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Abstract

Different neural networks were used to approximate the truth channel mbb distri-
bution using the reco channel kinematical variables as input. Different targets and
loss functions were considered and a comparative analysis was performed. A neural
network training towards the difference between the reco and the truth channel vari-
ables, with a MAE loss, was the best of all the networks considered. It improved the
peak location, from between 120GeV and 122GeV, to between 126GeV and 128GeV
and improved the reco mean of 112.3GeV and standard deviation of 19.4GeV to
a mean of 117.0GeV and a standard deviation of 18.6GeV. No other network was
capable of improving the reco channel mbb distribution.
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1 Introduction

Different measurements of the total mass of the universe have been inconsistent.
In particular, luminosity estimates, which take only into account the visible uni-
verse, predict a lower mass than dynamical estimates, which consider only dynami-
cal quantities such as rotation velocity. These discrepancies suggest that matter in
the universe is not only visible matter, but also Dark Matter (DM). Observations of
rotation curves of galaxies, which relate the circular velocity of the gas and the stars
to their distance to the centre of the galaxy, weak gravitational lensing, the Oort
discrepancy in the disk of the Milky Way and Weak modulation of strong lensing,
all provide strong evidence for the presence of DM as the dominant form of matter
in the universe [?]. However, the nature of DM remains an unsolved mystery of
modern physics.

One theoretical possibility is that DM consists of electrically neutral, stable parti-
cles that interact weakly with the Standard Model (SM) particles. This theory is
consistent with observations of the relic abundance of DM [?] and the Large Hadron
Collider (LHC) could potentially find evidence of the predicted DM particles [?].
However, in order to successfully identify these particles, better analysis methods
must be developed. In particular, in DM models where DM particles are produced
along with a Higgs boson, it is necessary to successfully isolate a Higgs particle from
the numerous background events [?].

Machine learning techniques have proven to be useful and powerful tools in several
different areas, including in LHC physics analysis, having been used, for example, to
determine particle properties, to improve the resolution of the CMS electromagnetic
calorimeter and to isolate the H → tt decay signal [?]. In this report, the possibility
to use machine learning techniques to correct the invariant mass of the Higgs decay
to bb, in order to better isolate the H → bb signal, is studied.

2 Searching for Dark Matter in the ATLAS
Detector

2.1 The ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS) is a general-purpose detector built to study
the pp collisions at the LHC at CERN. ATLAS is forward-backward symmetric with
respect to the interaction point and it covers a solid angle of almost 4π [?]. The
coordinate system used in the detector is centred at the interaction point, with the
z-axis in the beam direction, and the x and y-axes are transverse to the beam di-
rection, with the x-axis pointing from the origin to the centre of the LHC ring. The
more commonly used coordinates are θ, the polar angle, measured from the beam
axis, φ, the azimuthal angle, measured around the beam axis, and the pseudorapid-
ity, defined as η = − ln tan(θ/2). The transverse momentum, pT , is defined in the
xy plane [?].
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Figure 1: The ATLAS detector

The detector is made up of an inner detector, responsible for reconstructing charged-
particle tracks and vertices, at |η| < 2.5, a calorimeter, covering |η| < 4.9, which
measures electron, photon, jet and τ lepton energies, and a muon spectrometer,
with tracking chambers covering |η| < 2.7 and detectors covering |η| < 2.4, meant
to identify muons and measure their momentum. Around the inner detector, there is
a thin superconducting solenoid, creating an homogeneous 2T magnetic field, and,
around the calorimeters, arranged in an eightfold azimuthal symmetry, there are
three large superconducting toroids. Figure ?? shows a schematic view of the AT-
LAS detector [?].

