

On $\mathcal{N}=4$ Super Yang-Mills

Ruaraidh Osborne, University of Glasgow, Scotland September 10, 2018

Abstract

A super-symmetry transformation is constructed for the $\mathcal{N}=4$ gauge multiplet and the 4 auxiliary fields present in the $\mathcal{N}=4$ Super Yang-Mills theory. In the special case where the gauge coupling constant g is set to 0 we check that this symmetry is in fact a symmetry of the action. The appropriate closure of the extended super-symmetry algebra will then be shown on one of the fields.

Contents

1	Introduction	3
2	Super-Symmetry transformations	3
3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5
4	Closure of the Super-symmetry Algebra	7

1 Introduction

The Lagrangian for the theory can be constructed by first considering the $\mathcal{N}=1$ Lagrangians for a chiral multiplet and a gauge multiplet, since the field content of the $\mathcal{N}=4$ theory can be decomposed into 3 chiral and 1 gauge $\mathcal{N}=1$ multiplets. The Lagrangians for such theories can be found in [1]. The next step is to impose $SU(4)_R$ symmetry by writing the Lagrangian in terms of appropriate representations of $SU(4)_R$, in this case λ^{Aa} , X^{ABa} , A^a_μ and F^{Aa}_B where the index a runs over the adjoint representation of the gauge group. λ^{Aa} contains the four fermions in the theory, F^{Aa}_B the 4 auxiliary fields and X^{ABa} contains the 3 complex scalar fields. X^{ABa} is anti-symmetric and additionally satisfies a self-duality condition:

$$X_{AB}^{\dagger a} = \frac{1}{2} \epsilon_{ABCD} X^{CDa}. \tag{1}$$

We can now write down the Lagrangian for the theory with q = 0:

$$\mathcal{L}_{g=0} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + i \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \partial_{\mu} \lambda^{Aa} - \frac{1}{4} \partial_{\mu} X^{\dagger a}_{AB} \partial^{\mu} X^{ABa} + F^{Aa}_B F^{*Ba}_A. \tag{2}$$

2 Super-Symmetry transformations

One is very restricted when trying to write down super-symmetry transformations for these fields. By considering dimensional analysis, representation theory and by additionally requiring the transformations reduce to the $\mathcal{N}=1$ transformations given in [1], the only transformations that exist up to constants are

$$\delta X^{ABa} = x_1 \delta_C^{[A} \varepsilon^C \lambda^{B]a} + x_2 \epsilon^{ABCD} \varepsilon_C^{\dagger} \lambda_D^{\dagger a}$$
 (3)

$$\delta X_{AB}^{\dagger a} = x_2 \delta_{[A}^C \varepsilon_C^{\dagger} \lambda_{B]}^a + x_1 \epsilon_{ABCD} \varepsilon^C \lambda^{Da} \tag{4}$$

$$\delta \lambda^{Aa} = y_1 \left(F_B^{Aa} \varepsilon^B + \frac{i}{2} F_{\mu\nu}^a \sigma^\mu \bar{\sigma}^\nu \varepsilon^A \right) + y_2 \partial_\mu X^{ABa} \sigma^\mu \varepsilon_B^\dagger \tag{5}$$

$$\delta \lambda_A^{\dagger a} = y_1^* \left(F_A^{*Ba} \varepsilon_B^{\dagger} - \frac{i}{2} F_{\mu\nu}^a \varepsilon_A^{\dagger} \bar{\sigma}^{\nu} \sigma^{\mu} \right) + y_2^* \partial_{\mu} X_{AB}^{\dagger a} \varepsilon^B \sigma^{\mu} \tag{6}$$

$$\delta F_{\mu\nu}^{a} = z_{1} \varepsilon^{A} \sigma_{\nu} \partial_{\mu} \lambda_{A}^{\dagger a} + z_{2} \partial_{\mu} \lambda^{Aa} \sigma_{\nu} \varepsilon_{A}^{\dagger} - z_{1} \varepsilon^{A} \sigma_{\mu} \partial_{\nu} \lambda_{A}^{\dagger a} - z_{2} \partial_{\nu} \lambda^{Aa} \sigma_{\mu} \varepsilon_{A}^{\dagger}$$
 (7)

