2
ca − vn+

1
2

cb − dt

2
M−1

(∑
i∇qV (qna,i)−∇qV (qnb,i)

N

)
+
(
cn+1
a − cn+1

b

)
λv

]
= 0

Which is simply a linear equation and can be easily solved yielding

λv =

(
cn+1
a − cn+1

b

)∣∣cn+1
a − cn+1

b

∣∣2 ·
[
v
n+ 1

2
ca − vn+

1
2

cb − dt

2
M−1

(∑
i∇qV (qna,i)−∇qV (qnb,i)

N

)]
The algorithm has been implemented and results concerning the conservation of the proper quantities are shown
in Fig 6a and Fig 6b, while some random frames in order to visualize the motion of the classical system can be
seen in Fig 7.

(a) Energy and angular momentum. (b) Length between centroid conservation.

Figure 6: Rattle algorithm for fixed-length between centroids results.

2.b.3 Combining constrains

I would like to stress out that combining constrains is actually straightforward. Since the Lagrange multipliers
play the role of the constraining forces, they can be simply added numerically all together thanks to the
superposition principle, this means that we don’t need to implement more complex algorithm for multiple
constraints, we simply need to evaluate the formulas for λr and λv for every constraint and then add all of them
together.

2.c PIMD implementation

Notice that in this PIMD evolution, the Hamiltonian can be decomposed as

Hn(x1, . . . , xN , p1, . . . , pN ) =

N∑
i=1

p2i
2m

+
mω2

N

2
(xi+1 − xi)2 + V (xi) = H0

n + Vn
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Figure 7: Some random frames of the classical evolution of 2 necklaces with fixed distance between centroids.

where H0
n is the Hamiltonian associated with a free necklace evolution and Vn =

∑
i V (xi). Then the following

decomposition is called Trotter splitting [3]

eLt = lim
P→∞

(
eL

0 t
P eLV

t
P

)P
where L = L0 +LV are the Liouvillian associated to Hn = H0

n+Vn. The symmetric version is called symmetric
trotter splitting

eLt = lim
P→∞

(
eL

0 t
2P eLV

t
P eL

0 t
2P

)P
and in case of multiple splitting (which is going to happen later) yield to improved precision. So we can evolve
separately the free necklace before and then the free replicas (ignoring the harmonic springs connecting them)
inside the potential Vn at each step.

Notice that Trotter splitting introduces an error in the propagation since we cannot reach P = ∞ (which
would be the same as imposing dt = 0 in our algorithm), but the error introduced vanishes as dt → 0. The
advantage of such splitting is that the motion of the free necklace is that of a set of harmonic oscillators so we
can analytically solve it.
In the free case the equation of motion for the replicas are

d2xi
dt2

= −ω2
N (2xi − xi+1 − xi−1)

and we can guess the form of normal modes searching for discrete waves propagation.

x̃k =
∑
j

eiαkjxj

xk =
1

N

∑
j

e−iαkj x̃j

x̃k = x̃0ke
−iωkt

direct substitution in the equation of motion yield

ωk = 2ωN

∣∣∣sin(αk
2

)∣∣∣
while the requirement of cyclicity xN = x0 imposes

αk =
2πk

N

Transformation to normal modes is not really expensive since it can be done with a simple fast Fourier transform.
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Anyway it should be noted that the eigenfrequencies are degenerate since ωk = ωN−k, so in general to avoid the
usage of complex numbers in the algorithm linear combination of the degenerate x̃ are chosen so that (assume
N even for simplicity)

Cjk =



√
1
N , k = 0√
2
N cos(2πjk/N), 1 ≤ k ≤ N

2 − 1√
1
N (−1)j , k = N

2√
2
N sin(2πjk/N), N

2 + 1 ≤ k ≤ N

q̃k =
∑
j

Cjkqj

p̃k =
∑
j

Cjkpj

qj =
∑
j

Cjkq̃k

pj =
∑
j

Cjkp̃k

Since now the normal modes represent independent harmonic oscillator we can solve exactly their motion,
thanks to this consideration our improved version of the Stormer-Verlet algorithm is