2.2 The Z’ 2HDM Model

The signal model considered in this report for the detection of DM particles is re-
ferred to as the Z’ 2HDM model and it is a Type-II two-Higgs doublet model with
an additional U(1)Z′ gauge symmetry. In this model, a proton collision will produce
a particle Z ′ which will produce a light scalar Higgs boson, h, and a pseudo-scalar
Higgs boson, A, two of the five physical Higgs bosons present in the model. The par-
ticle A will then decay into DM particles χ and χ [?]. These particles are invisible to
the detector and thus result in missing momentum of magnitude denoted by Emiss

T .
The most common decay channel of the Higgs h is to bb, with a SM branching ratio
BR = 57% [?].Therefore, DM particles, χ, are produced along with a bb pair, which
is depicted in Figure ??, with an invariant mass of mbb = mh and the detection of
the signature bb +Emiss

T is a good indication of DM production through this process
[?].
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Figure 2: Feynman diagram of the leading order production of DM particles χ, me-
diated by Z ′, with production of a Higgs boson decaying into bb.

The production of top-quark pairs, tt, and the production of W and Z bosons with
additional bb production also result in the signature bb +Emiss

T and, therefore, con-
stitute the main source of SM background for this process [?]. Furthermore, a b
quark can decay into a W− boson, which can then decay into neutrinos, νµ, ντ or
νe, muons, µ, and τ leptons, which can also decay into neutrinos and another W−

boson. All these processes are depicted in Figure ??. Neutrinos are not seen in the
detector and muons are only detected by the muon spectrometer, whose informa-
tion is not included for this analysis. Thus, interactions with muons and neutrinos
as final products result in energy lost from the jet. As a result, the reconstructed
momentum of the b-jets will be lower and so will the invariant mass of bb. Conse-
quently, the invariant mass distribution will be wider on the left side of the peak, as
there will be a higher number of predictions lower than the Higgs mass. Both the
background events and the wider peak due to lost energy make it extremely difficult
to resolve the Higgs mass peak.
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Figure 3: (a) b (b) W− and (c) τ decays, leading to the production of neutrinos and
muons which result in Emiss

T

2.3 Simulations and Jet Reconstruction

Using Monte Carlo algorithms, it is possible to simulate the interaction represented
in Figure ?? and, in addition, it is possible to simulate the hadronic shower result-
ing from the b quark. A Feynman diagram representing a possible b-quark decay
is shown in Figure ??. The simulation will calculate the final products of the de-
cay and their kinematical variables (pT , η, φ,m) including neutrinos and muons for
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Figure 4: Invariant mass distributions calculated from (pT , η, φ,m) of the bb jets. (a)
Reconstructed distribution, peaking between 120GeV and 122GeV, with a
mean of 112.3GeV and a standard deviation of 19.4GeV (b) Truth distri-
bution, peaking between 124GeV and 126GeV, with a mean of 120.4GeV
and a standard deviation of 11.9GeV. Data simulated with mA = 400GeV
and mZ′ = 800GeV.
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Figure 5: Feynman diagram representation of a possible b-quark decay

the truth channel but not for the reconstructed (reco) channel. For the reco chan-
nel, the simulated particles will interact with the detector simulation and the final
(pT , η, φ,m) will include only particles detected by the calorimeter. The same jet
clustering algorithm, the anti-kT algorithm [?], is then applied to both the truth
and the reco channels. In Figure ??, the invariant mass distribution mbb is shown
for the truth and the reco channel.

3 Regression Neural Networks

3.1 Neural Networks

Regression analysis is a statistical method used to determine the function y = f(x)
which relates the independent variables x with the dependent variables y. This
function f(x) can be approximated with the use of a neural network (NN) [?].
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A neural network can be represented as a function g(xi) which will act on a one-
dimensional vector, xi, where i is an index which labels each datapoint in the dataset,
and from it compute an output vector, yi= g(xi) [?]. This function g(xi) can be
decomposed into several different functions referred to as layers. The first layer
will act directly on the input xi and the following layers will consecutively perform
operations on the input. The final layer will compute the final output yi [?]. The
simplest layer for a neural network layer is a linear function, represented by:

f(xi,W, b) = Wxi + b, (1)

where W is a matrix whose parameters are referred to as the weights and b is called
the bias vector. The information in b can be included in the matrix W by adding
an extra column at the end of it. Each row of the matrix W is referred to as a
node, each of them calculating a single value of the output vector. The number of
nodes in each layer is set before training and should be optimised. Several layers of
a typical neural network consist of linear functions [?].

