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Abstract

With the next generation of gravitational wave observatories under development,
the feasibility of a detection of the stochastic gravitational wave background (SGWB)
has garnered much interest. In order to assess the possibility of such a detection,
sensitivity curves for a given detector much be generated to allow for a compar-
ison with the SGWB signal. Due to the broadband nature of a SGWB signal,
a large improvement in sensitivity can be generated by including an additional
integration over frequency in the calculation of a detector’s sensitivity curve. This
results in a power-law integrated sensitivity curve, the construction of which will
be outlined in this report, with results presented for the LIGO, LISA, Einstein
Telescope, and Cosmic Explorer experiments. These curves will then be compared
with the SGWB signal produced by a scaling cosmic string network, the theory
and construction of which will be discussed.
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1. Introduction

The detection of gravitational waves (GW) by the LIGO collaboration in 2015 ushered in
a new era of astronomy, allowing for the first time the possibility of the simultaneous use
of electromagnetic and gravitational radiation in the study of astrophysical phenomena.
The gravitational waves observed in this case were produced during the merging of two
black holes, approximately 1.3 billion years ago, and since this initial detection, many
other transient events have been observed. As the field of gravitational wave astronomy
continues to develop, and the possibilities of this new form of observation are explored,
much attention has been focused on the detection of the stochastic gravitational wave
background (SGWB). Much like the cosmic microwave background, it is thought that
there should exist a background of gravitational waves produced by a large number of
independent events during the early universe, with also a contribution from the many
astrophysical sources that have occurred since this epoch, for which the gravitational sig-
nals emitted are too weak to resolve individually [1]. The detection of such a background
would have a profound impact on the field of early-universe cosmology, providing an un-
precedented window into the mechanisms of high-energy physics a fraction of a second
after the big bang, an era in which gravitational radiation is the only direct messenger
available. For this reason, one of the main aims of the next generation of gravitational
wave observatories is the detection of the SGWB, the feasibility of which will be the
main focus of this report.

In section 2, the stochastic gravitational wave background will be introduced, with
a discussion of the relevant properties and characterisation. Section 3 will focus on
the theory and construction of power-law integrated sensitivity curves for gravitational
wave detectors, the results of which will be presented for the LISA, LIGO, Einstein
Telescope (ET), and Cosmic Explorer (CE) experiments. In section 4 the production of
gravitational waves from a network of cosmic strings will be outlined, and the resulting
theoretical SGWB signal will be plotted against the power-law integrated sensitivity
curves, allowing the feasibility of detection to be assessed. Finally, section 5 will feature
the conclusions of this work.

2. The Stochastic Gravitational Wave Background

Gravitational waves, first postulated in the early 20th century, are propagating distur-
bances in the fabric of spacetime, produced by accelerating masses. They arise naturally
from the theory of general relativity via the linearisation of Einstein’s field equations,
resulting in a wave equation with a propagation speed equal to that of light [1]. A
stochastic background of gravitational waves is formed from a superposition of these
waves with all possible propagation directions [1]. It is expected that, to a good ap-
proximation, the SGWB will be isotropic, stationary, and unpolarised [2]. These factors
prescribe that it is possible to uniquely define a SGWB via a single frequency dependent
function; however, the specific choice of such a characterisation is context dependent,
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and requires the introduction of a number of parameters.

To begin, the dimensionless quantity Ωgw(f) is defined to be [3]:

Ωgw(f) =
1

ρc

dρgw
d ln f

. (1)

Here ρgw is the energy density of the SGWB, f is frequency, and ρc is the total energy
density of the universe for which the spatial geometry is flat, known as the critical
density. In natural units, ρc is

ρc =
3H2

0

8πG
, (2)

where G is Newton’s constant and H0 is the present value of the Hubble constant, con-
ventionally defined to be H0 = h0 × 100 km/(s × Mpc), with h0 parameterising the
current experimental uncertainty. To remove the dependance on this uncertainty it is
conventional to multiply Eq. (1) through by h20, thereby resulting in a characterisation
of the spectrum with the quantity h20Ωgw(f). Physically, this parameter describes the
fractional contribution of the energy density of the gravitational waves, within some fre-
quency range, to the total energy required to close the universe [3]. For the remainder of
this report, the spectrum will be characterised in terms of the quantity h20Ωgw(f), how-
ever it is useful to make note of another parameter that appears frequently throughout
the literature, the spectral density Sh(f), which can be converted to via the expres-
sion [4]:

Sh(f) =
3H2

0

2π2

Ωgw(f)

f 3
. (3)

With these quantities a direct comparison of a SGWB signal to the noise within a
detector can be made, allowing the feasibility of a detection of the SGWB for a given
signal-to-noise ratio to be assessed.