PIMD algorithm

1.

pk ← pk −∇qVn(qk)
dt

2

2. (
p̃k
q̃k

)
←
(

cos(ωkdt) −mωk sin(ωkdt)
1

mωk
sin(ωkdt) cos(ωk)

)(
p̃k
q̃k

)
(1)

3.

pk ← pk −∇qVn(qk)
dt

2

This idea is particularly useful if the frequency ωN is the biggest in the system (which is always the case since
ωN ∝ N) since this evolution is exact, no error is introduced in the evolution of the free necklace and bigger
time steps can be used without affecting the results significantly (in common MD algorithms it’s usually chosen
dt ∼ 0.05 1

ωmax
but in our case we can use dt ∼ 0.05 1

ωext
improving considerably the efficiency of the algorithm).

2.d Rattle combined with PIMD

Applying the rattle to the PIMD algorithm is not entirely trivial since analytical equation is messy, for example
it can be shown that

qn+1
i =

∑
k

∑
j

CkiCkj

[
cos(ωkdt)qj +

1

ωk
sin(ωkdt)

(
vnj −

dt

2
M−1∇qVn(qj)−

dt

2
M−1G(q)Tλr

)]

So that in theory one could solve the implicit equation g(qn+1) = 0 analytically for the constraint and find
the corresponding Lagrange multipliers. This is done explicitly for general linear (appendix A) and quadratic
(appendix B) constraints.

It might be useful to know that this might not be always necessary and need to be implemented only if high
efficiency is required, in fact since Stormer-Verlet algorithm is an approximation of the version with the normal
mode trick, and it’s true that in the limit dt → 0 the two algorithms become identical, we could just use the
expression of λr and λv found before, this work because the small error introduced does not propagate in time
since the constrain are reimposed at each step.
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The effect of using this simplified version is that the conservation of the constrained quantity will have slightly
higher fluctuation around the preserved value but that can be made smaller by diminishing the value of dt.

2.e Thermostatting and PIMD implementation

Let’s ignore for the moment the Rattle implementation and focus on the Stormer-Verlet algorithm, if we want
to use it to have a PIMD working algorithm we must add a thermostat to guarantee canonical distribution. As
we saw, for white noise we have the Fokker-Plank equation

∂ρ

∂t
= −p∂ρ

∂q
+

∂

∂p

[(
dV

dq
+ γp

)
ρ

]
+
mγ

β

∂2ρ

∂p2
= −Lρ

Where L is the Liouvillian operator, the fundamental idea is to introduce another Trotter splitting, L = Lγ+L0

with

Lγ = −γ
(
∂

∂p
p+

m

β

∂2

∂p2

)

L0 =
p

m

∂

∂q
− dV (q)

dq

∂

∂p

L0 is associated with the motion without a thermostat and we already know how to treat it. Lγ can be integrated
explicitly too (in the sense of stochastic integration, by solving the associated Ornstein-Uhlenbeck process) and
finally the algorithm adds up to

PIMD with Langevin thermostat algorithm

1.

p̃k ← c1kp̃k +

√
m

β
c2kξk

2.

pk ← pk −∇qVn(qk)
dt

2

3. (
p̃k
q̃k

)
←
(

cos(ωkdt) −mωk sin(ωkdt)
1

mωk
sin(ωkdt) cos(ωkdt)

)(
p̃k
q̃k

)
(2)

4.

pk ← pk −∇qVn(qk)
dt

2

5.

p̃k ← c1kp̃k +

√
m

β
c2kξ

′
k

Where [7]

c1k = e−γk
dt
2 , c2k =

√
1− c21k

Technically γk could be chosen arbitrarily and the canonical distribution would come up anyway but this could
lead to inefficient sampling.
For harmonic oscillator with frequency ωk thermalized with Langevin thermostat it can be shown [10] that the
autocorrelation time for the Hamiltonian H is given by