$$\delta F_B^{Aa} = w_1 \varepsilon^A \sigma^\mu \partial_\mu \lambda_B^{\dagger a} + w_2 \partial_\mu \lambda^{Aa} \sigma^\mu \varepsilon_B^{\dagger} \tag{8}$$

$$\delta F_A^{*Ba} = w_1^* \partial_\mu \lambda^{Ba} \sigma^\mu \varepsilon_A^\dagger + w_2^* \varepsilon^B \sigma^\mu \partial_\mu \lambda_A^{\dagger a} \tag{9}$$

where the spinor indices have been suppressed and we already have

$$X_{AB}^{\dagger a} = \frac{1}{2} \epsilon_{ABCD} X^{CDa} \implies x_2 = x_1^*. \tag{10}$$

3 Computing $\delta \mathcal{L}$

To compute

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} X^{ABa}\right)} \partial_{\mu} \delta X^{ABa} + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} X^{\dagger a}_{AB}\right)} \partial_{\mu} \delta X^{\dagger a}_{AB}$$

$$+ \frac{\partial \mathcal{L}}{\partial F^{a}_{\mu\nu}} \delta F^{a}_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \lambda^{Aa}\right)} \partial_{\mu} \delta \lambda^{Aa}$$

$$+ \delta \lambda^{\dagger a}_{A} \frac{\partial \mathcal{L}}{\partial \lambda^{\dagger a}_{A}} + \frac{\partial \mathcal{L}}{\partial F^{Aa}_{B}} \delta F^{Aa}_{B} + \frac{\partial \mathcal{L}}{\partial F^{AB}_{A}} \delta F^{*Ba}_{A}$$

$$(11)$$

we need to compute

$$\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} X^{ABa}\right)} = -\frac{1}{4} \partial^{\mu} X_{AB}^{\dagger a} \tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} X_{AB}^{\dagger a}\right)} = -\frac{1}{4} \partial^{\mu} X^{ABa} \tag{13}$$

$$\frac{\partial \mathcal{L}}{\partial F^a_{\mu\nu}} = -\frac{1}{2} F^{\mu\nu a} \tag{14}$$

$$\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \lambda^{Aa}\right)} = i \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \tag{15}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_A^{\dagger a}} = i\bar{\sigma}^\mu \partial_\mu \lambda^{Aa} \tag{16}$$

$$\frac{\partial \mathcal{L}}{\partial F_B^{Aa}} = F_A^{*Ba} \tag{17}$$

$$\frac{\partial \mathcal{L}}{\partial F_A^{*Ba}} = F_B^{Aa}. \tag{18}$$

We now organise the resulting terms into collections of terms that must mutually cancel.

3.1 Terms with no X^{ABa} and no F_{B}^{Aa}

The terms are

$$-\frac{1}{2}y_1^* \varepsilon_A^{\dagger} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\sigma}^{\rho} \partial_{\rho} \lambda^{Aa} F_{\mu\nu}^a - \frac{1}{2} y_1 \partial_{\mu} F_{\nu\rho}^a \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\sigma}^{\rho} \varepsilon^A + z_1 F^{\mu\nu a} \varepsilon^A \sigma_{\nu} \partial_{\mu} \lambda_A^{\dagger a} + z_2 F^{\mu\nu a} \partial_{\mu} \lambda^{Aa} \sigma_{\nu} \varepsilon_A^{\dagger}.$$

$$(19)$$

Using the identity

$$\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} = -\eta^{\mu\nu}\bar{\sigma}^{\rho} - \eta^{\nu\rho}\bar{\sigma}^{\mu} + \eta^{\mu\rho}\bar{\sigma}^{\nu} + i\epsilon^{\mu\nu\rho\kappa}\bar{\sigma}_{\kappa} \tag{20}$$

