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Abstract

The irradiation of matter by intense X-ray pulses from XFELs can result in cre-
ation of medium in which vast number of atoms is in excited state. Spontaneous
emission in such system can lead to laser-like amplified spontaneous emission which
was demonstrated experimentally in atomic gases [1] and solids [2]. Theoretical
modeling of such systems requires accounting of quantum nature of the electro-
magnetic field. The quantum treatment enables correct spontaneous radiation
description. However, completely quantum formalism makes the description over-
complicated and many features of radiation propagation and amplification can
be described by semi-classical Maxwell-Bloch equations. A widespread approach
to this problem consists of complementing the Maxwell-Bloch equations with ad-
hoc noise terms mimicking the spontaneous radiation [4]. Another approach is to
supply the Maxwell-Bloch equations with random initial conditions [3]. In our re-
search group equations for correlation averages were obtained based on Heisenberg-
Langevin equations. They provide us with correct description at every regime of
spontaneous emission. The only problem is in enormous amount of time needed
to perform numerical calculations. This contribution contains the technique that
helps overcome this problem. At the very beginning of spontaneous emission
one uses exact equations for correlation averages. When reached the regime where
quantum effects are negligible one performs crossover to Maxwell-Bloch equations.
Analytical research was made and the code was written. The comparison between
the exact calculation and the simplified one is presented.
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Figure 1: Taken from [1]. The first figure demonstrates the level scheme. The second fig-
ure contains single-shot spectra of the atomic x-ray laser line and transmitted
XFEL pump.

1. Introduction

In 2012 atomic inner-shell X-ray laser scheme was demonstrated [1]. They observed
strong amplified spontaneous emission from the end of the photo-ionized plasma (fig.
1). Obtained radiation is localized in a small solid angle and possesses high monochro-
maticity and wavelength stability. It means that this phenomenon can be used in studies
of different subtle effects. In [6] it was shown that stimulated emission spectra contain
a lot of information about substance structure. To describe spontaneous radiation cor-
rectly quantum treatment is necessary. It leads to overcomplicated formalism and many
features can be described using complemented Maxwell-Bloch equations. However, all
this simplified methods do not take into account non-linear quantum effects from the
very initial regime properly or it is impossible to introduce pump. Usually it is pure
phenomenology.

Consider some volume that is filled with atoms. Pump performs photo-ionization
that leads to population inversion. Evolution of such system can be fully described
with Heisenberg-Langevin equations. After quantum averaging they provide us with the
information about correlation functions of atoms and field, state populations. Three
approximations were used to obtain the final equations: atoms have only two levels; a
correlation function of third order is replaced with correlation functions of lower orders
and one-dimensional system is considered. These equations can be separated into two
groups: for atomic observables and field.

For atoms we have

∂ρee(z, τ)

∂τ
= − (Γsp + Γdec.e + Γnonrad) ρee(z, τ) + p(z, τ)− 3∆o

8π
Γspn

z∫
0

dz′S(z, z′, τ),

(1)
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∂ρgg(z, τ)

∂τ
= (Γsp + Γnonrad) ρee(z, τ)− Γdec.gρgg(z, τ) +

3∆o

8π
Γspn

z∫
0

dz′S(z, z′, τ), (2)

σ(z, τ) =
1

2
(ρee(z, τ)− ρgg(z, τ)) , (3)

∂S (z1, z2, τ)

∂τ
= −ΓtotS (z1, z2τ) +

3∆o

8π
Γspn

(
σ(z1, τ)

∫ z1

0

dz′1S(z′1, z2, τ) + h.c

)
+

+
3∆o

8π
Γsp (σ(z1, τ)ρee(z2, τ)H(z1 − z2) + h.c) , (4)

here τ = t − z/c, ρee(z, τ) is excited state population and ρgg(z, τ) — ground state
population, σ(z, τ) is population inversion, S (z1, z2, τ) is atomic correlation function,
Γsp describes spontaneous decay, other Γ describe decoherence, ∆o is a solid angle in
which radiation mainly travels, n is a linear concentration, p(z, τ) performs pumping.