3. Power-law Integrated Sensitivity Curves

3.1. Theory

In order to assess the feasibility of a SGWB detection with a given detector, typically
the properties of the detector are used to construct a sensitivity curve in terms of a
chosen characterisation, which can then be compared with the theoretical signal from
a source. Considering the characterisation of the signal in terms of h20Ωgw(f), if for a
given range of frequencies the value of h20Ωgw(f) is greater for the theoretical signal, than
that of the detector sensitivity, then the signal has a signal-to-noise ratio (SNR) that
is greater than one [4]. This method can be applied to both the detection of transient
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gravitational waves signals and the stochastic background; however, in the latter case it
can be shown that a significant increase in the sensitivity can be achieved by performing
an additional integration over frequency. This improvement arises due to the broadband
nature of a SGWB signal, as it can be shown that the SNR scales linearly with

√
Nbins,

where Nbins is the number of frequency bins of width δf , within a total bandwidth ∆f ,
resulting in the relation [4]:

Nbins =
∆f

δf
. (4)

As the proportionality constant in this case depends on the spectral shape of the back-
ground, the improvement to the sensitivity generated by this consideration is signal
dependent, and is therefore not necessarily accounted for in the sensitivity curve of a
detector [4]. For the case in which the SGWB can be characterised with a power-law fre-
quency dependence, it is possible to take these factors into account via the construction
of power-law integrated sensitivity curves, first developed in [4].

3.2. Construction

Given the assumed properties of the SGWB outlined in section 2, the signal-to-noise
ratio for a background is given by [5]:

SNR =

√
T

∫ fmax

fmin

df

[
h2Ωgw(f)

h2Ωsens(f)

]2
, (5)

where f is frequency, T is the observation time of the detector, h2Ωsens(f) describes
the detector sensitivity, and h2Ωgw(f) quantifies the SGWB signal. For notational con-
venience the subscript on h0 has been dropped, as will be done for the remainder of
this report. As stated previously, the construction of a power-law integrated sensitivity
curve for a given detector requires that the SGWB signal can be expressed as a power-law
spectrum. This spectrum is defined as:

Ωgw(f) = Ωβ

(
f

fref

)β
, (6)

where β is the spectral index, Ωβ is the amplitude, and fref is a reference frequency, the
choice of which is arbitrary [4]. Substituting this expression into Eq. (5) results in

Ωβ =
SNR√
T

∫ fmax

fmin

df

[
h2

h2Ωsens(f)

(
f

fref

)β]2− 1
2

, (7)

which can subsequently be entered into Eq. (6) to obtain
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h2Ωgw(f) = fβ
SNR√
T

(∫ fmax

fmin

df

[
fβ

h2Ωsens(f)

]2)− 1
2

, (8)

where the expression has been multiplied through by h2 to remain within the charac-
terisation outlined previously. Equation (8) defines a series of power-law curves with β
setting the spectral index. By plotting this expression for a series of β and a specified
SNR, and subsequently computing the envelope of the generated curves, the power-law
integrated sensitivity curve is obtained. Formally, this curve is therefore defined by
h2ΩPL(f), where

h2ΩPL(f) = max
β

fβ SNR√
T

(∫ fmax

fmin

df

[
fβ

h2Ωsens(f)

]2)− 1
2

 . (9)

An example of the results of this method can be seen in Figure 1, which shows the
power-law integrated sensitivity curve for the LISA experiment, using an SNR of 10 and
an operation time of 4 years, 75% of which has been taken to be uptime. In order to
generate the power-laws, 30 values of β have been used, within the range β ∈ [−7, 7].
Furthermore, Figure 2 shows the effect of changing the SNR in the generation of the
power-law integrated sensitivity curve for LISA, once again using an operation time of
4 years, and Figure 3 shows the dependence of the curve on the operation time, using a
constant SNR of 10.

