
Burn-In Test Software Development

Taras Fedorchuk, Taras Shevchenko National University of Kyiv, Ukraine

September 8, 2018

Abstract

A new software package developed for the burn-in test of the CMS
Phase 2 Outer Tracker is described. The framework is implemented
in C++ using Qt and VISA libraries.

1

Contents

1 Introduction 3

2 LHC Upgrade 3

2.1 LHC Schedule . 3

2.2 CMS Detector Structure . 3

2.3 Future module concept . 4

3 Burn-in test 5

4 Hardware structure 6

5 Software 7

5.1 Git repository . 7

5.2 Compiling the software . 7

5.3 Source code structure . 7

5.4 Methods description . 9

6 Conclusion 11

7 Appendix A 12

8 Appendix B 15

2

1 Introduction

For the upcoming CMS Phase 2 Outer Tracker upgrade several thousands of

modules will be produced. These modules will be tested in several steps. One

of them is the burn-in test, when small batches of modules will be assembled

and tested together at different temperatures.This test needs a special software

to control the whole setup. A new package has been developed in C++ using

Qt and VISA libraries. Information about the software and hardware parts of

the burn-in test is shown below.

2 LHC Upgrade

2.1 LHC Schedule

The High Luminosity Large Hadron Collider (HL-LHC) is a project which is

aimed on increasing the luminosity of the current Large Hadron Collider(LHC)

and according to the LHC/HL-LHC Plan will start in 2025. In 2018 there will

be a LS2 (Long Shutdown) which will extend until 2020. The main feature of

this shutdown is the upgrading of LHC Injector[1]. Luminosity in this period

will increase by factor 2 of compared to the current operation. Run 3 is forseen

for the years 2020 to 2022. After that the most interesting part of upgrade is

coming. During LS3 the Phase 2 upgrade will be done. In this shutdown, the

detectors of all major LHC experiments will have to be upgraded.

2.2 CMS Detector Structure

The CMS experiment (Compact Muon Solenoid) is one of the largest detectors

in LHC. It is 21.6 metres long, 15 m in diameter, and weighs about 14,000

tonnes. The CMS magnet is a ”solenoid” which is made of coils of wire and

produces a very strong uniform magnetic field with strength up to 4T. Tracker

and calorimeter detectors are located inside the coil. The general structure of

the detector is shown in figure 1.

The luminosity will be substantially increased after upgrade. Under these

conditions the number of collisions per bunch-crossing, or pile-up, is expected

to reach or exceed 140 and the total integrated radiation dose is expected to

increase by a factor of ten with respect to the initial LHC design value. Hence-

forth, the entire tracking system has to be improved. The main requirements

3

Figure 1: CMS detector structure

to tracker upgrade can be summarized as follows: an increased radiation tol-

erance, higher granularity to maintain the channel occupancy and finally, the

upgraded tracker has to contribute to the level 1 trigger of CMS. The upgraded

tracker detector will be composed of two parts: inner tracker (IT) and outer

tracker (OT).

2.3 Future module concept

The modules for the outer tracker are composed of two closely-spaced silicon

sensors, read out by front-end electronics placed at the edges of each module.

The main purpose of these modules is to provide information about the track.

For each hit on the bottom sensor an acceptance window on the top sensor is

defined. A pair of hits passing the acceptance window is called a ”stub” (first

track in figure 2). These ”stubs” indicate high pT events and are transmitted

to L1 trigger afterwards.

Two types of modules are planned: two-strip(”2S”) and pixel-strip(”PS”). 2S

modules are composed of two strip sensors. Each sensor will be approximately

10x10 cm2 with 5 cm long strips and 90 µm pitch. This type of module will

be placed in the outer part of the outer tracker. PS modules are composed of

strip and pixel sensors. A strip sensor size will be 10x5 cm2 with 2.35 cm strips

with 10 µm pitch[2]. Each pixel on the pixel sensor will be 100 µm x 1400µm.

PS modules will used in the inner part of the outer tracker to provide a more

precise measurements of the z coordinate for tracking. The layout of the outer

4

Figure 2: On-board pT discrimination

tracker can be seen in the figure 3. Blue lines correspond to PS modules and

red ones to 2S modules.

Figure 3: Layout of the future outer tracker

3 Burn-in test

A couple of thousands of modules will be produced and need to be tested

for the upcoming detector upgrade. DESY takes part in production of these

modules and end-cap is planned to be assembled on site. A sequence of tests

will be performed as a part of production process:

• Reception test - a quick test of modules that just arrived.

