
Implementation of a multi-core interface for
RECOLA and RECOLA 2 in WHIZARD

DESY Summer Students Program 2018

Vincent Bettaque

University of Hamburg
Department of Physics

September 7, 2018

Abstract

The WHIZARD general purpose event generator and the RECOLA one-loop amplitude
provider are introduced as methods to compute scattering events at particle accelerators
numerically. We describe the issues that arise from using RECOLA and RECOLA 2
as loop providers in WHIZARD and suggest a partial solution to these problems that
allows the usage of multiple RECOLA cores simultaneously. The remaining issues and
their possible origins are discussed and suggestions for further improvements are laid
out.

Contents

1 WHIZARD & RECOLA 3

2 Compatibility Issues 4
2.1 Status Quo . 4
2.2 Single-Core Implementation . 5
2.3 Multiple Flavor Lists . 6
2.4 Mismatching Indices . 7

3 Implementation Details 8
3.1 The Wrapper . 8
3.2 The Writer . 9
3.3 The Core . 9

4 Unresolved Issues 10
4.1 Color & Spin Correlations . 10
4.2 Replace Helicity & Color Arrays . 10
4.3 Scale Dependence . 10

2

1 WHIZARD & RECOLA

We refer here to the official documentation for both software packages, since they can
explain their programs far better [1][2][3][4][5]. Even though most of the following should
be self-explanatory by cross-checking the code changes [6], knowledge of the Sindarin file
format used in WHIZARD is especially beneficial for understanding how calculations are
done in general.

3

2 Compatibility Issues

We now address the line of thought that led to the solution laid out in the next chapter.
This is done because the motivation for the changes may not be obvious at first. We
then describe the problem in detail and then name other issues that directly or indirectly
result from fixing the first one.

2.1 Status Quo

The first sign of an apparent issue was observed when using RECOLA 2 in WHIZARD
through the wrapper already available for the first version. The functional test recola 7,
which employs RECOLA to compute the cross section of e+e− → tt̄ in NLO, fails because
it returns a different value than expected. After first examination, it turned out that the
wrapper in WHIZARD is (re-)setting the renormalisation scale µIR (mu ir in code) of
RECOLA only before each integration step and not before the RECOLA processes are
generated. This is only possible by calling the routine set dynamic settings rcl
with parameter 1 before generation. As of RECOLA 2, though, this routine is depre-
cated, meaning that µIR is never set in this case. This proved to be an issue, since
the design of WHIZARD doesn’t easily allow µIR to be set before generation of the
RECOLA processes. But since the renormalisation scale can vary during integration,
setting µIR at each step would also still be necessary to produce the correct result. This
led to the belief that the current way of doing things is inherently flawed.

Belief turned into conviction when it was found that the variable µIR is actually
part of the library COLLIER, which is used internally by RECOLA. The COLLIER
documentation explicitly states, that the results in the end should be independent of the
value for µIR. This is further backed by the alternative loop provider OpenLoops which
also uses COLLIER and can do without modifying µIR.

The current guess is a problem regarding the subtraction terms in the matrix element.
After closer inspection, it turned out that the test recola 7 only uses RECOLA to
compute the virtual part of e+e− → tt̄ in NLO. As the other amplitudes are tree-level,
the WHIZARD-internal OMEGA integrator is used to calculate them. But since both
Born and virtual amplitudes have regularised divergences that exactly cancel when added
together, both should be computed by RECOLA to make sure that the divergences are
removed properly. This leads to the problem that is discussed in this report, namely
using multiple RECOLA cores at once.

4

2.2 Single-Core Implementation

Before the modifications described in this report, WHIZARD was only able to make
use of RECOLA processes to compute one matrix element component during execution.
This is mostly due to the way RECOLA manages and generates its processes. An
example of this is shown in listing 2.1. RECOLA requires all processes to be defined
upfront, only then can they be generated and computed. Any attempt to define processes
after generation or to reset before generating processes results in an error on behalf of
RECOLA.

1 program main_rcl
2
3 use recola
4
5 implicit none
6
7 integer, parameter :: dp = kind (23d0) ! double precision
8 real (dp) :: p(0:3,1:6)
9 character(len=100) :: modelname

10
11 call set_output_file_rcl(’*’)
12
13 call set_print_level_squared_amplitude_rcl(1)
14
15 ! #1: Define process
16 call define_process_rcl(1,’u u˜ -> g g tau+ tau-’,’NLO’)
17
18 ! #2: Generate process
19 call generate_processes_rcl
20
21 ! Momenta of the phase-space point.
22 p(:,1) = [4000.0000000000d0, 0.0000000000d0, 0.0000000000d0,

4000.0000000000d0]
23 p(:,2) = [4000.0000000000d0, 0.0000000000d0, 0.0000000000d0

,-4000.0000000000d0]
24 p(:,3) = [2387.4445571379d0,-2131.7219821216d0, 677.6712380335d0,

-834.5145879427d0]
25 p(:,4) = [2084.0108209587d0, 1206.0274745508d0, 1266.0449626178d0

,-1133.8999008430d0]
26 p(:,5) = [1954.1326742459d0, -173.3442838631d0, -836.2617619034d0,