this reduces to

$$\frac{1}{2}y_{1}^{*}\eta^{\mu\nu}F_{\mu\nu}^{a}\varepsilon_{A}^{\dagger}\bar{\sigma}^{\rho}\partial_{\rho}\lambda^{Aa} + y_{1}^{*}F_{\mu\nu}^{a}\varepsilon_{A}^{\dagger}\bar{\sigma}^{\mu}\partial^{\nu}\lambda^{Aa} - \frac{i}{2}y_{1}^{*}\epsilon^{\mu\nu\rho\kappa}F_{\mu\nu}^{a}\varepsilon_{A}^{\dagger}\bar{\sigma}^{\kappa}\partial_{\rho}\lambda^{Aa}
+ y_{1}\partial^{\nu}F_{\nu\rho}^{a}\lambda_{A}^{\dagger a}\bar{\sigma}^{\rho}\varepsilon^{A} + \frac{1}{2}y_{1}\eta^{\nu\rho}\partial_{\mu}F_{\nu\rho}^{a}\lambda_{A}^{\dagger a}\bar{\sigma}^{\mu}\varepsilon^{A} - \frac{i}{2}y_{1}\epsilon^{\mu\nu\rho\kappa}\partial_{\mu}F_{\nu\rho}^{a}\lambda_{A}^{\dagger a}\bar{\sigma}^{\kappa}\epsilon^{A}
+ z_{1}F^{\mu\nu\alpha}\varepsilon^{A}\sigma_{\nu}\partial_{\mu}\lambda_{A}^{\dagger a} + z_{2}F^{\mu\nu\alpha}\partial_{\mu}\lambda^{Aa}\sigma_{\nu}\varepsilon_{A}^{\dagger}$$
(21)

where we have used the anti-symmetry of $F^a_{\mu\nu}$ to combine terms. This anti-symmetry also implies that the terms with $\eta^{\mu\nu}F^a_{\mu\nu}$ are 0 since $\eta^{\mu\nu}$ is 0 when $\mu \neq \nu$. We also have for each κ that $\epsilon^{\mu\nu\rho\kappa}\partial_{\mu}F^a_{\nu\rho}$ vanishes by the Jacobi identity. Using the product rule we may write

$$-\frac{i}{2}y_1^*\epsilon^{\mu\nu\rho\kappa}F_{\mu\nu}^a\varepsilon_A^{\dagger}\bar{\sigma}^{\kappa}\partial_{\rho}\lambda^{Aa} = -\frac{i}{2}y_1^*\partial_{\rho}\left(\epsilon^{\mu\nu\rho\kappa}F_{\mu\nu}^a\varepsilon_A^{\dagger}\bar{\sigma}^{\kappa}\lambda^{Aa}\right) + \frac{i}{2}y_1^*\epsilon^{\rho\mu\nu\kappa}\partial_{\rho}F_{\mu\nu}^a\varepsilon_A^{\dagger}\bar{\sigma}^{\kappa}\lambda^{Aa} \quad (22)$$

where the first term is a total derivative which upon integration becomes a boundary term at infinity hence does not change the action assuming suitable decay conditions on the fields. Finally using the fact that $\psi \sigma^{\mu} \xi^{\dagger} = -\xi^{\dagger} \bar{\sigma}^{\mu} \psi$ for any Weyl spinors ψ, ξ we may simplify this expression to

$$y_1^* F_{\mu\nu}^a \varepsilon_A^{\dagger} \bar{\sigma}^{\mu} \partial^{\nu} \lambda^{Aa} + y_1 \partial^{\nu} F_{\nu\rho}^a \lambda_A^{\dagger a} \bar{\sigma}^{\rho} \varepsilon^A - z_1 F^{\mu\nu a} \partial_{\mu} \lambda_A^{\dagger a} \bar{\sigma}_{\nu} \varepsilon^A - z_2 F^{\mu\nu a} \varepsilon_A^{\dagger} \bar{\sigma}_{\nu} \partial_{\mu} \lambda^{Aa}. \tag{23}$$

The first and last terms clearly cancel if $y_1^* = z_2$ and up to a total derivative $-z_1 F^{\mu\nu a} \partial_\mu \lambda_A^{\dagger a} \bar{\sigma}_\nu \varepsilon^A = z_1 \partial_\mu F^{\mu\nu a} \lambda_A^{\dagger a} \bar{\sigma}_\nu \varepsilon^A$ hence the middle terms cancel if $y_1 = -z_1$.

