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Abstract 

We present measurements of second-order intensity correlation functions in the frequency 

domain performed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-

XFEL, Pohang, Korea) in the saturated regime of its operation. We characterize the temporal 

coherence properties of hard X-ray pulses, which are very important for the correct 

interpretation of the experimental data. Intensity correlation measurements in spectral 

domain gave an estimate of the PAL-XFEL average pulse duration that was determined to be 

17 fs. In the Self Amplification Spontaneous Emission regime, the analysis of the intensity 

distribution provides an estimate for the number of longitudinal modes. We also obtained 

the coherence time of hard X-ray pulses that was 0.6 fs.  

  



3 
 

Contents 

 I.         Introduction 

II.         Theory 

                 a) Second-order intensity correlation function 

                 b) Determination of the pulse duration from the intensity interferometry 

                 c) Intensity distribution for chaotic sources 

      III.        Results 

      IV.        Conclusion 

       V.        References 

      

 

 

  



4 
 

I. Introduction 

X-ray Free Electron Lasers (XFELs) deliver orders of magnitude more brilliance, nearly fully 

transverse coherent and ultrashort X-ray pulses than previously available at synchrotron 

storage-ring based sources. These unique properties enable probing complex structural 

dynamics down to femtosecond time-scales by means of optical-pump X-ray-probe 

scattering, X-ray photon correlation spectroscopy, and single-pulse coherent diffraction 

imaging. In this regard, many XFEL experiments, therefore, rely on the coherence properties 

of the radiation. Coherence properties of X-ray beams can be characterized by the speckle 

contrast or the visibility of coherent diffraction patterns. Their value range between zero (no 

coherence) up to unity (full coherence).   

Coherence properties of the XFEL radiation differ from that of optical lasers because of the 

initial electron beam shot-noise that gets amplified during the Self-Amplified Spontaneous 

Emission (SASE) process. While the beam is expected to be nearly fully transversely 

coherent, in which the output radiation is dominated by a single spatial mode near SASE 

saturation, each XFEL pulse carries multiple temporal modes. The energy distribution among 

these modes varies randomly for subsequent X-ray pulses resulting in intensity fluctuations. 

Such behavior is strongly coupled to the details of the operational parameters of the 

accelerator. Therefore, the characterization of the single-shot and average coherence 

properties of XFEL pulses is essential for these new light sources to realize their full 

potential. 

Intensity interferometry, as introduced by Hanbury Brown and Twiss [1, 2], was a 

revolutionary experiment at the time. Their measurements, seemingly showing a 

contradiction between classical and quantum theories of light, led to the development of 

quantum optics [3]. Since then, HBT interferometry has found applications in many areas of 

physics. Intensity-intensity correlation measurements in the x-ray energy range were first 

suggested to solve the phase problem in crystallography [4], further developed conceptually, 

and finally performed at synchrotron sources [5-7]. The correlation of intensities at two 

points in space, expressed in terms of the degree of second-order coherence, is particularly 

well suited for interferometry at FEL sources. The femtosecond pulse duration of the FEL 

radiation allows the elimination of the necessity for a correlator device to perform 
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coincidence measurements. In comparison with Young’s interferometry, where the double-

pinhole separation must be changed to measure coherence between different spatial 

positions, the HBT approach with a pixelated detector allows one to measure the correlation 

function at a set of distances simultaneously. As soon as intensity and not amplitude 

correlations are measured in an HBT experiment, this method is not sensitive to phase 

fluctuations, which can significantly affect Young’s or Michelson interferometry. Importantly, 

the HBT experiment provides the possibility of high-order statistical analysis of FEL radiation 

properties. 
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II. Theory   

a) Second-order intensity correlation function. 

The core idea of the HBT experiment is to determine second-order intensity correlation 

function by measuring intensity in two separated points 

𝑔(2)(𝑡1, 𝑡2) =
〈𝐼(𝑡1)∙𝐼(𝑡2)〉

〈𝐼(𝑡1)〉〈𝐼(𝑡2)〉
.         (2.1) 

In Eq. (2.1), 𝐼(𝑡1), 𝐼(𝑡2) are the intensities of the wave in corresponding points of time and 

the averaging denoted by brackets 〈… 〉 is performed over a large ensemble of different 

realizations of the wave field or different pulses  in the case of XFEL radiation. 