τH =
2

γ
+

γ

2ω2
k

so that the we can define an adimensional efficiency

kH =
1

ωkτH
= 2

(
2ωk
γ

+
γ

2ωk

)−1
whose maximization yield to the optimal sampling for

γk = 2ωk
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Since for k = 0 it’s ω0 = 0 we need another value of γ0, I used

γ0 =
1

ωext

and noticed that it leads to a good efficiency, but the choice is arbitrary.
The functionality of the algorithm has been tested carefully checking explicitly that for each normal mode,
canonical distribution dP ∝ e−βNHdqddpd (with d number of dimensions of the classical system) is actually
achieved. In the case of harmonic external potential V the modes are independent harmonic oscillators, and
Boltzmann distribution in terms of energies becomes

D(E) =

∫
δ(E − E(q,p))

dqddpd

hd
∝ Ed−1

P (E) = D(E)e−βE ∝ Ed−1e−βE

that such distribution arises has actually been verified mode for mode by numerically fitting the canonical
distribution (with βN only parameter to find in the fit).
Fig 8 refer to the parameter β = 4.a.u. N = 40 βN = 0.1a.u.. ωext is the frequency of the external harmonic
oscillator.

Figure 8: Fitted values of βN for every single mode.

Fig 9a and Fig 9b refer to a specific mode fit (the 5th, chosen arbitrarily) and show explicitly the energies
distribution in the case of d = 1, 2 (obtained binning all the energies achieved during a long-time evolution in
20 bins), the green curve represents the fitted function.

(a) Case d = 1. (b) Case d = 2.

Figure 9: Energies distribution.

Since the external potential is the one of an harmonic oscillator we expect to find as the energy of the system,
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fixed the inverse temperature β

Z(β) =

+∞∑
n=0

e−β~ωext(n+
1
2 ) =

e−β
~ωext

2

1− e−β~ωext

E(β) = − d

dβ
ln(Z(β)) =

~ωext

2
coth

(
β~ωext

2

)
We also need an estimator for the quantum energy of the system given his PIMD simulation. By computing

EN = − d

dβ
ln(ZN (β)) =

∑
a,i

(
1
2mav

2
a,i − 1

2miω
2
N (qa,i − qa,i−1)2 + Vext(qa,i)

)
N

we find the primitive estimator, we could also use the simplified version with

1
2

∑
a,imav

2
a,i

N
→ Nd

2β

Both of them are used to provide an estimate of the energy of the harmonic oscillator with ωext = 1a.u.
(~ = 1a.u.) and β = 4a.u. in Fig 10.

Figure 10: Primitive estimators for the energy of a quantum harmonic oscillator. The blue curve represent the
simplified version.

The process is repeated for several values of ωext and confronted with the expected values obtained by the
previous theoretical calculation (β is fixed and has value β = 4), the results are shown in Fig 11.

Figure 11: Theoretical and computed values for the energy of a quantum harmonic oscillator.

14



15

2.f White noise thermostat and Rattle combined

Combining Rattle algorithm and white noise Langevin thermalization yield to a new step

PIMD with Langevin thermostat and Rattle constraints algorithm

1.

p̃k ← c1kp̃k +

√
m

β
c2kξk

2.

p̃k ← c1kp̃k +

√
m

β
c2kξ

′
k

3. Evaluate λr by solving :

g(q + dtv − dt2

2
M−1(∇qVn(q)−G(q)Tλr)) = 0

4.

pk ← pk −∇qVn(q)
dt

2
− (G(q)Tλr)k

dt

2

5. (
p̃k
q̃k

)
←
(

cos(ωkdt) −mωk sin(ωkdt)
1

mωk
sin(ωkdt) cos(ωkdt)

)(
p̃k
q̃k

)
(3)

6. Evaluate λv by solving :

G(q)(v − dt

2
M−1∇qVn(q)− dt

2
M−1G(q)Tλv) = 0

7.

pk ← pk −∇qVn(q)
dt

2
− (G(q)Tλv)k

dt

2

I want to comment on this algorithm:

- First of all, the expressions previously found for λr and λv still work in this algorithm by simply replacing
the previous q and p with the ones obtained after the thermalization since their utility is to reimpose the
constrain at every step.