And for field

∂K (z, τ1, τ2)

∂z
=

3∆o

8π
Γspn

(∫ τ1

0

dτ ′1σ (z, τ ′1)K (z, τ ′1, τ2) e−Γ/2(τ1−τ ′1) + h.c

)
+

+
3∆o

64πλ2
Γspn

Min(τ1,τ2)∫
0

dτ ′e−
Γ
2

(τ1+τ2−2τ ′)
(

(Γdec.g + Γdecoh) ρee(z, τ
′) + p(z, τ ′)

)
, (5)

here K (z, τ1, τ2) — field correlation function and λ is a wavelength of the atomic tran-
sition.

To describe n-level system similar equations are used. The only difference: Γ should
be substituted with matrices where different elements are related to different transitions.

Hereandafter the set of equations (1-5) is called the set of exact equations. The main
problem of these equations is enormous amount of time spent for calculating integrals
and correlation functions. The main task is to propose the algorithm capable of doing
fast calculations with relatively small loss of accuracy.

The second section is dedicated to the description of the main idea. In the third
section analytical results are demonstrated. The forth section contains numerical calcu-
lations and comparison between the exact calculations and the simplified ones. And the
fifth section is mainly about n-level systems.
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Figure 2: Numerical calculations of the quantum part contribution to the whole equa-
tion in case of atomic correlation function. One can see rapid attenuation at
the beginning. At certain moment of time quantum part becomes negligible.
Xenon. Total number of atoms 3 · 105.

2. Main idea

To make calculations faster we split the evolution of the system into two qualitatively
different stages: ”quantum” and ”classical”. Each stage is ruled by different equations:
”quantum” — by the exact equations and ”classical” — by the simplified ones.

2.1. Quantum regime

The first stage is mainly ruled by terms that describe spontaneous emission (”quantum
parts” of equations):(

∂S (z1, z2, τ)

∂τ

)
q

=
3∆o

8π
Γspσ(z1, τ)ρee(z2, τ)H(z1 − z2) + h.c., (6)

(
∂K (z, τ1, τ2)

∂z

)
q

=
3∆o

64πλ2
Γspn

Min(τ1,τ2)∫
0

dτ ′e−
Γ
2

(τ1+τ2−2τ ′)
(
p(z, τ ′)+

+ (Γdec.g + Γdecoh) ρee(z, τ
′)
)
. (7)

These terms are expected to become negligible by the end of the process. It can be seen
in fig. 2.1. After the end of the quantum regime, the classical regime starts.
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2.2. Classical regime

Now the quantum terms can be omitted and one obtains the following equations for the
atomic variables:

∂S (z1, z2, τ)

∂τ
= −ΓtotS (z1, z2τ) +

3∆o

8π
Γspn

(
σ(z1, τ)

∫ z1

0

dz′1S(z′1, z2, τ) + h.c.

)
,

and for the field correlation function:

∂K (z, τ1, τ2)

∂z
=

3∆o

8π
Γspn

(∫ τ1

0

dτ ′1σ (z, τ ′1)K (z, τ ′1, τ2) e−Γ/2(τ1−τ ′1) + h.c.

)
.

Obtained equations result in correct observables only after entering ”classical” area.
Using exact equations one can obtain boundary conditions for this area.

After entering ”classical” area we expect classical behaviour of correlation functions.
That means we can use the following substitution:

S(z1, z2, τ) = P (τ, z1)P (τ, z2), K(z, τ1, τ2) = A(z, τ1)A(z, τ2). (8)

In case of n-level atoms it turns out to be impossible to describe correlation function
using only one term. In such case we should use a combination of classical terms (see
section 5).

Performed substitution (5) one finally obtains Maxwell-Bloch equations working in
classical regime:

∂P (z, τ)

∂τ
= −Γtot

2
P (z, τ) + λ

√
3∆o

π
Γspσ (z, τ)A (z, τ) , (9)

A (z, τ)

∂z
=
n

λ

√
3∆o

64π
ΓspP (z, τ) .