To provide non-linearity to a NN, an activation function is applied to the output of
a linear layer and will only give a non-zero output for values within a certain range.
A common choice for an activation function is the Rectified Linear Unit, ReLU [?],
given by

f(x) = max(0, x). (2)

The purpose of the NN is to improve the function g(xi) in order to increase the
network’s ability to approximate f(xi). The optimisation of the NN can be described
as the minimisation of a loss function, which computes how successfully the network
is acting. In particular, if the computed value of the loss function is high then
g(xi) is not a good approximation for f(xi) [?]. A commonly used loss function in
regression problems is the Mean Square Error (MSE), which is given by

Li = (ypredi − ytruei )2, (3)

where ypredi is the output predicted by the NN and ytruei is the known true value of
f(xi). Another common loss function is the Mean Absolute Error (MAE), given by

Li = |ypredi − ytruei |. (4)

The complete loss function [?] is given by

L =
1

N

∑
i

Li. (5)

In order to minimise the loss function, one can measure the gradient of the loss
function at each point and then update it using gradient descent, such that

W ′ = W − s •G, (6)
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where G is a matrix that contains all the gradients of L and s is a parameter referred
to as the learning rate [?]. The learning rate is also set before training and must be
carefully chosen to prevent divergent behaviour.

3.2 Training a Neural Network

To train a NN to work on a particular dataset, it is necessary to split it into a
training set, a test set and a validation set. The network will train using only the
training set. That is, the gradients will only be calculated and updated when the
training set is being used [?]. In one epoch, the network will move through all the
input vectors xi in the training set. A network is typically trained for several epochs
and, throughout training, the validation set can be used to test how the network is
capable of approximating f(xi).

It is possible that during training, the network adapts to the training set instead of
learning how to approximate f(xi) for the entire dataset. This is visible in a plot
of the loss function for the training and the validation sets. Initially, the loss of
both should decrease. However, after n epochs, the loss of the validation set will
begin to increase again, despite the decrease of the training loss. This phenomenon
is referred to as overfitting [?]. A technique to prevent it is dropout, which consists
of randomly dropping nodes in the network at a rate p during training [?]. This
will prevent the network from adapting to the training set. During validation, the
dropped nodes are frozen so that they are not used in the loss calculation. Once the
network is trained, it can be tested using the test set. In this case, all the nodes will
be used and no dropout will be applied in order to test all the parameters learned.

4 Using Neural Networks to correct the bb mass

As it was seen in section ??, the reco mass peak is much wider than the truth peak.
In fact, while the truth distribution peaks between 124GeV and 126GeV and has a
mean of 120.4GeV and a standard deviation of 11.9GeV, the reco distribution peaks
between 120GeV and 122GeV has a mean of 112.3GeV and a standard deviation
of 19.4GeV. Therefore, to resolve the mass peak from the background, it would be
useful to develop a tool that can start from the reco peak and approximate the truth
peak. For this purpose, a NN, with either 3 or 4 linear layers, was trained to output
the true (pT , η, φ,m) taking as input the reconstructed (pT , η, φ,m) of the entire jet
and two leptons resulting from the b decay, as shown in Figure ??.
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Different targets and loss functions were considered in training the NN. In particular,
the NN was trained towards the true (pT , η, φ,m), the true (E, px, py, pz), defined
such that

px = pT sinφ,

py = pT cosφ,

pz = pT sinh η,

E =
√
p2 +m2,

(7)

and also towards the difference between the reco and the true (pT , η, φ,m). Both the
MSE and the MAE losses were used. In order to evaluate the training of the NN,
the losses were computed during training and, after training, the NN was tested and
the invariant mass distribution of the output was plotted. Additionally, a quantity
referred to as the resolution, defined as

res =
ptrueT − ppredT

ptrueT

, (8)

was also calculated as a measure of the NN, and compared to the original resolution
between the reco pT and the true pT .

