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Abstract

We develop algorithms to automatically correct and process two-dimensional
energy resolved X-Ray spectroscopy images. They are used to analyze images
generated by a Von Hamos type spectrometer, but in principle apply to a wide
range of experimental setups which require calibration, ROI finding or image cor-
rection techniques. We also explore machine learning methods to fully automatize
the process. In particular, boosted cascade pattern detectors offer a fast and
widely reliable alternative to the previous methods.
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1 Introduction

Beamline P64 at PETRA III features a Von Hamos type spectrometer to measure X-
Ray fluorescence spectra at high energy resolution. Due to the geometry of its crystals,
X-Rays emitted from the sample get focused in one direction and dispersed in another,
and projected onto a two-dimensional photon detector via Bragg reflection. A more
detailed description of the spectrometer and its properties can be found in [1].
The obtained spectra can eventually be used to study electronic or spin structure as well
as to obtain high energy resolved fluorescence detected XANES spectra. In the following
report, we will solely be concerned with the extraction of the X-Ray fluorescence spectra
from the measured images and explore methods to automate this process.

2 General Procedure

In order to obtain the X-Ray energy spectrum from the detector image, we have to
determine the energy-position relation first, i.e. we have to calibrate the detector. By
using at least two different incident X-Ray energies well away from any fluorescent tran-
sitions, we obtain two focused spots on the detector, with the position of each spot
corresponding to the incident energy. With those pairs of energy-position points, the
mapping from the horizontal position on the detector to an energy scale can be easily
determined and the actual measurement of a fluorescence spectrum can be analyzed.
Fig. 1 shows a typical example of a fluorescence spectrum and two elastic line features
as well as the final projection (averaged) of the spectrum to the x-axis.

However, the spectrometer at hand is able to project multiple copies of the spectrum
onto the detector simultaneously in order to collect as much of the incoming X-Ray
fluorescence as possible. This also means that each projection on the detector has to be
calibrated separately, since slight changes in the positioning of the spectrometer crystals
prior to each experiment will generally also change the exact position and orientation of
the spectra on the detector. To treat each spectrum separately, we can define regions of
interest (ROIs) around them and then perform the calibration within each region. After
obtaining the correct energy-pixel mapping for each ROI, we can average them to get
the final spectrum of the image.

Before the discussion of how to implement these steps using automation whenever pos-
sible, we have to start by preparing the image itself and correct potential errors, which
would influence the outcome of the measurement.
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Figure 1: Example images of elastic line features used for calibration (a,b) and a fluo-
rescence spectrum (c) with its averaged projection to the horizontal axis (d).
The features are not drawn to scale, as the elastic lines are usually weaker and
smaller in size than the fluorescent spectra.

3 Image Corrections

3.1 Common Methods

There are several standard procedures in image processing to correct unavoidable errors.
The ones we apply here are dark field, flat field and I0 corrections. We will not go into
more detail about those, since their implementation is straightforward.

3.2 Bad Pixels

More difficult errors to correct are bad pixels – pixels with unphysical intensities that
cannot be caused by actually detected photons. They appear as bright spots on the
image in different shapes and sizes and intensities. They often appear or disappear from
image to image, even within one experiment. Their description as “bright spots”, how-
ever, already suggests a way to identify and remove them reliably.

A meaningful quantity to decide whether a pixel is good or bad is the gradient in the
direction of its neighbors. A very high gradient immediately hints at bad pixels, since
it implies both the high intensity as well as the locality of the bright spots on the im-
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age. A rather simple algorithm to scan a whole image for bad pixels is described in Fig. 2

Figure 2: An algorithm to spot bad pixel in the detector image. We start by initializing
the first pixel as good and then follow this decision tree iteratively for ever
pixel in the image.

After initializing the very first pixel as good,1 we iterate row by row through the image
and check for each pixel the gradient to its neighbor. To reduce computation time,
we choose a single direction along which we calculate the gradient and scan the image.
By choosing left to right, we can exploit the horizontal extension of the spectra, i.e.
their smoothness/ low gradient in that direction (see Fig. 1), and thus reduce the risk
of marking parts of the actual spectrum as bad. Once we find a gradient above the
threshold, we mark all subsequent pixels as bad until the intensity drops back to the
level encountered before the bad pixels.
In order to generalize this method to work for most images without the need for manual
adjustments, the gradient threshold has to be determined accordingly. Tests showed
that choosing the threshold proportional to the intensity of the current pixel produce
satisfying results on a wide range of experiments while further reducing the risk of false
positives within the spectra. The proportionality factor remains a tunable parameter,
but needs to be changed only very rarely.

1This choice is arbitrary. Setting it to good will make it hard to spot bad pixels in the first few
pixels of the image. Setting it to bad will result in very few bad pixels in the corner of the image,
regardless of their actual intensity. But this region should not contribute to the measurement in any
measurement setup.
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4 Data Extraction

After correcting (most) errors in the images, we can continue with calibrating and ex-
tracting the spectra. As mentioned in Section 2, the first step is actually to find suitable
ROIs which can then be calibrated separately. The ROIs can in principle be obtained
using any image of an experiment (calibration or fluorescence), but it turns out that
fluorescence images are generally better suited for the task. This is due to the larger
extension of the fluorescence spectra compared to the elastic reflection spots and due
to potential angular deviations which are impossible to detect with only one calibration
image containing small elastic line features.