1757.6269608155d0]
27 p(:,6) = [1574.4119476575d0, 1099.0387914340d0,-1107.4544387478d0,

210.7875279701d0]
28
29 ! #3: Compute process
30 call compute_process_rcl(1,p,’NLO’)
31
32 ! #4: Reset RECOLA and remove processes
33 call reset_recola_rcl
34
35 end program main_rcl

Listing 2.1: Example of a simple program using RECOLA

5

But since WHIZARD decides freely which integration cores it chooses to compute every
component with, it is not known at compile time how many RECOLA cores and thus
processes are needed overall. Only inside a single core the number of required RECOLA
processes is set by the number of flavours (n flv) that are being considered. This
forced WHIZARD to reset RECOLA completely once a new matrix element was to be
computed, effectively removing all processes of the previous RECOLA core. And since
all cores are defined in the beginning, only the last defined RECOLA core survives.

The exact dynamics of this behaviour are implemented in src/recola/recola.nw
and happen on two layers: in the wrapper, which is partly managed by a single-
ton object of type rcl controller t, and the core layer which, mostly consists of
recola writer t and prc recola t. Both layers interact with each other through
wrapper routines which start with rclwrap.

The only purpose of rcl controller t in this implementation is to keep track of
the RECOLA process IDs handed out to the various instances of prc recola t and to
make sure that things are done in the order intended by RECOLA. All other wrapper
calls are almost directly propagated towards RECOLA and don’t affect the singleton
object. Calling rclwrap reset recola resets both the singleton and RECOLA.

2.3 Multiple Flavor Lists

The following issues all arose after implementing the solution to the previous problem
since parts of the program relied on there being only one available RECOLA core.

The first problem that became apparent this way was the handling of flavor lists.
They contain one event in all of the given flavor combinations. Usually only one explicit
flavor is considered and thus the lists only contain a single process string. But multiple
flavors are allowed to be considered in one WHIZARD process, as can be seen in listing
2.2:

1 process recola_6_p1 = E1, e1 => u:d, U:D

Listing 2.2: Example of a WHIZARD process with multiple quark flavors (up and down)

The flavor lists for each process are then generated by WHIZARD as files ending with
.flv.dat. These files are then read by the RECOLA writer and used to initialise the
cores. This means that one core can ”contain” as many RECOLA processes as entries
in the corresponding flavor list (denoted by n flv). The issue arises from wanting to
use two RECOLA cores to compute both the Born/virtual and the real amplitude of
an event in NLO. Since the file name is always the same irregardless of component, the
flavor lists of multiple core are overwritten by each other. This isn’t a problem if the
process string is the same (i.e. with Born and virtual). But computation of the real
amplitude uses a different process string since it deals with additional radiation and
hence extra particles in the event. It is thus necessary to create a distinction between
the flavor lists of different cores.

6

2.4 Mismatching Indices

Another issue resulting from flavor lists are the indices used in the integration routines.
For example in prc recola compute sqme only the index i flv ranging between 1
and n flv is used to refer to the RECOLA processes. This is fine for a single core,
since there is only one flavor list and the flavor index equals the process index because of
that. But for multiple cores, there needs to be a way for these cores to keep track of the
RECOLA processes they manage that depends on i flv. This includes explicitly dis-
tinguishing between RECOLA cores and RECOLA processes, since they are sometimes
used as if they are equivalent. An example for that is prc recola compute sqme,
where i flv is used, and prc recola compute sqme virt, where the core variable
object%recola id is used for the same purpose.

7

3 Implementation Details

What follows is a summary of the steps taken to allow multiple RECOLA cores at once.
The explicit code changes can be traced in the branch
allow-multiple-recola-processes of the WHIZARD development git repository
[6].

3.1 The Wrapper

The first step towards a solution was to extend rcl controller t in the RECOLA
wrapper. Since WHIZARD initialises all cores at once before integration, no RECOLA
processes are used at this point, which means that a reset of RECOLA will have no
impact, as long as all process defined so far are redefined afterwards. This fact was used
to create a new type rcl process t, which combines all the information required to
define a process in RECOLA namely id, process string and order. An array of
that type called processes was then added to rcl controller t together with the
routine rcl controller add process, which adds a rcl process t to the array
and increases the array size if necessary. The routine rcl controller activate is
now used to initialise this array which means that
rclwrap request generate processes now has to be called before adding pro-
cesses (a name change could be considered but wasn’t done).

To keep track of the amount of processes in the array, n processes was introduced.
The already available recola id isn’t used for this purpose, since in theory not all
available process IDs have to be present in the array. To further establish this difference,
rclwrap get n processes was renamed to rclwrap get current recola id, since
it returns recola id internally.

The final change in the wrapper was made to the way processes are defined. A direct
routine to do this was removed by making rclwrap define process private, since
it could cause issues with the new paradigm. Instead, rclwrap define processes
was introduced which goes through the new rcl process t array and defines all the
processes that are located there. If processes have been defined before (indicated through
the new defined flag), RECOLA is reset entirely beforehand, making sure that only
the processes in the array are defined afterwards. This allows to add and define new
processes even after generation without losing previously defined processes. As implied
earlier, this means that the changes made allow for an arbitrary amount of RECOLA
processes and thus cores to be used in WHIZARD.