- The two thermalization steps coming from the Trotter splitting have been put together, this doesn’t change
anything since the step is repeated cyclically, but now when we consider the final values of q and p at the
end of each cycle, they obey the constraints since no noise acted after they imposition. Failure to do so
doesn’t change the motion but introduce a small noise at each step (that doesn’t cumulate in subsequent
steps though).

The functionality of the algorithm has been checked by evaluating the effective constrained quantity over time
as shown in Fig 12 for a couple of necklaces thermalized at β = 4 and with the length between their centroid
constrained (In this case the version of Rattle algorithm for Stormer-Verlet and not the one for PIMD has been
applied).
Some frames from the video visualization are shown in Fig 13, there are some qualitative aspects to point out :

- The motion of the replicas inside the necklace appears completely unordered, that’s because while in the
previous example things have been initialized in a way to visualize more easily the necklace shape, in this
case the shape is rapidly lost due the ergodicity of the system.

- One of the necklaces seems always more compact than the other, that’s just because in that specific
simulation they have different masses (m1 = 4 a.u.,m2 = 1 a.u.) and by simple statistical mechanics
calculation you expect their linear dimension to be proportional to the de Broglie wavelength of the
particle that is

Λ(m,T ) =
h√

2πmkBT
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Figure 12: Constrained length of the two centroids

Figure 13: Some frames of the thermalization with rattle algorithm

Notice that since the constraint applies only to the motion of the centroids, the other normal modes of the
single centroids are unconstrained and must thus follow Boltzmann distribution as shown in Fig 14 for a specific
mode (the 5th in this case) for d = 2 .

2.g A case of interest

My research team wants to use all this formalism in a ring polymer molecular dynamic (RPMD) simulation.
The motion of the necklace, which in PIMD was considered only a mathematical tool to evaluate averages
for quantum operators, now is considered a motion in real-time with identification of centroids and quantum
particles, some justifications of this idea can be found in [12].
A full investigation of this problem is far beyond the scope of my internship, but at a basic level we would like
to be able to simulate molecules using the instruments developed up to now, Rattle algorithm in particular,
will be used to constrain translational and rotational degree of freedom of such molecules that otherwise carry
some energies that add up to the relevant results.
We’ll work with the reaction

Mu+H2 →MuH +H

Where Mu is muonium, a hydrogen atom in which proton has been replaced by a muon µ+.
This reaction is particularly relevant because due to lightness of muonium the quantum effects are particularly
enhanced and we can thus compare easily the differences with respect to a classical MD simulation. Furthermore,
the system is really small and calculation can be done using exact quantum mechanical scattering theory (which
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Figure 14: Boltzmann distribution for the energies of a specific mode in the constrained PIMD algorithm.

at the state of art cannot be performed computationally for systems with more than 6 effective degrees of
freedom) and thus we can also check the quality of our results. Even though we are working with this particular
reaction the algorithm developed is fully functional for generic molecules.
Our approach will be to initialize the two system Mu and H2 so that they sample Boltzmann distribution for
their potential evaluated ab initio. Since the potential is really complex we cannot solve the problem analytically
as we would do for an harmonic potential. The idea is the following:

- In the beginning, approximate the potential connecting different atoms of the same molecules with an
harmonic one (the one obtained by second-order Taylor expansion of the real one) and ignore intermolecular
forces by simply initializing different molecules far away.