It remains to determine boundary conditions. It turns out that we should use
different boundary conditions to obtain correct field and atomic correlation functions.
In case of atomic observables we have to use the exact equations until certain moment
of time τ0 when quantum part is negligible. Using obtained correlation function one can
determine polarization function according to (5):

S(z1, z2, τ0)→ P (z, τ0), A(0, τ) = 0. (10)

In case of field we have to use the exact equations until certain coordinate z0 where the
quantum part is negligible. Then we can use Maxwell Bloch equations with the fallowing
boundary conditions:

K(z0, τ1, τ2)→ A(z0, τ), P (z, 0) = 0. (11)

One can notice that the calculation of polarization results in extra calculations of
field. The same thing is present in case of field, where we have additional polarization.
It will be shown, that this extra field can be used to determine real field in far region.
Hence, in some cases we can use the exact equations for the atomic variables only. That
increases the speed of calculations significantly.
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2.3. Algorithm

Finally, the code performs the following steps:

1. Calculation of atomic correlation function, excited and ground state populations
using the exact equations. Each step it checks if the quantum part is small enough
to make crossover to Maxwell Bloch equations.

2. When the threshold is reached the program calculates boundary conditions for
polarization. Considering the correlation function as a matrix it is possible to
obtain eigenvalues and eigenvectors. The eigenvector with largest contribution is
used as a boundary condition for Maxwell Bloch equations.

3. Calculation of polarization, excited and ground state populations using simplified
equations. During calculation the program determines pseudo field that correctly
describes real field in far region.

4. Calculation of the field correlation function. Each step it checks if the quantum
part is small enough to make crossover to Maxwell Bloch equations.

5. Crossover to Maxwell Bloch equations and calculation of field in line with atomic
observables.

7



3. Analytical results for 2-level system

In approximation of a constant full population inversion it is possible to determine the
atomic correlation function. It allows to obtain the analytical expression for the quantum
part contribution. Hence, we can estimate the time needed to perform exact calculations.

3.1. Atomic observables for the very initial regime

Let us consider equations for the very initial case:

∂S (z1, z2, τ)

∂τ
=

3∆o

16π
Γsp (F (z1, z2, τ) + F (z2, z1, τ)) +

3∆o

16π
Γsp, (12)

F (z1, z2, τ) = n

∫ z1

0

dz′1S(z′1, z2, τ).

Here we neglected pumping and term −ΓtotS(z1, z2, τ). Only the terms that play sig-
nificant role are left. We consider full population inversion at the beginning. To obtain
the exact solution for these equations we use iterative method (Appendix A). Here
we adopted the technique that is used in analyses of Takagi’s equations from dynami-
cal theory of x-ray diffraction [5]. The resulting expression for the atomic correlation
function:

S(z1, z2, τ) =

√
3∆oΓspτ

16πn
(z1 − z2)−1×

×

[
√
z1I1

(√
3∆o

4π
Γspτnz1

)
I0

(√
3∆o

4π
Γspτnz2

)
−

−
√
z2I1

(√
3∆o

4π
Γspτnz2

)
I0

(√
3∆o

4π
Γspτnz1

)]
. (13)

Let us estimate population inversion change. First of all we write the simplified
equation for the initial regime:

∂σ(τ, z)

∂τ
= −3∆o

8π
Γspn

z∫
0

dz′S(z, z′, τ). (14)

Using (13) one can obtain the expression for the change of population inversion (Ap-
pendix B):

∆σ(τ, z) = −3∆o

16π
Γsp

τ∫
0

dτ ′

(
I2

0

(√
3∆o

4π
Γspτ ′nz

)
− 1

)
=

=
3∆o

16π
Γspτ

(
1 + I2

1

(√
3∆o

4π
Γspτnz

)
− I2

0

(√
3∆o

4π
Γspτnz

))
. (15)

8



Figure 3: The first graph contains theoretical (orange line) and numerical (blue line)
estimation of the quantum part contribution. The second graph shows the
population inversion dependency on coordinates and time calculated numeri-
cally. Xenon. Total number of atoms 3 · 105.