8

3.2 The Writer

The recola writer t needed the least amount of work, but the changes were im-
portant none the less. Its ID determines the ID of the whole calculation done by the
corresponding core and also the the file name of the flavor list that is used. Because
of that, this was the culprit for allowing the flavor lists to overwrite one another, since
the writer ID was the same independent of matrix element component. This was solved
by adding the already available component-specific prefixes in recola def init to
distinguish between the different writer IDs. The rest worked automatically and only
the functional tests had to be adjusted to recognise the new IDs.

3.3 The Core

The last big issue of the project was finding the correct RECOLA process IDs to use
for integration. As described in Section 2.4, the old system relied on there being only
one RECOLA core and had ambiguities regarding the correct process index to use for
integration, anyway.

This issue was resolved by extending the RECOLA core rcl process t, such that
all process IDs associated to it are stored in an internal array recola ids with length
n flv. This means that i flv can be used to access the correct process referring to
that flavor since they are being added to the array with the same index through the
routine prc recola register processes. There, i flv corresponds to the line of
the .flv.dat file in which the process is found. Since now all process IDs can be
tracked, the misleading variable recola id was removed, since it always only referred
to first RECOLA process despite there possibly being multiple.

Since almost all routines have access to i flv through the parameter list, substituting
i flv and object%recola id with object%recola ids(i flv) at the appropri-
ate places took no effort. Only the changes required for the routine
prc recola replace helicity and color arrays are not trivial and discussed in
section 4.2. Once helicities are properly implemented, another index i hel will become
relevant. This means that the ID array would need to be expanded by one dimension,
which can be done easily.

9

4 Unresolved Issues

The changes described in this report were the most important ones to allow both
RECOLA and RECOLA to be fully made use of by WHIZARD. But there are still
areas left in which inspection is needed to ensure that a regular usage is possible. The
main points are described in the following.

4.1 Color & Spin Correlations

It is now possible to calculate the Born, real and virtual amplitudes using RECOLA
in WHIZARD. But to find the subtraction terms for real and virtual, it is necessary to
compute the color and sping correlations for the process. RECOLA already provides
appropriate routines with compute colour correlation rcl,
compute spin colour correlation rcl and compute spin correlation rcl.
Because of that, it is probably only necessary to write a wrapper around it which is called
at the same spot in the program as the wrappers for other libraries. This is probably
done somewhere in the whizard.nw file.

4.2 Replace Helicity & Color Arrays

As said in section 3.3, the index i flv isn’t available in the routine
prc recola replace helicity and color arrays. This is because the replace-
ment has to be done for every flavor (and helicity) index at once, but is currently only
done for i flv = 1. Expanding this behavior for all flavors requires an additional ar-
ray dimension, which also has to be then considered at the points where the arrays are
needed.

4.3 Scale Dependence

Because of the previous issues, the results of NLO matrix elements are technically still
scale dependent. This means that mu ir is still actively reset with each integration step.
Once the color and spin correlation are properly implemented though, one can remove
this resetting and then test, if the results with real, virtual and sub part calculated with
RECOLA still change for different mu ir etc. This should be the case in theory, so
further dependence may point at an unknown error in the code.

10

Bibliography

[1] W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle Processes at
LHC and ILC , Eur.Phys.J.C71 (2011) 1742, arXiv: 0708.4233 [hep-ph]

[2] M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing matrix element generator,
LC-TOOL-2001-040-rev, arXiv: hep-ph/0102195-rev

[3] WHIZARD Manual

[4] Stefano Actis, Ansgar Denner, Lars Hofer, Jean-Nicolas Lang, Andreas
Scharf, and Sandro Uccirati. RECOLA: REcursive Computation of One-Loop
Amplitudes. Comput. Phys. Commun., 214:140–173, 2017. arXiv:1605.01090,
doi:10.1016/j.cpc.2017.01.004.

[5] Ansgar Denner, Jean-Nicolas Lang, and Sandro Uccirati. Recola2: REcur-
sive Computation of One-Loop Amplitudes 2. Comput. Phys. Commun., 2017.
arXiv:1711.07388, doi:10.1016/j.cpc.2017.11.013.

[6] Multi-Core Git Branch

11

https://arxiv.org/abs/0708.4233
https://arxiv.org/abs/hep-ph/0102195
https://whizard.hepforge.org/manual/
https://arxiv.org/abs/1605.01090
https://doi.org/10.1016/j.cpc.2017.01.004
https://arxiv.org/abs/1711.07388
https://doi.org/10.1016/j.cpc.2017.11.013
https://gitlab.tp.nt.uni-siegen.de/whizard/development/commits/allow-multiple-recola-processes

	WHIZARD & RECOLA
	Compatibility Issues
	Status Quo
	Single-Core Implementation
	Multiple Flavor Lists
	Mismatching Indices

	Implementation Details
	The Wrapper
	The Writer
	The Core

	Unresolved Issues
	Color & Spin Correlations
	Replace Helicity & Color Arrays
	Scale Dependence