- Use the thermostats seen previously to initialize the molecules in their ground state (that is high β).

- Change the potential slowly allowing the system to evolve naturally with the changing Hamiltonian so
that for the adiabatic theorem, in the end, the system will be initialized in the ground state of the real
potential (the technique is called adiabatic switching)[11].

- Now that the system is correctly initialized a scattering process can be simulated by kicking the muonium
in the hydrogen direction.

I’ll take care of the first two point of the list leaving the rest to my research team.
With respect to what we’ve seen previously the external potential must be replaced with a many-body one
(harmonic in the beginning) so that the initial quantum system is described by

H =

P∑
I=1

p2I
2mI

+ V (q1, . . . , qP )

In this case, the PIMD previously seen for monodimensional system generalize to the effective Hamiltonian

Hn =

P∑
I=1

N∑
i=1

(p
(i)
I )2

2mI
+

P∑
I=1

N∑
i=1

miω
2
N

2
(q

(i)
I − q

(i+1)
I )2 +

N∑
i

V (q
(i)
1 , . . . , q

(i)
P )

So that in general, considered two different atoms, only replicas with the same index (i) interact with each
other.
As the number of replicas N increases, the difference between the two versions of the Rattle algorithm emerges,
we’re forced to use the more complicated one for PIMD to constrain the position of the center of mass with
high precision. The difference between the two algorithms emerges for N → ∞ because in that case ωN → ∞
and the step dt ∼ 0.05 1

ωext
becomes too big to have proper conservation of the constraint with an approximated

algorithm. This is shown in Fig 15a and Fig 15b (A detailed analysis of linear constraints is considered in
appendix A for sake of completeness).
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(a) Center of mass position for the ’exact’ algo-
rithm for PIMD.

(b) Center of mass position for the ’approximate’
algorithm for Stormer-Verlet.

Figure 15: Differences between the two Rattle algorithm for fixed center of mass.

It’s interesting to work out analytically the math behind this problem to understand what kind of results we
should expect from this problem and to understand better the effect of the constraint of the center of mass in
the evaluation of the final energy.
The Hamiltonian of the classical system is given by

H =

1∑
a=0

N−1∑
k=0

P 2
a,k

2m
+

1∑
a=0

N−1∑
k=0

1

2
maω

2
N (qa,k+1 − qa,k)2 +

N−1∑
k=0

1

2
µω2

ext(q1,k − q0,k)2

where µ is the reduced mass of the system.
Considered the normal coordinate of the single free necklace given by qj =

∑
j Cjkq̃k we get

H =

1∑
a=0

N−1∑
k=0

P̃ 2
a,k

2m
+

1∑
a=0

N−1∑
k=0

1

2
maω

2
kq̃

2
a,k +

N−1∑
k=0

1

2
µω2

ext(q̃1,k − q̃0,k)2

Which is a separable problem since the various term with different k doesn’t mix with each other. For each k
the Hamiltonian is a two-body problem and can be separated again considering

q̃c,k =
m0q̃0,k +m1q̃1,k

M

q̃d,k = q̃0,k − q̃1,k

p̃c,k = p̃0,k + p̃1,k

p̃d,k =
m1p̃0,k −m0p̃1,k

M

(M = m0 +m1) yielding

Hc,k =
p̃2c,k
2M

+
1

2
Mω2

kq̃
2
c,k

Hd,k =
p̃2d,k
2µ

+
1

2
µω2

kq̃
2
d,k +

1

2
µω2

extq̃
2
d,k

And since these are the equation of motion for harmonic oscillator we can evaluate properties such as the
expectation value of generic quantities for a canonical distribution at inverse temperature βN = β

N in particular

〈p̃2d,k〉 =
µN

β

〈q̃2d,k〉 =
N

βµ(ω2
k + ω2

ext)
=

N

βµ(4ω2
N sin2(kπN ) + ω2

ext)

and using the analytic formula
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N∑
k=0