The significance of Figure 1 can be understood as follows. Any lines that are tangent to
the power-law integrated sensitivity curve represent a contribution to a SGWB power-
law spectrum with an SNR of 10 [4]. Consequently, by comparing a curve corresponding
to a predicted background with this new sensitivity curve, information about the back-
ground’s SNR range is obtained. If the background curve lies below the power-law
integrated sensitivity curve at all frequencies, then the background has an SNR that is
less than that with which the sensitivity curve was generated, which in this case is an
SNR of 10. Conversely, if the background curve lies above the sensitivity curve for a
given frequency range, then within this range the background will be observable with
an SNR greater than 10.

The construction of a power-law integrated sensitivity curve for an experiment such as
LIGO is slightly more involved than for LISA, due to the fact that LIGO requires the
correlation of two detectors. In this case, the SNR equation, Eq. (5), is modified to be:

SNR =

√
T

∫ fmax

fmin

df

[
Γ(f)

h2Ωgw(f)

h2Ωsens(f)

]2
, (10)

where the function Γ(f) is given by [2]
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Figure 1: Sensitivity curves for the LISA experiment. The blue curve shows the detector
sensitivity, the grey lines are the power-law curves generated for an SNR of
10 and an operation time of 4 years, and the red curve is the envelope of
the power-law curves, hence representing the power-law integrated sensitivity
curve. The power-law curves have been generated for 30 values of β, within
the range β ∈ [−7, 7].

Γ(f) =

∫
dΩ̂

4π

[∑
A

FA
1 (Ω̂)FA

2 (Ω̂)

]
exp

(
2πif Ω̂ · ∆~x

c

)
. (11)

Here polar coordinates are used with Ω̂ = (sin θ sinφ, sin θ cosφ, cos θ), and ∆~x is the
separation between the two detectors. The functions FA

1 (Ω̂) and FA
2 (Ω̂) are pattern

functions which take into account the geometry of the detectors, with the subscript
representing the detector and the superscript, A = +,×, signifying the gravitational
wave polarisation. For the purposes of this report, instead of an explicit calculation of
Eq. (11), data for the overlap reduction function, γ(f), for LIGO was taken from [4],
and converted to Γ(f) via the relation:

Γ(f) = F12γ(f) , (12)

where F12 = 2/5 for the correlation of two interferometers [2]. The resulting power-law
integrated sensitivity curves for LIGO, as well as those generated for Einstein Tele-
scope and Cosmic Explorer, which do not require the inclusion of Γ(f), can be seen in
Appendix A.
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Figure 2: Power-law integrated sensitivity curves for the LISA experiment, generated for
four values of SNR and an operation time of 4 years. The blue curve is the
LISA sensitivity curve, while the orange, yellow, green, and red curves are the
power-law integrated sensitivity curves for SNR values of 1, 10, 20, and 50
respectively.

4. GW Backgrounds from Cosmic String Networks

At present, there are a number of primordial mechanisms that are thought to have
contributed to the SGWB. These broadly fall into three main categories: gravitational
waves that are emitted from processes associated with inflation, first-order phase transi-
tions, and cosmic strings; however, for the purpose of this report, only the contributions
from cosmic strings will be considered. This section will provide a brief introduction to
the mechanisms by which gravitational waves are emitted from a scaling cosmic string
network, and an outline of the construction of energy density curves for the resulting
signal.

4.1. Theory

Cosmic strings arise in many extensions of the Standard Model as scalar or gauge fields
with an energy density that is concentrated along a one-dimensional line [6]. It is thought
that symmetry-breaking phase transitions in the early universe may have given rise to
entire networks of cosmic strings, featuring both infinitely long and closed loop strings.
Soon after the formation of such a network, the strings reach a point at which their total
energy density evolves with the net cosmological energy density, with a relative fraction
Gµ, where G is Newton’s constant and µ is the string tension [7]. At this point, the
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Figure 3: Power-law integrated sensitivity curves for the LISA experiment, generated
for an SNR of 10 and four different operation times. The blue curve is the
LISA sensitivity curve, while the purple, yellow, green, and red curves are the
power-law integrated sensitivity curves for operation times of 1, 2, 4, and 10
years respectively.

network consists primarily of closed string loops with a small number of strings with
Hubble length, which are interpreted as being infinitely long [7]. As time increases, the
network expands with the universe, causing the infinitely long strings to intersect and
split, forming new closed loops which then oscillate with a frequency proportional to the
inverse of their radius, and decay via the emission of gravitational radiation [8].