3.2. Estimation of quantum term contribution. Analytical
expression for classical regime boundary conditions

Since we are mainly interested in time dependency, one can average over coordinates the
expression for the atomic correlation function:

S(τ) =
1

L2

∫
S(z1, z2, τ)dz1dz2,

here L is size of the system.
To estimate quantum part contribution we divide the second term from right hand

side of equation by dS(τ)/dτ . Using the result of the previous subsection one obtains
the following expression (Appendix C):

ε(τ) =
3∆o
16π

Γsp

dS(τ)/dτ
=

3∆o
16π

ΓspNτ

I2
1

(√
3∆o
4π

ΓspNτ
) , (16)

here N is a total number of atoms. Fig. 3 contains comparison between theory and
simulation. Using function ε(τ) it is simple to determine the time needed to finish the
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δ(τ)

ε(τ)

Figure 4: Relation between δ(τ) and ε(τ) for different number of atoms N .

quantum regime. In order to take pumping into account one should estimate pumping
time and subtract it from τ .

All expressions in this chapter are derived within approximation σ = 1/2. To
estimate an error connected with this approximation let us average ∆σ over coordinates
and multiply by two:

δ(τ) =
3∆o

8π
Γspτ

[
1 + 2I2

1

(√
3∆o

4π
ΓspτN

)
− I0

(√
3∆o

4π
ΓspτN

)
×

×

(
I0

(√
3∆o

4π
ΓspτN

)
+ I2

(√
3∆o

4π
ΓspτN

))]
. (17)

This function shows the deviation of the population inversion from 1/2. It should be
small enough to use formula (16). Fig. 4 shows the relation between δ(τ) and ε(τ).

If accuracy is acceptable and the quantum part is small enough one can use (13) to

obtain boundary condition for classical regime. In case of z
L
�
(

3∆o
4π

Γspτ0N
)−1

:

P (τ0, z) ≈
(

3∆oΓspτ0

64πnz

)1/4

I0

(√
3∆o

4π
Γspτ0nz

)
, ∆σ(τ0, z) ≈ −P (τ0, z). (18)

It is interesting to compare (18) with the technique used in [3] based on random
initial conditions. The result can be rewritten in the following way:

P (τ0, z) =

√
L

Nz
f

(
3∆o

4π
Γspτ0nz

)
,

here f is a function that depends on the moment of the transition to classical regime.

Range of
√

L
Nz

is N−1/2. In [3] we have random initial conditions with range of N−1/2

as well. However, our treatment provides us with correct description at the beginning
of the process and does not need considering statistical ensemble.
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nm−2 · ps−1 nm−2 · ps−1

Figure 5: The first graph contains the intensity of radiation calculated with exact equa-
tions, the second graph — with simplified ones. Red line shows the time of
transition to the classical regime.

4. Numerical results for 2-level system

In this section we demonstrate numerical results, comparison between exact calculations
and simplified ones for 2-level system.

In simulations we considered Xenon with Γ−1
sp = 1.0 ns, L = 5.0 ·103 nm, N = 3 ·105,

λ = 65 nm, ∆o = 0.013. Table 1 contains the information about the time needed to
perform simulations on my laptop.

Table 1: Time needed to perform simulations

Equations quantum regime classical regime total
Exact for atomic observables 1 min 50 sec — 1 min 50 sec
Simplified for atomic observables 19 sec 1 sec 20 sec
Exact for field 1 min 15 sec — 1 min 15 sec
Simplified for field 13 sec 1 sec 14 sec

One can see that proposed algorithm works much faster with almost no loss in ac-
curacy. That is the case for the intensity (number of photons per cross section per solid
angle per a unit of time) of radiation (fig. 5), state populations (fig. 6 – 7) and atomic
correlation functions (fig. 9).

In case of field correlation functions we have more things to discuss (fig. 10). First
of all one can see noticeable difference between correlation functions obtained with exact
and simplified equations for large distances (fig. 8). Even if the average quantum part
is small, that is not the case for each point separately. Ideally we should divide the time
into small intervals and check the quantum part and perform the transition individually
for each region. The second peculiar thing is that pseudo field (see 2.3) results in correct
correlation function for large distances. In other words the pseudo field coincides with
the real field in far region.

11



Figure 6: The first graph contains the ground state population calculated with exact
equations, the second graph — with simplified ones.

Figure 7: Similarly for the excited state population.