3.2 X^{ABa} terms

The terms are

$$-\frac{x_{1}}{2}\partial^{\mu}X_{AB}^{\dagger a}\varepsilon^{A}\partial_{\mu}\lambda^{Ba} - \frac{x_{2}}{4}\epsilon^{ABCD}\partial^{\mu}X_{AB}^{\dagger a}\varepsilon_{C}^{\dagger}\partial_{\mu}\lambda_{D}^{\dagger a}$$

$$-\frac{x_{2}}{2}\partial^{\mu}X^{ABa}\varepsilon_{A}^{\dagger}\partial_{\mu}\lambda_{B}^{\dagger a} - \frac{x_{1}}{4}\epsilon_{ABCD}\partial^{\mu}X^{ABa}\varepsilon^{C}\partial_{\mu}\lambda^{Da}$$

$$+iy_{2}^{*}\partial_{\mu}X_{AB}^{\dagger a}\varepsilon^{B}\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\nu}\lambda^{Aa} + iy_{2}\lambda_{A}^{\dagger a}\bar{\sigma}^{\mu}\sigma^{\nu}\varepsilon_{B}^{\dagger}\partial_{\mu}\partial_{\nu}X^{ABa}.$$
(24)

Using the relations

$$X_{AB}^{\dagger a} = \frac{1}{2} \epsilon_{ABCD} X^{CDa} \tag{25}$$

and

$$X^{ABa} = \frac{1}{2} \epsilon^{ABCD} X_{CD}^{\dagger a} \tag{26}$$

this reduces to

$$-x_1 \partial^{\mu} X_{AB}^{\dagger a} \varepsilon^A \partial_{\mu} \lambda^{Ba} - x_2 \partial^{\mu} X^{ABa} \varepsilon_A^{\dagger} \partial_{\mu} \lambda_B^{\dagger a} + i y_2^* \partial_{\mu} X_{AB}^{\dagger a} \varepsilon^B \sigma^{\mu} \bar{\sigma}^{\nu} \partial_{\nu} \lambda^{Aa} + i y_2 \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \sigma^{\nu} \varepsilon_B^{\dagger} \partial_{\mu} \partial_{\nu} X^{ABa}.$$

$$(27)$$

First let's consider the term with y_2^* . Using the identity

$$\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu} = -2\eta^{\mu\nu}I\tag{28}$$

we may write

$$iy_{2}^{*}\partial_{\mu}X_{AB}^{\dagger a}\varepsilon^{B}\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\nu}\lambda^{Aa} = \frac{1}{2}iy_{2}^{*}\partial_{\mu}X_{AB}^{\dagger a}\varepsilon^{B}\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\nu}\lambda^{Aa} -\frac{1}{2}iy_{2}^{*}\partial_{\mu}X_{AB}^{\dagger a}\varepsilon^{B}\sigma^{\nu}\bar{\sigma}^{\mu}\partial_{\nu}\lambda^{Aa} - iy_{2}^{*}\partial_{\mu}X_{AB}^{\dagger a}\varepsilon^{B}\partial^{\mu}\lambda^{Aa}.$$

$$(29)$$

Using our total derivative trick twice on the second term allows us to swap the derivatives at the price of two minus signs, leading to a cancellation of the first two terms up to a total derivative. Using the anti-symmetry of $X_{AB}^{\dagger a}$ we see that the remaining term cancels with the first term in 27 provided that $x_1 = iy_2^*$. Similarly

$$iy_2 \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \sigma^{\nu} \varepsilon_B^{\dagger} \partial_{\mu} \partial_{\nu} X^{ABa} = \frac{1}{2} iy_2 \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \sigma^{\nu} \varepsilon_B^{\dagger} \partial_{\mu} \partial_{\nu} X^{ABa} - \frac{1}{2} iy_2 \lambda_A^{\dagger a} \bar{\sigma}^{\nu} \sigma^{\mu} \varepsilon_B^{\dagger} \partial_{\mu} \partial_{\nu} X^{ABa} - iy_2 \lambda_A^{\dagger a} \bar{\sigma}^{\nu} \sigma^{\mu} \varepsilon_B^{\dagger} \partial_{\mu} \partial_{\nu} X^{ABa}$$

$$(30)$$

using the identity

$$\bar{\sigma}^{\mu}\sigma^{\nu} + \bar{\sigma}^{\nu}\sigma^{\mu} = -2\eta^{\mu\nu}I. \tag{31}$$