Idealised Nambu-Goto strings are a useful class of strings to study as in this case grav-
itational waves are the dominant form of radiation emission [7]. Furthermore, during
the scaling process outlined above, it is thought that the main contribution to the grav-
itational wave spectrum emitted by these strings will be due to the oscillation of closed
loops, and hence this will be the case considered here [9]. Due to these considerations,
the SGWB will be dependent on the rate of loop production, given by

dn

dti
=

0.1Ceff (ti)

αt4i
, (13)

where n is the number of loops, ti is the time at which the loop is formed, and α is a
constant loop size parameter which quantifies the size of the loop relative to the horizon
[9]. Ceff (ti) is a function dependent on the dominant energy density of the universe at
time ti, known as the loop emission factor, which takes values of Ceff = 5.4, 0.39 for
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radiation and matter domination respectively [7]. A closed loop produced at time ti will
have a length l that evolves via the expression:

l(t) = αti − ΓGµ (t− ti) , (14)

where Γ characterises the shrinking of the loop size due to gravitational wave emission [9].
The loop will lose energy at a constant rate, with a total energy loss comprised of a set
of normal-mode oscillations at frequencies [9]

fk =
2k

l
, k ∈ Z+ . (15)

Once the gravitational waves are emitted, they are redshifted at a rate inversely propor-
tional to the cosmological scale factor, a(t) [9]. By substituting Eq. (14) into Eq. (15)
and taking the redshift into account, an expression for the frequency of a gravitational
wave observed at present time, t0, is obtained [9]:

f =
a(t̃)

a(t0)

2k

αti − Γµ(t̃− ti)
, (16)

where t̃ is the time at which the gravitational wave is emitted. Combining these factors,
the gravitational wave signal from a cosmic string network can be stated by summing
over the contribution from each mode [7]:

h2ΩCS(f) =
h2

ρc

∑
k

2k

f

0.1ΓkGµ
2

α(α + ΓGµ)

∫ t0

tF

dt̃
Ceff (ti)

t4i

[
a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3
Θ(ti − tF ) . (17)

Here ρc is the critical density, defined in Eq. (2), tF is the network formation time, Γk
describes the relative emission rate per mode, given by

Γk =
Γ

(3.60)k
4
3

, (18)

and ti is obtained by rearranging Eq. (16) to give:

ti(t̃, f) =
1

α + ΓGµ

(
2k

f

a(t̃)

a(t0)
+ ΓGµt̃

)
. (19)

As the integral in Eq. (17) runs over all emission times, from the time at which the
network is formed to the present time, in order to accurately plot the spectrum, three
separate cases need to be accounted for. The first is that in which both the loop is
formed and the wave is emitted in the radiation era; the second describes the case in
which these events occur in different eras, such that ti is in the radiation era and t̃ is in

10



the matter era; and the final case is that in which both the loop is formed and the wave
is emitted in the matter era. To encapsulate all three of these cases within the calcu-
lated spectrum, the integral in Eq. (17) is split into two integrals, with the first running
over times t ∈ [tF , teq], and the second over times t ∈ [teq, t0], where teq is the time at
which radiation-matter equality occurred. These two integrals therefore represent the
contributions to the spectrum from the radiation era and matter era respectively. To
also consider the case in which ti and t̃ occur in different eras, it is then necessary to
include a conditional statement within the matter era integral, which will change the ti
dependant quantities within the integral depending on whether ti is greater or less than
teq.

Another consideration that must be taken into account due to these three cases is the
fact that the scale factor ratios in both Eqs. (17) and (19) cannot be evaluated in their
present state when the numerator and denominator describe different cosmological eras.
The scale factor ratios in each era are given by:

a(t1)

a(t2)
=


(
t1
t2

) 1
2

; t1, t2 ∈ radiation era(
t1
t2

) 2
3

; t1, t2 ∈ matter era ;

(20)

however, as it is possible for ti, t̃, and t0 to all be in different eras, it is necessary to
modify these ratios dependent on the era in which t1 and t2 occur. This can be done by
splitting the ratio into radiation and matter era specific ratios, and making use of the
radiation-matter equality time, resulting in:

a(t1)

a(t2)
=

(
t1
teq

) 1
2
(
teq
t2

) 2
3

; t1 ∈ radiation era, t2 ∈ matter era . (21)

With these considerations it is possible to plot the contributions to the cosmic string
gravitational wave background from both the radiation and matter eras, and by then
taking the envelope of these curves the total spectrum is obtained.