K(z, τ, τ) nm−2 · ps−1

Figure 8: Intensity at the end of the system. Blue line — exact method, orange line —
simplified one.
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τ = 120 ps

τ = 310 ps

τ = 500 ps

Figure 9: The first column contains exact simulations for atomic correlation function of
different moments of time, the second — simplified simulations.
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nm−2 · ps−1 nm−2 · ps−1 nm−2 · ps−1

z = 820 nm

z = 1500 nm

z = 2900 nm

z = 5000 nm

Figure 10: The first column contains exact simulations for atomic correlation function of
different coordinates, the second — simplified simulations, the third column
contains correlation functions built out of pseudo field functions. Red line
shows the time of transition to classical regime.
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a)
  

n states

m states

b)
  

n states

m states

n' states

Figure 11: a) 2-level scheme with degenerate states; b) Λ scheme with degenerate states.

5. n-level systems

In this section we consider different n-level schemes: 1s1/2 → 2p1/2, Λ level scheme with
different ground state energies and 1s1/2 → 2p1/2, 2p3/2. All results are obtained for
the case of incoherent pumping. Equations for n-level system turn to be too bulky to
mention them here.

Accounting for different transitions leads to impossibility of the ”classical” expan-
sion. Now we use the following expression:

Sp,q(z1, z2, τ) =
∑
i

P ∗p,i(τ, z1)Pq,i(τ, z2),

here p and q denote atomic transitions. The number of terms depends on the accuracy
you need (usually we use 2 terms and accuracy was satisfying). From now we should add
the following step to the algorithm: when obtaining boundary conditions for classical
regime the program picks a set of eigenvectors. The number of eigenvectors depends on
the accuracy required.

5.1. 1s1/2 → 2p1/2 level scheme. 2-level systems with degenerate
states

Here, 2 degenerate ground states and 2 degenerate excited states are presented. It
turns out that such type of systems can be substituted with 2-level one with no loss
in accuracy due to the fact that we can flip the system and nothing would change. In
terms of speed we have the same result for the simplified algorithm as it was in case of
a 2-level system. Exact atomic equations for the full 1s1/2 → 2p1/2 level scheme costs
approximately (2 · 2)2 = 16 times more (24 min against 20 sec). 2 · 2 is for all possible
transitions and the second power — for correlation function depending on 2 transitions.

The same simplification can be performed for any type of system composed of 2
energy levels (fig. 11a). Hence, in case of n degenerate ground states and m degenerate
excited states we can reduce the system to n/2 and m/2 states respectively.

In case of incoherent pumping, only diagonal elements of state populations turn
non-zero. That is used to make the code even faster.
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nm−2 · ps−1

Figure 12: Excited state population for one of degenerate states and resulting intensity.

5.2. Λ system with different ground state energies. Numerical
example for 1s1/2 → 2p1/2, 2p3/2

The main property of Λ system (fig. 11b) is that some non-diagonal elements become
non-zero as well as diagonal. It turns out that they related to the levels of the same
total angular momentum projection.

As in previous subsection it is possible to reduce such type of system to twice smaller
one as well.

In fig. 12 – 13 one can see the result of program work. 1s1/2 → 2p1/2, 2p3/2 is
considered. Threshold time — 30 ps.

6. Conclusion

We have presented the formalism that describes amplified spontaneous emission in one
dimensional system properly. Since it needs a lot of resources to be simulated, we
have demonstrated a technique that optimizes it. The comparison between exact and
optimized approaches has been presented. The code for 2-level and n-level systems is
written.
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1s1/2 → 2p1/2 (∆m = 1), 1s1/2 → 2p1/2 (∆m = 1) 1s1/2 → 2p1/2 (∆m = 1), 1s1/2 → 2p3/2 (∆m = 1)

1s1/2 → 2p1/2 (∆m = 1), 1s1/2 → 2p3/2 (∆m = −1) 1s1/2 → 2p3/2 (∆m = 1), 1s1/2 → 2p3/2 (∆m = 1)

1s1/2 → 2p1/2 (∆m = −1), 1s1/2 → 2p3/2 (∆m = 1) 1s1/2 → 2p3/2 (∆m = −1), 1s1/2 → 2p3/2 (∆m = −1)

Figure 13: Correlation functions for different transitions at τ = 300 fs. Consider only
positive momentum projections.
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Appendix A Derivation of atomic correlation function

To obtain the exact solution for (12) we use iterative method:

S0(z1, z2, τ) = 0, F0(z1, z2, τ) = 0, (19)

S1(z1, z2, τ) =
3∆o

16π
Γspτ, F1(z1, z2, τ) =

3∆o

16π
Γspτnz1,

S2(z1, z2, τ) =
3∆o

16π
Γspτ +

1

2

(
3∆o

16π
Γspτ

)2

n(z1 + z2),

Si(z1, z2, τ) =
3∆o

16π
Γspτ + ...+

1

i!