Now the first two terms immediately cancel by the commutativity of the derivatives and up to a total derivative the last term cancels with the second term in 27 using anti-symmetry of X^{ABa} if $iy_2 = -x_2$ which is consistent with $x_2 = x_1^*$.

3.3 F_B^{Aa} terms

The terms are

$$iy_1^* F_A^{*Ba} \varepsilon_B^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \lambda^{Aa} + iy_1 \partial_{\mu} F_B^{Aa} \lambda_A^{\dagger a} \bar{\sigma}^{\mu} \varepsilon^B + w_1 F_A^{*Ba} \varepsilon^A \sigma^{\mu} \partial_{\mu} \lambda_B^{\dagger a} + w_2 F_A^{*Ba} \partial_{\mu} \lambda^{Aa} \sigma^{\mu} \varepsilon_B^{\dagger} + w_1^* F_B^{Aa} \partial_{\mu} \lambda^{Ba} \sigma^{\mu} \varepsilon_A^{\dagger} + w_2^* F_B^{Aa} \varepsilon^B \sigma^{\mu} \partial_{\mu} \lambda_A^{\dagger a}.$$

$$(32)$$

Immediately there is a cancellation between the y_1^* term and the w_2 term provided $w_2 = iy_1^*$. Similarly after swapping the derivative and the spinors in the w_2^* term it cancels with the y_1 term provided $w_2^* = -iy_1$ which is consistent. We are left with two terms who appear not to cancel

$$w_1 F_A^{*Ba} \varepsilon^A \sigma^\mu \partial_\mu \lambda_B^{\dagger a} + w_1^* F_B^{Aa} \partial_\mu \lambda^{Ba} \sigma^\mu \varepsilon_A^{\dagger}$$
(33)

however this problem can simply be solved by setting $w_1 = 0$. Hence we see that the action is invariant under the super-symmetry transformations

$$\delta X^{ABa} = i x_1 \delta_C^{[A} \varepsilon^C \lambda^{B]a} - i \epsilon^{ABCD} \varepsilon_C^{\dagger} \lambda_D^{\dagger a}$$
 (34)

$$\delta X_{AB}^{\dagger a} = -i\delta_{[A}^{C} \varepsilon_{C}^{\dagger} \lambda_{B]}^{a} + i\epsilon_{ABCD} \varepsilon^{C} \lambda^{Da}$$
 (35)

$$\delta \lambda^{Aa} = \left(F_B^{Aa} \varepsilon^B + \frac{i}{2} F_{\mu\nu}^a \sigma^\mu \bar{\sigma}^\nu \varepsilon^A \right) + \partial_\mu X^{ABa} \sigma^\mu \varepsilon_B^\dagger \tag{36}$$

$$\delta \lambda_A^{\dagger a} = \left(F_A^{*Ba} \varepsilon_B^{\dagger} - \frac{i}{2} F_{\mu\nu}^a \varepsilon_A^{\dagger} \bar{\sigma}^{\nu} \sigma^{\mu} \right) + \partial_{\mu} X_{AB}^{\dagger a} \varepsilon^B \sigma^{\mu} \tag{37}$$

$$\delta F^{a}_{\mu\nu} = -\varepsilon^{A} \sigma_{\nu} \partial_{\mu} \lambda_{A}^{\dagger a} + \partial_{\mu} \lambda^{Aa} \sigma_{\nu} \varepsilon_{A}^{\dagger} + \varepsilon^{A} \sigma_{\mu} \partial_{\nu} \lambda_{A}^{\dagger a} - \partial_{\nu} \lambda^{Aa} \sigma_{\mu} \varepsilon_{A}^{\dagger}$$
(38)

$$\delta F_B^{Aa} = i\partial_\mu \lambda^{Aa} \sigma^\mu \varepsilon_B^\dagger \tag{39}$$

$$\delta F_A^{*Ba} = -i\varepsilon^B \sigma^\mu \partial_\mu \lambda_A^{\dagger a} \tag{40}$$

where we had the freedom to set $y_1 = y_2 = 0$.