4.1 Regions of Interest

Due to the horizontal alignment of the spectra on the detector with only small angular
deviations, finding the ROIs effectively boils down to partitioning the image along the
y-axis. Given n, the correct number of ROIs, we can rater easily find them by project-
ing the image onto the y-axis and choosing some range around the n most prominent
peaks in intensity. By converting the image to black/white first (every pixel below the
maximum noise level2 is mapped to 0, all others to 1), we can enhance even very faint
features in the image. Fig. 3 shows an example image and its projection to the y-axis
after converting it. There are seven easy to spot peaks and the corresponding ROIs can
be defined by a drop-off in intensity to a certain percentage.

Additionally, after conversion to black/white, finding the ROIs is much more stable with
respect to potentially remaining bad pixels, as they get the same weight as any other
pixel of an actual signal. Lastly, the peak intensities become roughly of the same order
since only the spatial extension of the white areas determines the intensity profile of the
projection. A comparison of the projection with and without conversion is seen in Fig. 4.

While unnecessary in most cases, we might also want to correct angular deviations after
finding the ROIs (see Fig. 3), which can in our case arise from small misalignments of
the spectrometer crystals. We can again facilitate the horizontal extension of the fluo-
rescent spectra. The signal to noise ratio3 of a single row spectrum should be maximal
when the fluorescent feature is completely aligned in the horizontal direction. Thus, by
maximizing the maximal row-wise signal to noise ratio within each ROI we can find the
correction angle around which to rotate the ROI.

2We can obtain the “maximum noise level” by sectioning the image into 10 × 5 equal chunks and
selecting the one with the lowest average intensity. We assume this one to consist of noise only (this
assumption can of course be contested, but it turned out to work well for all images encountered so
far) and thus simply select the maximal value inside this chunk.

3We use the standard definition of the signal to noise ratio as mean value divided by the standard
deviation of the noise.
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Figure 3: Example of a fluorescence image and its projection to the y-axis after conver-
sion to black/white (not shown). We can clearly identify the ROIs as peaks in
the projection. Double peaks, which can occur depending on the focusing of
the spectrometer crystals, can be handled by introducing a distance threshold
below which tho peaks are treated as one and the same.

4.2 Calibration

After finding the ROIs from a fluorescence image, we can carry them over to the cal-
ibration images and determine the exact horizontal position of the elastic line within
the ROI (after potentially applying a small rotation mentioned above). Finding the
positions works analogously to finding the ROIs. We convert now each single ROI to
black/white, project it to the x-axis and look for a single “region of interest” containing
the elastic line. Different to the initial ROI search, we perform an additional Gaußian
fit to the original (non-black/white) intensity projection and read off the calibration
position from the maximum of the fit curve. This extra step ensures that we retrieve
important information about the actual maximum of the elastic line which was lost by
converting to black/white. Repeating these steps for one or more calibration images
with different incident energies yield several energy-position pairs for each ROI which
can be used to convert the x-axis to an energy scale and proceed with the extraction of
actual fluorescence spectra.4

A schematic overview of the whole ROI finding and calibration process is sketched in
Fig. 5.

4The relation between horizintal positions and energies can be determined by using Bragg’s formula.
We should notice that the relation is not linear, but it can be obtained straightforwardly and thus
we will not be concerned with the details here.
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Figure 4: Comparison of the intensity profile along the y-axis before (original) and after
converting the image to black/white. While we can barely make out the center
peaks in the original graph, they become clearly visible and comparable in
height to the outer peaks in the black/white projection.

5 Machine Learning

We have previously found methods to extract X-Ray spectra from the detector images
reliably and in many cases without the need to adjust any parameters. Still we would like
to reduce the necessary amount of user input, e.g. the number of ROIs in the images, to
speed up and simplify the whole process. This is why, in the following sections, we will
explore two different machine learning approaches to the task at hand – neural networks
and pattern detection algorithms.

5.1 Neural Networks

Neural networks are nowadays used in many different areas of image processing and
general data analysis, mostly due to their flexible design. We will, however, only use the
simplest network architecture (fully connected) and only briefly discuss its structure in
this section.

A fully connected neural network consists of an input layer of N neurons, each corre-
sponding to one available input quantity, e.g. the intensity of each pixel in the image,
and an output layer of M neurons, representing the quantities we want to determine
from our input, e.g. the number, positions and orientations of the single spectra. By
adding hidden layers in between with variable numbers of neurons, we can model any
non-linear mapping RN 7−→ RM .
For adjusting this map to return the correct output for each image, we need to create a
training set of images with known outputs to feed the network. For more details on the
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Figure 5: Schematic overview of the data extraction process. We start with a fluorescence
image, project it (in black/white) to the y-axis and obtain ROIs. Those are
applied to the calibration images to determine the elastic line position for each
ROI. With this pixel to energy calibration, we can return to the original image,
project the ROIs to the x-axis and get a single, averaged energy spectrum.

functionality of neural networks, a comprehensive study of the theory can be found in
[2], particularly chapters 1 and 4.