5

• Burn-it test - several modules (up to 50) will be tested together at dif-

ferent temperatures.

• Integration test - modules that passed through two previous tests will be

mounted on the end-cap. Sectors will be tested separately.

4 Hardware structure

Figure 4: Hardware structure

In figure 4 one can see a schematic view of the demo version of the burn-in test

setup. A module under test will be placed inside this insulated box. A Peltier

element and liquid cooling system are responsible for the temperature control

of the module. Raspberry Pi will perform the monitoring of the temperature,

humidity,etc inside the box. Several power supplies will be used to apply the

bias voltage, low voltage for the electronics and voltage for the Peltier cooling.

6

5 Software

5.1 Git repository

The most recent version of the code can be accessed using the next link

https://github.com/fedorchuk1/

Burn-InSetupControlSoftware. An example of the hardware description file is

located in the folder settings and in the Appendix B of the current report.

5.2 Compiling the software

A quick start guide is shown below:

• VISA drivers are avaliable using the link http://www.ni.com/

download/ni-linux-device-drivers-2018/7664/en/. Then one should

choose the appropiate package and install it later with command ”sudo

yum install ni-visa” (for CentOs7).

• Use ”git clone https://github.com/fedorchuk1/

Burn-InSetupControlSoftware” to fetch the source code.

• Find location of VISA and add it to LIBS and INCLUDEPATH in Burn-

InSetupControlSoftwate.pro file. Example is shown there.

• Change directory to external and use command git clone https://

github.com/DESY-FH-ELab/cmstkmodlab.git to get source code for the

JulaboFP50 cooling system(if needed).

5.3 Source code structure

In figure 5 a general software structure is shown. Main features of each class

are listed below:

• SystemController - main control class, which supervises all the other

classes. All test procedures are defined here.

• PowerControl - controls the voltages on modules (low and high). This

class is a generic class where main methods of power supplies are defined.

7

• EnvironmentalControl - interfaces all environmental periphery, such

as chiller, sensors, Peltier elements.

• DatabaseInterface - gets module information from the database and

publishes test results there (will be implemented later).

• DAQControl - interfaces the DAQ system.

• ConnectionInterface - gets information from Raspberry Pi sensors.

• Graphical User Inteface - independent from all other classes, forms a

wrapper around the SystemController Class.

Figure 5: Software structure

8

5.4 Methods description

In this section description of the main methods can be found. GUI consists of

three tabs: Main Test, Voltage Control and Environmental Control. Screen-

shots of the GUI are attached in the Appendix A.

To start one must read a config file. Once a configuration file was parsed the

information about all devices is uploaded. By pressing the Initialize Hardware

button connection to the devices is checked. A double-click on needed com-

mand will add command from the List of commands to the Added commands.

In the widget Added commands one can delete command by double-clicking

and move up or down command with appropriate push button. In the Voltage

Control tab voltage and current control is placed.The last tab, Environmental

Control is responsible for monitoring Raspberry Pi‘s sensors and controling

cooling system.

Table 1: SystemControllerClass main features

struct fParameters

This struct is used for storing commands that must be done for test. Has two members. First

member string cName displays the name of the command and second,double cValue - value that must set.

void ReadXmlFile(std::string pFileName)

Takes a name of the file as argument and opens it. Extension must be .xml. Parsing of

this file implemented in the HWDescriptionParser class.

void ParseChiller(), void ParseVSources(), void ParseRaspberry()

This functions read config file and make an objects of corresponding classes.

Then put created objects to general map that called fGenericInstrumentMap.

bool Initialize()

Checks the connection to all devices listed in configuration file.

string getConnectionString(string pConnection , string pAddress, string pPort)

Returns a string for connecting to the devices using VISA library.

void startDoingList()

This function is running the sequence of commands that user set in GUI.

9

Table 2: Description of main members of MainWindow class

struct output pointer t, struct output Raspberry, struct output Chiller

These structs are defined for displaying environmental features in their widgets. First one is for

voltage sources, second for Raspberry Pi and the last one is for cooling system. Each struct is a

template for its instrument. So one can easily add new instruments to the GUI.

void on listOfCommands doubleClicked(const QModelIndex &pIndex)

Takes a QModelIndex as argument and puts this item to list of test commands.

void on Start pushButton clicked()

Starts running a sequence of commands. One can add command to this list by reading

a *.txt file or from the user interface.

void updateRaspWidget(QString pStr)

Takes a string with information from sensors, connected to a Raspberry Pi and

updates widgets in the GUI.