 

The chaotic sources with Gaussian statistics may be described by following intensity 

correlation function 

𝑔(2)(𝑡1, 𝑡2) = 1 + 𝜉2(𝐷𝜔)|𝜇(𝑡1, 𝑡2)|2.             (2.2) 

Here 𝜉2(𝐷𝜔) is the contrast function which in the case of chaotic sources depends strongly 

on the radiation frequency bandwidth (𝐷𝜔). The complex degree of coherence 𝜇(𝑡1, 𝑡2)  is 

defined as 𝜇(𝑡1, 𝑡2) = 𝐽(𝑡1, 𝑡2) √〈𝐼(𝑡1)〉√〈𝐼(𝑡2)〉⁄ , where 𝐽(𝑡1, 𝑡2) is the mutual coherence 

function (MCF) determined at the detector position. 

The coherence time of the wave field can be estimated as  

𝜏𝑐 = 2𝜋 𝐷𝜔⁄ .                                            (2.3) 

b) Determination of the pulse duration from the intensity interferometry.  

The contrast function 𝜉2(𝐷𝜔) introduced in Eq. (2.2) can be determined from the values of 

the intensity correlation function along the main diagonal 𝑔(2)(𝑡, 𝑡) Fig. (4). Assuming the 

Gaussian Shell-model pulsed source, the contrast function 𝜉2(𝐷𝜔) can be expressed as [8] 

𝜉2(𝐷𝜔) =
1

√1+4(𝑇𝑟𝑚𝑠𝐷𝜔)2
,                     (2.4) 

where 𝑇𝑟𝑚𝑠 is an effective pulse duration. Inversion of equation (2.4) gives, for the FWHM of 

the pulse duration, 

𝑇 =
2.355

2𝐷𝜔
√

1

[(𝐷𝜔)]2 − 1.                               (2.5) 

c) Intensity distribution for chaotic sources. In case of chaotic sources, intensity distribution 

obeys Gaussian statistics and the probability density function 𝑝(𝐼) follows a Gamma 

distribution 
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𝑝(𝐼) =
𝑀𝑀

Г(𝑀)
(

𝐼

〈𝐼〉
)

𝑀−1 1

〈𝐼〉
𝑒𝑥𝑝 (−𝑀

𝐼

〈𝐼〉
),           (2.6) 

where 〈𝐼〉 is an average intensity of the pulse, Г(𝑀) is gamma function of argument 𝑀and 

𝑀−1 = 𝜎2.                                                (2.7) 

Here 𝜎2 is the normalized dispersion of the intensity distribution is calculated as follows: 

𝜎2 =
〈(𝐼−〈𝐼〉)2〉

〈𝐼〉2
.                                     (2.8) 

In the Eqs. (2.6, 2.7) parameter 𝑀 can be interpreted as the average number of “degree of 

freedom” or “modes” in a radiation pulse [9, 10]. 
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III. Results 

Measurements were performed at the Pohang Accelerator Laboratory X-ray  Free Electron 

Laser (PAL-XFEL, Pohang, Korea). Using full-range spectrometer (1800x300 pxl) there were 

recorded 2494 shots on the first day and 1255 shots on the second day. An example of the 

single multimode pulse is shown in Fig. (1). From every shot, there were selected peaks with 

intensity threshold 5% of the maximum possible intensity. The mean value of the number of 

these peaks or “modes” was 36 ± 8 for the first day and 38 ± 12 for the second day of 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For these two data sets, we first analyzed averaged intensity distribution converted in 

energy domain (see Fig. 2). Using fit by Gaussian function we obtained a mean value of 

resonance energy of 9691.5 ± 6.6eV and 9699.5 ± 6.9eV for the first and second days of 

 

Fig. 1 Example of SASE spectra for pulse recorded using the full-range spectrometer and 

converted in frequency domain (red line). Blue vertical lines show peaks selected to calculate the 

number of modes. 
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measurements, respectively. As a result we see an energy drift of 8 eV between two days of 

measurements.  

 

 

 

 

 

 

 

 

Using relation (2.3) we also estimated the coherence time of the pink beam, which was 𝜏𝑐 =

0.62 fs and 𝜏𝑐 = 0.63 fs for the first and second days of measurements, respectively.   