In our concrete case, the detector images have a size of 1556 × 516 (' 800 000) pixels.
Typical image classifiers using neural networks are working with much smaller images of
several hundred or maybe thousand of pixels. Feeding the whole image as input to the
network during training exceeds our available computation power by far, which is why
we have to find a different way to extract information from the image.

Simply resizing the image is a common procedure in image recognition or classification
programs, but is ill-advised in our case. Most features of interest in our images are rather
close together, which means that rescaling of the image makes it even more difficult to
distinguish ROIs or find calibration positions.
So besides changing the overall architecture of the network to cope with large numbers
of input neurons, we can also change the input itself. When finding the ROIs, we are
effectively making a decision row by row along the y-axis whether to appoint a row to a
ROI or not. Thus, we can try to take only single rows of 1556 pixels as input and a binary
classification {0, 1} as output, encoding if the row belongs to a ROI or not. This way we
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greatly reduce the computational efforts and produce fairly satisfying results using only
a small set of training data. An example classification using the neural network is shown
in Fig. 6. For this classification, a network with four layers (1556→ 100→ 30→ 2) was
trained over 25 epochs with 19 pre-classified training images. The efficiency on new test
images after this training is at roughly 93%.

Figure 6: ROI detection of an example fluorescence image using the row-wise neural
network classification. The underlying image was converted to black/white for
better visibility only.

While we have now found a method to find ROIs and their number in particular, there
still remains the task to find the correction angles and calibration positions which re-
quires either the methods discussed in section 4 or at least a second network with different
architecture and training sets.

5.2 Pattern Detection

An approach quite different to neural networks is using techniques of pattern detection
in images. Most mobile phones nowadays are equipped with pre-configured facial detec-
tion and recognition models, finding (and recognizing) faces in a picture within fractions
of a second. Instead of faces, we will try to find the elastic line features in the detector
images to obtain the calibration positions, ROIs and correction angles all in one go.

The method we will apply is called Local Binary Pattern (LBP) detection and calculates
a mask of 0s and 1s from a window of fixed size. This mask can be used as feature vector
to decide whether the window is likely to contain the pattern of interest or not. By mov-
ing the window all across a given image, the algorithm finds areas which it thinks contain
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the desired pattern. For further reading, the original description of boosted classifier
cascade algorithms can be found in [3] and an introduction to using it in comination
with LBPs in [4].

To train such a pattern detector, we need to provide two sets of images – one positive
set, containing exactly one of the patterns we are looking for, and one negative set of
images completely without any of the patterns. An example of images we use to train
our specific program is shown in Fig. 7. For a very simple proof of concept study, we use
typical elastic line features from several images as positives and pure noise as negatives.

Figure 7: Examples of training data. Positive image set (a) with randomly placed, ro-
tated and resized elastic line features and negative image set (b), consisting
only of noise with different average intensities.

Fig. 8 depicts examples of detected elastic line features in different images. While the
algorithm currently detects most elastic line features successfully, there are still many
false positives coming either from de-focused lines which are detected as two separate
lines or from completely different features, e.g. the fluorescence spectra (see Fig. 8). We
can most likely avoid these kinds of errors by extending the training sets, in particular
by adding the double peak elastic lines to the positive image set and images containing
fluorescence features to the negative image set.

Once we have detected all elastic line positions – now both in the x- and y-direction
by performing two separate Gaußian fits – for two or more calibration images, we can
immediately calculate the correction angle of the ROIs and already have the necessary
information for calibration available. This whole process is in general faster than apply-
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Figure 8: Comparison of the LBP detector applied to three different kinds of features.
Typical elastic lines, even very faint ones are recognized accurately (a), de-
focused lines with double peaks are recognized as two separate lines (b) and
entirely different features like fluorescence spectra are also recognized as elastic
lines (c).

ing the method discussed in the previous section,5 but most importantly, it requires no
variable user input, provided that the pattern recognition works reliably.

6 Summary

As we have seen, there are simple, “hard coded”, algorithmic approaches to correcting
errors and extracting X-Ray fluorescence spectra from the detector images. While they
all rely on tunable parameters, within one experimental setup there is hardly any need
for tuning and the methods apply to a great range of experiments with empirically de-
termined default settings. As an alternative to these parameter dependent approaches,
we have explored machine learning techniques and found that standard pattern detec-
tion algorithms offer a very fast and – provided proper training – reliable method to
automatize the process.

5The pattern detection and numerical calculations are performed within O(10−2) seconds, whereas the
computations steps described in section 4 require O(10−1), when including the angular corrections
even O(1) seconds.
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