4.1 Training towards Transverse Momentum

Firstly, a NN with 3 layers with 240, 120 and 60 nodes, respectively, and a learning
rate of 0.001 was trained, using MSE, for 300 epochs towards the true transverse
momentum 4-vector (pT , η, φ,m). The network converged at a lower loss but it was
incapable of predicting the correct invariant mass distribution. Figure ?? shows a
plot of the loss function as a function of the epochs, where the training of the NN is
visible. Figure ?? shows a histogram of both the output and the original resolutions.
It can be seen from it that the network has not only not improved the resolution
but it has actually learned a resolution which is worse than the original.

As a consequence, the invariant mass distribution calculated from the output pT was
wider than the reco peak, having a mean of 132.1GeV and a standard deviation of
20.5GeV. Furthermore, from the pT distributions, shown in Figure ??, it can be seen
that the network is over predicting values at higher pT regions and that it is under
predicting values at lower pT regions. As a consequence, the invariant mass peak
has shifted to a value much higher than the truth peak, peaking between 140GeV
and 142GeV, as can be seen in Figure ??.

4.2 Training towards energy

The target and input (pT , η, φ,m) were converted to (E, px, py, pz) using equation
??. The NN was then trained towards these targets and its output was converted
back to (pT , η, φ,m) . It was able to learn the (E, px, py, pz) distributions. However,
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(a) (b)

Figure 6: A NN with 3 layers with 240, 120 and 60 nodes, respectively, and a learning
rate of 0.001 was trained, using MSE, for 300 epochs towards the true
transverse momentum 4-vector (pT , η, φ,m)(a) Plot of the loss function as
a function of epochs. (b) Comparison between the output resolution and
the original resolution.
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Figure 7: A NN with 3 layers with 240, 120 and 60 nodes, respectively, and a learning
rate of 0.001 was trained, using MSE, for 300 epochs towards the true
transverse momentum 4-vector (pT , η, φ,m). (a) Histograms of the bb pair
invariant mass for the reco, the truth and the NN output data, which
peaks between 140GeV and 142GeV and has a mean of 132.1GeV and a
standard deviation of 20.5GeV. (b) Histograms of the pT distributions for
the reco, the truth and the NN output.
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Figure 8: Plot of the truth, reco and output pT distributions for a NN with 4 layers
with 400, 300, 200 and 100 nodes, respectively, and a learning rate of 0.001
trained, using MSE, for 500 epochs towards the true (E, px, py, pz) .

when converted back to (pT , η, φ,m), the NN could not produce an invariant mass
distribution comparable to the reco and truth ones. The distribution produced,
despite peaking between 126GeV and 128GeV, has a mean of 128.8GeV and a stan-
dard deviation of 42.6GeV. In fact, the pT distribution produced by the network,
shown in Figure ??, is much more spread to higher values than the reco or truth
distributions.

4.3 Training towards the difference

As an attempt to improve the invariant mass peak, a NN with 3 layers with 400,
200 and 100 nodes, respectively, two dropout layers both with a dropout rate of 0.5,
and a learning rate of 0.001 was trained, using MSE, for 300 epochs towards the dif-
ference between the reco and the true transverse momentum 4-vector (pT , η, φ,m).
Figure ?? shows a plot of the loss function as a function of the epochs, where the
training of the NN is visible. Figure ?? shows a histogram of both the output and
the original resolutions. This network was also capable of converging and it showed
some improvement from the last NN in its resolution. Even though it is still not
improving from the original resolution, the resolution of this output is closer to the
original resolution than the previous.