(
3∆o

16π
Γspτ

)i
fi−1(z1, z2),

fi(z1, z2) =
ni

i!

i∑
j=0

(
i

j

)2

zj1z
i−j
2 .

This iterative process results in

S(z1, z2, τ) =
∞∑
i=0

1

(i+ 1)!

(
3∆o

16π
Γspτ

)i+1

fi(z1, z2).

Changing the order of summation

S(z1, z2, τ) =
∞∑
j=0

(nz1)j

j!2

∞∑
i=j

(
3∆o
16π

Γspτ
)i+1

(nz2)i−j

(i+ 1)(i− j)!2

transforms resulting expression to the integral over time and shifts the index in the
second sum:

S(z1, z2, τ) =

∫ 3∆o
16π

Γspτ

0

∞∑
j=0

(xnz1)j

j!2

∞∑
i=0

(xnz2)i

i!2
dx. (20)

Each sum turns out to be a representation of Bessel function:

S(z1, z2, τ) =

∫ 3∆o
16π

Γspτ

0

I0 (2
√
xnz1) I0 (2

√
xnz2) dx.

It is appropriate to rewrite the integral

S(z1, z2, τ) =
1

2

∫ √ 3∆o
4π

Γspτ

0

xI0 (x
√
nz1) I0 (x

√
nz2) dx

to use properties of Bessel function:

S(z1, z2, τ) =

√
3∆oΓspτ

16πn
(z1 − z2)−1×

×

[
√
z1I1

(√
3∆o

4π
Γspτnz1

)
I0

(√
3∆o

4π
Γspτnz2

)
−

−
√
z2I1

(√
3∆o

4π
Γspτnz2

)
I0

(√
3∆o

4π
Γspτnz1

)]
. (21)
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Appendix B Derivation of population inversion change

To obtain right hand side of the equation we use (20):

n

∫ z

0

dz′S(z, z′, τ) =

∫ 3∆o
16π

Γspτ

0

∞∑
j=0

(xnz)j

j!2

∞∑
i=0

(xnz)i+1

i!(i+ 1)!

dx

x
. (22)

As in the previous section each sum can be replaced with Bessel function:

n

∫ z

0

dz′S(z, z′, τ) =

∫ 3∆o
16π

Γspτ

0

√
nz

x
I0(2
√
xnz)I1(2

√
xnz)dx.

Finally let us perform the integration:

n

∫ z

0

dz′S(z, z′, τ) =

∫ √ 3∆o
4π

Γspτ

0

I0(x
√
nz)I1(x

√
nz)dx =

=
1

2

(
I2

0

(√
3∆o

4π
Γspτnz

)
− 1

)
.

Using (14) one expresses the population inversion change:

∆σ(τ, z) = −3∆o

16π
Γsp

τ∫
0

dτ ′

(
I2

0

(√
3∆o

4π
Γspτ ′nz

)
− 1

)
=

=
3∆o

16π
Γspτ

(
1 + I2

1

(√
3∆o

4π
Γspτnz

)
− I2

0

(√
3∆o

4π
Γspτnz

))
. (23)

Appendix C Estimation of quantum term contribution

Let us derive the expression for the average atomic correlation function:

S(τ) =

∫ 3∆o
16π

Γspτ

0

(
∞∑
j=0

(xN)j

j!(j + 1)!

)2

dx, (24)

here N is a total number of atoms. The next step is to substitute sum with Bessel
function:

S(τ) =

∫ 3∆o
16π

Γspτ

0

1

xN
I2

1

(
2
√
xN
)
dx.

To estimate the quantum part contribution we divide the second term from right hand
side of equation (12) by dS(τ)

dτ
:

ε(τ) =
3∆o
16π

Γsp

dS(τ)/dτ
=

3∆o
16π

ΓspNτ

I2
1

(√
3∆o
4π

ΓspNτ
) . (25)
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