
Analysis of transfers and requests in dCache using
Apache Spark

Nataliia Derevesnikova

University of Tyumen, Russian Federation

September 5, 2018

Abstract

dCache is a storage system, which has an additional aim to host
hundreds petabytes of data. This report represents the result of the

analysis of the dCache billing data at DESY using Apache Spark, which
can be used for the future upgrading of the mass storage system.

Supervisors: Christian Voss
Thomas Hartmann

1

Contents

1 Motivation 3

2 Methods of analysis 3

3 Analysis 5

4 Results 7
4.1 Functioning capacity of the system . 7
4.2 Request issues . 11

5 Conclusion 11

6 References 12

2

1 Motivation

At the moment the log information from all access events (transfer, request, remove) in
dCache is archived by day by department (ATLAS, CMS, etc.) in billing files, which are
similar to text files, so proper reading of it usually takes a few hours for one day by one
person, because of a several hundreds terabyte of data, where one file has a size from
1GB. But it’s important to ensure disruption free operation of dCache by analysis the
transfer records for errors.

2 Methods of analysis

In order to analyze the billing data, the contained information needs to be converted
into more convenient view. So first, data is taken by using Apache Spark and its RDD
(explanation of this framework is mentioned below) from files by lines and then put into
labeled columns in a dataframe (pyspark.rdd.PipelinedRDD), from which then it can be
selected using SQL commands. All computations are done using Python 3 and Jupyter
Notebook (it’s an open-source web application, to learn more: http://jupyter.org/).

dCache is an open-source system, which was developed as well-qualified manager of
storing and exchanging of several hundreds of terabytes of data, which is distributed
among dozens of disk storage nodes. Despite the fact that location and multiplicity of
the data are defined by dCache and it’s one of the main features of the system based on
conguration, CPU load and disk space, the name space is unambiguously represented
within a single file system tree. Significant improving of the efficiency of connected
tape storage systems provided by dCache, by caching and scheduled staging techniques.
Additionally, it optimizes the through put to and from data clients as well as smoothly
loading of the connected disk storage nodes by dynamically replicating datasets on the
detection of loading hot spots. The basic architecture of dCache is presented in Figure 1.

Apache Spark is an open-source cluster-computing framework, which provides an inter-
face for programming complete clusters with implicit data parallelism. Apache Spark

has as its architectural foundation the resilient distributed dataset (RDD), a read-only
dataset distributed over a cluster of machines, that is maintained in a fault-tolerant way.
Spark and its RDDs were developed in response to limitations of the MapReduce cluster
computing paradigm, which forces a particular linear dataflow structure on distributed
programs: MapReduce programs read input data from disk, map a function across the
data, reduce the results of the map, and store reduction results on disk, when the RDD
provides the ability to store intermediate results in a distributed memory instead of
disk and make the system faster. Differences in structure of paradigms can be found in
Figure 2.

3

http://jupyter.org/

Figure 1: Basic dCache architecture

Figure 2: MapReduce vs RDD

4

Spark Core is the foundation of the whole Spark project. It provides distributed task
dispatching, scheduling, and basic I/O functionalities, exposed through an application
programming interface centered on the RDD abstraction. This interface represents a
higher-order model of programming: a ”driver” program invokes parallel operations
such as map, filter or reduce on an RDD by passing a function to Spark, which then
schedules the function’s execution in parallel on the cluster. These operations, and
additional ones such as join, take RDD as input and produce new RDDs. RDDs are
immutable and their operations are lazy; fault-tolerance is achieved by keeping track of
the ”lineage” of each RDD so that it can be reconstructed in the case of data loss.

Spark SQL is a component on top of Spark Core, which provides a data abstraction
(Data Frames), which provides support for structured and semi-structured data. Spark
SQL provides a domain-specific language (DSL) to manipulate DataFrames in Scala,

Java, or Python. It also provides SQL language support, with command-line inter-
faces and ODBC/JDBC server.

3 Analysis

First data (example of request event) from billing files was parsed using Python 3 by
logical parts of each event.