The invariant mass distribution, shown in Figure ??, calculated from the output pT
peaked between 132GeV and 134GeV and it had a mean of 124.9GeV and a standard
deviation of 19.2GeV. Even though the distribution was wider than the reco peak,
the position of the outputted peak shows improvement in comparison to the previ-
ous NN. From the pT distributions, shown in Figure ??, it can be seen that this NN
demonstrates a behaviour of over and under predicting similar to the NN from the
previous section. Consequently, the invariant mass peak is shifted to a value higher
than the truth peak.
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Figure 9: A NN with 3 layers with 400, 200 and 100 nodes, respectively, two dropout
layers both with a dropout rate of 0.5 and a learning rate of 0.001 was
trained, using MSE, for 300 epochs towards the difference between the
reco and the true transverse momentum 4-vector (pT , η, φ,m). (a) Plot
of the loss function as a function of epochs. (b) Comparison between the
output resolution and the original resolution.
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Figure 10: A NN with 3 layers with 400, 200 and 100 nodes, respectively, two dropout
layers both with a dropout rate of 0.5 and a learning rate of 0.001 was
trained, using MSE, for 300 epochs towards the difference between the
reco and the true transverse momentum 4-vector (pT , η, φ,m). (a) His-
tograms of the bb pair invariant mass for the reco, the truth and the NN
output data, which peaks between 132GeV and 134GeV and has a mean
of 124.9GeV and a standard deviation of 19.2GeV. (b) Histograms of the
pT distributions for the reco, the truth and the NN output.
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Figure 11: A NN with 3 layers with 400, 200 and 100 nodes, respectively, two dropout
layers both with a dropout rate of 0.5 and a learning rate of 0.001 was
trained, using MSE, for 300 epochs towards the difference between the
reco and the true transverse momentum 4-vector (pT , η, φ,m). (a) Plot
of the loss function as a function of epochs. (b) Comparison between the
output resolution and the original resolution.

4.4 Training towards the difference with the MAE loss
function

A different loss function, the MAE, was used to train a NN with 3 layers with 400,
200 and 100 nodes, respectively, two dropout layers both with a dropout rate of
0.5 and a learning rate of 0.001 for 300 epochs towards the difference between the
reco and the true transverse momentum 4-vector (pT , η, φ,m). Figure ?? shows the
convergence of the loss as a function of epochs. Figure ?? shows a histogram of
both the output and the original resolutions, where it can be seen that the use of
the MAE loss has improved the resolution of the NN in comparison to the NNs in
previous sections.

Moreover, the invariant mass peak calculated from the output pT is between 126GeV
and 128GeV, closer to the truth peak than the reco peak, as seen in figure ??. Fur-
thermore, the NN was capable of a slight improvement to the width of the distri-
bution, as it has a mean of 117.0GeV and a standard deviation of 18.6GeV. The
correction of the peak distribution suggests that the use of MAE is a better choice
for this problem. In fact, from the pT distributions shown in figure ??, it can be
seen that the NN is predicting pT values mostly in between the reco pT and truth
pT values, as expected.

5 Conclusion

In conclusion, the particular network architectures tried in this study are not enough
to approximate the truth mass distribution of bb. Table ?? shows a summary of the
results from the different networks. In fact, all networks considered demonstrated a
behaviour of over prediction for higher pT values and under prediction for lower pT
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Figure 12: A NN with 3 layers with 400, 200 and 100 nodes, respectively, two dropout
layers both with a dropout rate of 0.5 and a learning rate of 0.001 was
trained, using MAE, for 300 epochs towards the difference between the
reco and the true transverse momentum 4-vector (pT , η, φ,m). (a) His-
tograms of the bb pair invariant mass for the reco, the truth and the NN
output data, which peaks between 126GeV and 128GeV and has a mean
of 117.0GeV and a standard deviation of 18.6GeV. (b) Histograms of the
pT distributions for the reco, the truth and the NN output.

Target Loss Function Peak (GeV) Mean (GeV) Std (GeV)

(pT , η, φ,m) MSE 140 - 142 132.1 20.5
(E, px, py, pz) MSE 126 - 128 128.8 42.6
Reco - Truth MSE 132 - 134 124.9 19.2
Reco - Truth MAE 126 - 128 117.0 18.6

Table 1: Summary table of the results: peak location, mean and standard deviation
of the mbb distribution for each of the target and loss function combinations
considered.

values which shifted the mbb peak to higher values.

However, a NN which trains towards the difference between reco and truth (pT , η, φ,m)
using the MAE loss is enough to predict a mass distribution which peaks at a value
closer to the truth peak and has a standard deviation lower than the reco distribu-
tion. This suggests that it might be possible to train a NN to solve the proposed
problem but a different architecture would be necessary for significant improvement
of the mbb distribution.
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