 

The second-order intensity correlation function in spectral domain 𝑔(2)(𝜔1, 𝜔2) is shown in 

Fig. (3).  

 

 

 

 

 

 

 

 

 

Fig. 4 represents the correlation function 𝑔(2)(𝛥𝜔) taken along the white diagonal. Here we 

can see some features: function 𝑔(2)(𝛥𝜔) drops below unity and appears an additional 

  

  

Fig. 3 Intensity correlation functions for the 1-st (a) and 2-nd (b) days of measurements. 

Fig. 2 Averaged intensity distributions for the 1-st (a) and 2-nd (b) days of measurements. Red 

line is the experimental data, blue dashed line is the Gaussian fit. 
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broad peak. We assume that these features may occur due to the positional and energy 

jitter.  

A Gaussian fit 𝑔2(∆𝜔) = 1 + 𝐺(𝛥𝜔1,𝜎1) + 𝐺(𝛥𝜔2, 𝜎2) [where 𝐺(𝛥𝜔, 𝜎) =  
𝑒−(𝛥𝜔)2 2𝜎2⁄

𝜎√2𝜋
] was 

used to determine the pulse duration from the measurements of second-order correlation 

function 𝑔(2)(𝛥𝜔) (Fig. 4). The narrow peaks provided us with r.m.s. values in spectral 

domain 𝜎𝜔
(𝑛,1)

= 0.312 𝑓𝑠−1 and 𝜎𝜔
(𝑛,2)

= 0.316 𝑓𝑠−1 for the first and second days. From 

here we obtained an averaged pulse duration of 8.54 fs and 8.45 fs (FWHM) for the first and 

second days of measurements, respectively. For the broad peaks we obtained the r.m.s. 

values in spectral domain 𝜎𝜔
(𝑏,1)

= 4.860 𝑓𝑠−1 and 𝜎𝜔
(𝑏,2)

= 7.594 𝑓𝑠−1 for the first and 

second days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of our calculations also indicate that the statistical properties of the beam are 

not spatially uniform. This is well visualized by the inspection of the beam fluctuations 

𝑔(2)(𝜔, 𝜔) = 〈𝐼2(𝜔)〉 〈𝐼(𝜔)〉2⁄  along the beam profile [see Fig. 5].  

 

Typical histograms of pulse intensities for different days of measurements are shown in Fig. 

6. Using the technique described in section II (c) [Eq. (2.6-2.8)] we obtained a number of 

longitudinal modes 𝑀 that were 11 for the first day of measurements and 20 for the second 

day.  

 
 

  

Fig. 4 White diagonal cross sections of intensity correlation functions for the 1-st (a) and 2-nd (b) 

days of measurements (red line). Blue dashed line is the double Gaussian fit to the 𝑔(2) 

correlation function.  
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Fig. 6 Histograms of the probability density distribution,  𝑝(𝐼), of the total radiation intensity 𝐼 

detected during the time 𝑇, for the 1-st (a) and 2-nd (b) days of measurements. The 

measurement parameter 𝑀 is connected by relation (2.7). 〈𝐼〉 denotes the average energy. 

The blue area represents a fit by gamma function (2.6). 

Fig. 5 Dark diagonal cross sections of intensity correlation functions for the 1-st (a) and 2-nd (b) 

days of measurements. 
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IV. Conclusion 

In summary, it was demonstrated how the HBT method can be applied to the analysis of the 

coherence properties of new generation x-rays radiation sources. It was shown how such 

essential values as coherence time (𝜏𝑐), number of longitudinal modes (𝑀) and pulse 

duration (𝑇) can be obtained from the HBT analysis and can be used for the understanding of 

coherence-based experiments. For two data sets, we received the following values: 𝜏𝑐 =

0.62 fs and 0.63 fs; 𝑀 = 36 ± 8 and 38 ± 12; 𝑇 =8.54 fs and 8.45 fs for the first and second 

days of measurements, respectively. We assume that features in the behavior of second-

order correlation function 𝑔(2)(𝛥𝜔) such as the appearance of an additional broad peak and 

drop of this function below unity appear due to the positional and energy jitter. 
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