Example of request event from billing file:

07.01 00:17:42 [door:GFTP-dcache-door-atlas01-AAVv41VGa3g@dcache-door-atlas

01gridftp Domain:request] ["/DC=ch/DC=cern/OU=Organic Units/

OU=Users/CN=atlact1/CN=555105/CN=Robot: ATLAS aCT 1":

40001:4000:131.169.161.71] [00009E1C9048153B48378E441A4FEB0CDCE1,11409201]

[/pnfs/desy.de/atlas/dq2/atlasdatadisk/rucio/data1713TeV/a6/93/

log.14519703.000163.job.log.tgz.1.rucio.upload] atlas:atlasdatadisk@osm 177

0 0:""

The code of parsing pools is represented above:

def funcpool(row):
for r in row:

if ”pool:” in r:
pool = r.split(”:”)[1]

if ”@” in pool:
return pool.split(”@”)[0]

return pool

Also parsing was made for every other part of the event (Time, Type, PGroup, PnfsId,

5

Size, Door, Protocol, Domain, ClientIp, Return, ReturnMessage). And after all parsing
dataframe (with type ’pyspark.rdd.PipelinedRDD’) can be used instead of billing file.
The example of parsed event is represented in Table 1.

Time 07.01 00:17:42

Type request

Pool

PGroup atlasscratchdisk

PnfsId 00009E1C9048153B48378E441A4FEB0CDCE1

Size 11409201

Door GFTP-dcache-door-atlas01-AAVv41VGa3g

Protocol GFTP

Domain GFTP-dcache-door-atlas01

ClientIp 131.169.161.71

Return 0

ReturnMessage

Table 1: Example of result of converting data from billing file

6

4 Results

4.1 Functioning capacity of the system

By ATLAS data

For checking of functioning capacity of the system, all transfers in ATLAS group were
counted by day in 2017 (Figure 3) and also in the month average (Figure 4). In Figure
3 white color also indicates internal transfers between DESY nodes.
From figures you can see some high points in May and June due to conferences. The
majority of these points were initiated by clients outside of DESY. In June, July and
October high points are triggered by DESY only. During other months the value of
transfers is small compared to the peaks, so probably the power of the system should
be increased in months or weeks, which are followed by some sessions, and some energy
could be saved in periods with not high activity. Turning off the power of the machines in
low periods and asking any third party for the enough and so high (as usual) power can
be one of the possible solutions. Accordingly, it can save money for the whole project.

Figure 3: Transfers for the whole year

7

Figure 4: Average amount of transfers by months

8

By CMS data

In Figure 5 amount of transferred data can be seen by days with scale in petabytes
(PB). There are the high peaks in the middle of January and February, in the end of
June and August also.

In Figure 6 the value of error 451 is represented and significant points can be found in
April, May, July, and August especially. In other time amount of errors not so high, so
a good point is to find out why or by which users these errors were initiated to prevent
such situations in future.

In Figure 7 the value of error 666 is located. By whole period amount of errors 666 is
higher then amount of error 451 in Figure 6. But hot peaks are made in the same time.
And also these peaks are connected with Figure 5 in peaks with transferred data with
value around 20 PB.

Next years in periods with the high amount of transferred data and errors IT department
should pay attention to the status and the stability of the system. Also a research about
the reason of amount of errors can be made.

Figure 5: Value of transferred data by CMS group in petabytes by day during the period
January-August, 2018

9

Figure 6: Amount of error 451 in CMS group by day in January-August, 2018

Figure 7: Amount of error 666 in CMS group by day in January-August, 2018

10

4.2 Request issues

The analysis of the data for August, 2018 has represented that sometimes failed request
(with 451 error) follows the successful transfer, which is not the proper way of the system
to work.

ATLAS CMS

In DESY Outside DESY In DESY Outside DESY

1221 117 12761 886

Table 2: Amount of error 451 in August, 2018 by working groups ATLAS and CMS

From the above Table 2 we can see that most of all such issues are producing by users
inside the DESY network. By checking the Door it turned out that:

• some of creators is grid-mon1.desy.de (19 times for ATLAS and 9 for CMS)

• for ATLAS other creators are different batches

• other errors in CMS are produced only by batch0405.desy.de (12752 times per
month)

Probably it’s necessary to find out what was the reason of these errors, and if it’s not
about IT administration, connect to most problematic users.

5 Conclusion

During the DESY Summer Student Program 2018 , the analysis was made and the
basic billing files can be seen as not applicable by themselves, so first they have to be
converted with Apache Spark. Then using SQL data can be taken for different periods
of time, different points of view, etc., demonstrative plots can be made with the libraries
of Python and next research of the result can be done for figuring out the curious peaks,
etc.

11

6 References

1. dCache online-page: https://www.dcache.org/

2. Apache Spark documentation: https://spark.apache.org/docs/latest/rdd-programming-
guide.html

3. Python documentation: https://docs.python.org/3/

4. Matplotlib documentation: https://matplotlib.org/

12

	Motivation
	Methods of analysis
	Analysis
	Results
	Functioning capacity of the system
	Request issues

	Conclusion
	References