1

1 + 4N2

x2 sin2(kπN )
−−−−→
N→∞

x

2
coth

(x
2

)
It’s easy to check that

〈EN,d〉 =
1

N

〈
N−1∑
k=0

P̃ 2
d,k

2m
−
N−1∑
k=0

1

2
maω

2
kq̃

2
d,k +

N−1∑
k=0

1

2
µω2

extq̃
2
d,k

〉
−−−−→
N→∞

~ωext

2
coth

(
β~ωext

2

)
And the EN,c estimator can be obtained by EN,d in the limit ωext → 0

〈EN,c〉 =
1

N

〈
N−1∑
k=0

P̃ 2
c,k

2m
−
N−1∑
k=0

1

2
maω

2
kq̃

2
c,k

〉
−−−−→
N→∞

1

β

So that in the end

〈EN 〉 =

〈
1

N

N−1∑
k=0

(
1∑
a=0

P 2
a,k

2m
−

1∑
a=0

1

2
maω

2
N (qa,k+1 − qa,k)2 +

1

2
µω2

ext(q1,k − q0,k)2

)〉
−−−−→
N→∞

1

β
+
~ωext

2
coth

(
β~ωext

2

)
Constraining with rattle the center of mass position is equivalent to saying that p̃c,0 = 0, one might suspects
that in order to remove the contribute of EN,c one should constrain also the modes with k 6= 0 that appear in
the formula, but that’s not the case, since for k 6= 0 it’s ωk 6= 0 and the energy of the harmonic oscillator is
split in half between the potential and kinetic energy terms due to the virial theorem so that

〈EN,c,k〉 =
1

N

〈
P̃ 2
c,k

2m
− 1

2
maω

2
kq̃

2
c,k

〉
−−−−→
N→∞

0 for (k 6= 0)

and for the constrained motion

〈EN 〉 −−−−→
N→∞

~ωext

2
coth

(
β~ωext

2

)
As explicitly shown in Fig 16a and Fig 16b for β = 4a.u., ωext = 1a.u. where the energy is converging to the
expected values evaluated before in the two cases of constrained and unconstrained center of mass.

(a) Unconstrained center of mass. (b) Constrained center of mass.

Figure 16: Differences in the estimator of energy for the constrained and unconstrained systems. The red line

represent the value ~ωext

2 coth
(
β~ωext

2

)

We would like to be able to constrain also the angular momentum of molecules, this is not possible in general
for the rattle algorithm since it is a constraint that involve both positions and velocities, for the particular case
of a diatomic molecule like H2 we can use a trick and constrain the angle that the axes of the molecule forms
with another fixed axis.
In order to do so, we consider in appendices a generic algorithm to fix distances between points obtained by
linear functions of the coordinate.
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This can fix the angular momentum in our case. In fact let’s say that c1 and c2 are the position of the centroids,
then considered

V1 =
c1 − c2
|c1 − c2|

V2 = (V1 · η)η with |η| = 1

Fixing the distance between V1 and V2 amounts to fixing the angle between c1− c2 and η. By imposing such a
constraint for two linearly independent axes η1, η2 we are fixing a unique direction for the line connecting the
two centroids and thus eliminating rotations.
It must be noticed that technically the definition of V1 and V2 are not linear on the coordinate q since also the
linear coefficient depend on them, this is not a problem since we can simply apply at every step the algorithm
described in appendix B and then evaluate the new linear coefficients for the next step.