void updateTTiIWidget(PowerControlClass::fVACvalues *pObject);

void updateKeithleyWidget(PowerControlClass::fVACvalues *pObject)

Current/voltage monitoring.

void on AddedComands tabelView doubleClicked(const QModelIndex &pIndex)

Deletes choosen row from sequence of control commands.

void on AddedComands tabelView clicked(const QModelIndex &pIndex)

When one clicked on the command it will be highlighted and one can move this highlighted

command up or down with buttons placed below this widget.

bool readXmlFile()

Takes an information from fGenericInstrumentMap and creates widgets for devices. Templates

are: output pointer t, output Raspberry and output Chiller.

void doListOfCommands()

Creates a list of commands, formed from the *.xml file..

output pointer t SetSourceOutputLayout(std::string pType),

output Raspberry setRaspberryLayout(string pName)

output Chiller setChilerLayout(string pType)

These methods define a template of a widget for the voltage sources, Raspberry Pi sensors and cooling

system respectively.

output pointer t *SetVoltageSource(QLayout *pMainLayout, std::string pName,

std::string pType, int pNoutputs),

output Raspberry *SetRaspberryOutput(QLayout *pMainLayout, vector <string>pNames,

string pNameGroupBox),

output Chiller* SetChillerOutput(QLayout *pMainLayout, std::string pName,

std::string pType)

Create a widget based on template that shown above. To add widget to GUI just call one of these methos

with needed arguments, first must be a general layout of your group box, second is a name of

instrument and the last one is a type of it.

10

6 Conclusion

The software for the burn-in test has been developed using C++. Qt and

VISA libraries were used for the graphical user interface and for the power

supplies control respectively. New voltage sources or cooling system can be

easily implemented. Still some work is planned to be done: a DAQ Interface,

the connection to the module database, etc.

11

7 Appendix A

Figure 6: Main test tab

12

Figure 7: Voltage control tab

13

Figure 8: Environmental control tab

14

8 Appendix B

<?xml ve r s i on =”1.0” encoding=”utf −8”?>

<HardwareDescription>

<!−− s e c t i on with power con t r o l −−>

<Power>

<!−− Low Voltage Sect ion −−>

<LowVoltage>

<VoltageSource name=”TTI1” c l a s s=”LowVoltageSource” type=”TTI” noutputs=”2” connect ion=”etherne t ”

port=”9221” address =”192.168.1 .180” d e s c r i p t i o n=”used f o r something”>

<Output output id=”0” Voltage=”5” CurrentLimit=”0.250”/>

<Output output id=”1” Voltage=”6” CurrentLimit=”0.250”/>

</VoltageSource>

</LowVoltage>

< !−− High Voltage Sect ion −−>

<HighVoltage>

<VoltageSource name=”Keithley2410 ” c l a s s=”Keith ley2410 ” type=”HighVoltageSource ” noutputs=”1”

connect ion=”rs232 ” address=”/dev/ ttyS5 ” d e s c r i p t i o n=”used f o r b ia s”>

<Output id=”0” Voltage=”−40” CurrentLimit=”1.0”/>

</VoltageSource>

</HighVoltage>

</Power>

<!−− environment s e c t i on −−>

<Environment>

<!−− Ch i l l e r Sect ion −−>

<Ch i l l e rCont ro l name=”JulaboFP50” c l a s s=”” type=”Ch i l l e r ” connect ion=”rs232 ”

address=”/dev/ttyUSB1” de s c r i p t i o n=”used to coo l done the coo l i ng block ” />

<!−− Pe l t i e r Sec t ion −−>

<!−− to be de f ined −−>

<!−−Raspberry Sect ion −−>

<RaspberryControl name=”fh l thermorasp4 ” c l a s s=”” type=”Raspberry” connect ion=”etherne t ”

address=”fh l thermorasp4 . desy . de” port=”50007” d e s c r i p t i o n=”used f o r d i sp l ay temperature

humidity pr e s su r e ” >

<Sensor senso r=”BME680 i2c−0 0x77 temp”/>

<Sensor senso r=”BME680 i2c−0 0x77 hum”/>

<Sensor senso r=”BME680 i2c−0 0x77 pre s”/>

</RaspberryControl>

</Environment>

</HardwareDescription>

15

References

[1] The upgrade programme of the major experiments at the Large Hadron

Collider 2014 J. Phys.: Conf. Ser. 515 012012 P. La Rocca and F.Riggi

[2] Phase-2 Upgrade of the CMS Tracker, Nuclear and Particle Physics Pro-

ceedings 273275 (2016) Stefano Mersi

16