4 Closure of the Super-symmetry Algebra

We will now show that the extended super-symmetry algebra anti-commutation relation [2]

$$\{Q_{\alpha}^{A}, Q_{\dot{\beta}B}^{\dagger}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}} P_{\mu} \delta_{B}^{A} \tag{41}$$

holds for the field A^a_μ . To get the transformation in terms of Q and Q^\dagger we use that

$$\delta = \varepsilon Q + \varepsilon^{\dagger} Q^{\dagger}. \tag{42}$$

$$\left[\varepsilon_1 Q, \varepsilon_2^{\dagger} Q^{\dagger}\right] A_{\mu}^a = -\varepsilon_1^A \sigma_{\mu} (\varepsilon_2^{\dagger} Q^{\dagger}) \lambda^{Aa} + (\varepsilon_1 Q) \lambda^{Aa} \sigma_{\mu} \varepsilon_{2A}^{\dagger}$$
(43)

$$= \frac{i}{2} \eta_{\mu\rho} F_{\gamma\nu}^a \varepsilon_1^A \sigma^\rho \bar{\sigma}^\gamma \sigma^\nu \varepsilon_{2A}^\dagger + \frac{i}{2} \eta_{\mu\rho} F_{\gamma\nu}^a \varepsilon_1^A \sigma^\nu \bar{\sigma}^\gamma \sigma^\rho \varepsilon_{2A}^\dagger$$
 (44)

(45)

Using

$$\sigma^{\nu}\bar{\sigma}^{\gamma}\sigma^{\rho} = -\eta^{\nu\gamma}\sigma^{\rho} - \eta^{\gamma\rho}\sigma^{\nu} + \eta^{\nu\rho}\sigma^{\gamma} - i\epsilon^{\nu\gamma\rho\kappa}\sigma_{\kappa}$$
(46)

this simplifies to

$$-2iF_{\mu\nu}^{a}\varepsilon_{1}^{A}\sigma^{\nu}\varepsilon_{2A}^{\dagger} + \frac{1}{2}\eta_{\mu\rho}\epsilon^{\rho\gamma\nu\kappa}F_{\gamma\nu}^{a}\varepsilon_{1}^{A}\sigma_{\kappa}\varepsilon_{2A}^{\dagger} + \frac{1}{2}\eta_{\mu\rho}\epsilon^{\nu\gamma\rho\kappa}F_{\gamma\nu}^{a}\varepsilon_{1}^{A}\sigma_{\kappa}\varepsilon_{2A}^{\dagger}. \tag{47}$$

After swapping ν and ρ in the last term's Levi-Civita symbol the last two terms cancel and we are left with

$$-2i\partial_{\mu}A^{a}_{\nu}\varepsilon^{A}_{1}\sigma^{\nu}\varepsilon^{\dagger}_{2A} + 2i\partial_{\nu}A^{a}_{\mu}\varepsilon^{A}_{1}\sigma^{\nu}\varepsilon^{\dagger}_{2A} \tag{48}$$

where the second term is the desired translation of the A^a_μ field and the first term corresponds to a gauge transformation $A^a_\mu \to A^a_\mu + \partial_\mu V$ for some scalar field V which in this case is $A^a_\nu \varepsilon^A_1 \sigma^\nu \varepsilon^\dagger_{2A}$.

References

- [1] S. P. Martin, A Supersymmetry Primer, in Perspectives on Supersymmetry, Ed. Kane, G., pp. 198. (World Scientific, Singapore, 1998), hep-ph/9709356.
- [2] J. D. Lykken, "Introduction to supersymmetry," hep-th/9612114.