3 Conclusion

A functional PIMD algorithm has been developed from scratches and it has been shown how to use it in
combination with a Langevin thermostat, it has been shown that this lead to improved ergodicity of the system
that can thus sample properly the canonical distribution along time. Rattle algorithm has been also implemented
in combination with the previous two in order to impose constraints and it has been shown the functionality of
the final algorithm created on a system of interest. Several types of constraints have been tested to check the
effect of the Rattle algorithm.
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Appendices

A Generic linear constraint for PIMD

As we said previously

qn+1
i =

∑
k

∑
j

CkiCkj

[
cos(ωkdt)qj +

1

ωk
sin(ωkdt)

(
vnj −

dt

2
M−1∇qVn(qj)−

dt

2
M−1G(q)Tλr

)]
so we define the matrices

C̄ij =
∑
k

CkiCkj cos(ωkdt)

S̄ij =
∑
k

CkiCkj
sin(ωkdt)

ωk

So that a generic linear constraint ∑
i

aiq
n+1
i = k

rewrites as

k =
∑
i,j

aiC̄ijqj +
∑
i,j

aiS̄ij

(
vj −

dt

2
M−1∇qVn(qj)

)
−
∑
i,j

aiS̄ij
(
M−1G(q)Tλr

)
j

dt

2

and considered that in this case (
M−1G(q)Tλr

)
j

=
aj
mj
λr

We can solve explicitly for λr

λr =
2

dt
∑
i,j aiS̄ijaj/mj

∑
i,j

aiC̄ijqj +
∑
i,j

aiS̄ij

(
vj −

dt

2
M−1∇qVn(qj)

)
− k


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Evaluation of λv is much simpler since it’s the same as in the simplified version of the algorithm. In particular
it’s

vn+1 = vn+
1
2 − dt

2
M−1∇qVn

(
qn+1

)
− dt

2
M−1G

(
qn+1

)
λv

and since the constraint is
G
(
qn+1

)
vn+1 = 0

We get

0 =
∑
i

ai

(
v
n+ 1

2
i − dt

2
M−1∇qVn

(
qn+1
i

))
− dt

2

∑
i

a2i
mi
λv

And finally

λv =
2

dt
∑
i
a2i
mi

∑
i

ai

(
v
n+ 1

2
i − dt

2
M−1∇qVn

(
qn+1
i

))

B Generic distance constraint for PIMD

Let’s consider the two points

c1 =
∑
i

aiqi + k1

c2 =
∑
i

biqi + k2

define di = ai − bi and k = k1 − k2 and the constrain for their distances

g1(q) =
1

2

(
|c1 − c2|2 − l2

)
=

1

2

∣∣∣∣∣∑
i

diqi + k

∣∣∣∣∣
2

− l2
 = 0

(
G(q)Tλr

)
i

=

(∑
k

dkqk + k

)
diλr

We need a compact notation since formulas are going to become really complicated in a while, we thus define

αi =
∑
j

C̄ijqj +
∑
j

S̄ij

(
vj −

dt

2
M−1∇qVn(qi)

)

δi =
∑
j

S̄ij

(∑
k

dkqk + k

)
dj
mj

qn+1
i = αni − δni λr

So that applying the constrain now yield to a simple expression

0 = 2g1(qn+1) =

∣∣∣∣∣∑
i

di (αni − δni λr) + k

∣∣∣∣∣
2

− l2

Thus as we’ve done in the past for the simpler classical problem we define the two quantities

A =
∑
i

diα
n
i + k

B =
∑
i

diδ
n
i

So that in the end

λr =
−A ·B ±

√
(A ·B)2 −B2(A2 − l2)

B2

And as explained previously, for small enough dt the correct solution is the smaller of the two. For the evaluation
of λv we have the second constraint equation

G(qn+1)vn+1 = 0
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That simply is(∑
k

dkq
n+1
k + k

)
·

(∑
i

di

(
v
n+ 1

2
i − dt

2
M−1∇qVn(qn+1)− dt

2
M−1G(qn+1)λv

))
= 0

and by direct resolution

λv =
2

dt

(∑
k dkq

n+1
k + k

)
·
(∑

i di

(
v
n+ 1

2
i − dt

2 M
−1∇qVn(qn+1)

))
(∑

k dkq
n+1
k + k

)
· (M−1G(qn+1))
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