4.2. Comparison with Detector Sensitivities

Figure 4 shows the power-law integrated sensitivity curves for LISA, LIGO, Einstein
Telescope (ET), and Cosmic Explorer (CE). These curves have been generated using
an SNR of 10 and an operation time of 4 years. The gravitational wave background
produced by a cosmic string network, as generated using the method outlined in the
previous section, is also shown on this plot. This curve has been constructed using
Gµ = 10−11 and α = 0.1, as is consistent with recent simulations [4]. The solid orange
curve shows the contributions to the total spectrum from gravitational waves emitted
in the radiation era and the solid blue curve shows the contributions from the matter era.
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Figure 4: Power-law integrated sensitivity curves for a number of detectors, generated for
an SNR of 10 and an operation time of 4 years. Also shown is the theoretical
spectrum of a gravitational wave background produced by a cosmic string
network. The cosmic string curve has been constructed using Gµ = 10−11 and
α = 0.1, with the contributions to the spectrum from the radiation and matter
eras represented by the solid orange and solid blue curves respectively.

It is clear from Figure 4 that the prospects of a detection of the SGWB produced by
cosmic strings with the stated characteristics are good, with the SGWB signal lying well
above the power-law integrated sensitivity curves for LISA, ET, and CE. Furthermore,
the cosmological era in which the gravitational waves were emitted can be seen to greatly
alter the resulting SGWB signal. The possibility of a detection is, however, less likely for
decreasing values of Gµ, as can be seen in Figure 5, which shows the SGWB signal from
a cosmic string network for five values of Gµ. Clearly, the detectability of the cosmic
string spectrum is highly dependent on Gµ, such that it will not be possible to detect
the signal from a network with Gµ = 10−19 at an SNR of 10.

5. Conclusions and Outlook

The detection of the SGWB signal produced by a cosmic string network would provide
unprecedented access to the mechanisms of high-energy physics in the early universe.
As a new generation of gravitational wave observatories are under construction, the fea-
sibility of the detection of a SGWB of cosmological origin is a matter requiring careful
consideration. In this report, the construction of power-law integrated sensitivity curves
for gravitational wave detectors was outlined, with the results for LISA, LIGO, ET, and
CE presented. These curves demonstrate a significant increase in the sensitivity of the
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Figure 5: The SGWB signal from a cosmic string network with α = 0.1 and Gµ =
10−11, 10−13, 10−15, 10−17, 10−19. Also shown are the power-law integrated sen-
sitivity curves for LISA, LIGO, ET, and CE.

detectors, in comparison to the standard method used for sensitivity curve construction.
This is due to the fact that the power-law integrated curves take into account the broad-
band nature of a SGWB signal, a characteristic that is signal dependent and is therefore
not necessarily included in the detector sensitivity. This property is taken advantage of
through the inclusion of an additional integration over frequency, as was shown for the
case in which the SGWB can be described by a power-law spectrum.

The gravitational waves produced by a scaling cosmic string network may provide a
predictable SGWB source for detection with upcoming experiments. In the construction
of this signal, particular care is required when considering the cosmological era in which
the relevant times are situated, as the spectrum is highly dependent on the era in which
the gravitational waves were emitted. The theoretical signal from a scaling cosmic string
network with α = 0.1 and Gµ = 10−11 was plotted against the power-law integrated
sensitivity curves of the detectors, and it was found that the prospect of detection of
such a signal was good for the LIGO, ET, and CE experiments. The dependence of
the cosmic string signal is, however, highly dependent on the value of Gµ, with smaller
values limiting the detectability.
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A. Appendix

In this appendix the power-law integrated sensitivity curves for LIGO, ET, and CE are
presented.
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Figure 6: Sensitivity curves for the LIGO experiment, with the power-law integrated
sensitivity curve generated for an SNR of 10 and an operation time of 4 years.
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Figure 7: Sensitivity curves for the Einstein Telescope experiment, with the power-law
integrated sensitivity curve generated for an SNR of 10 and an operation time
of 4 years.
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Figure 8: Sensitivity curves for the Cosmic Explorer experiment, with the power-law
integrated sensitivity curve generated for an SNR of 10 and an operation time
of 4 years.
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