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Abstract

The Higgs-Top Yukawa coupling can be determined directly at the LHC by measuring the
cross section of ttH(bb). This would confirm predictions of the Standard Model, and give
insight to newer theories like whether the Higgs was responsible for inflation. ttbar plus b-
jets has an equivalent signature to ttH(bb), so signal and background have to be separated.
Boosted decision trees have been used to separate signal and background in the analysis
so far. Different Monte Carlo simulations describe ttbar events differently, resulting in a
large uncertainty. It possible that neural nets would perform better than the BDT, but it is
hypothesised that they would result in a larger uncertainty. This paper explores this in TMVA
and a TMVA function that integrates with Keras. There is no evidence that the neural nets
are more biased than the BDT. Some neural nets defined in Keras slightly outperform the
BDT, and Keras might be a promising option for further exploration.
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1 Introduction

Six years after the discovery of the Higgs boson, its production and decay modes are still being
explored to confirm predictions of the Standard Model. Higgs boson production in association with
two top quarks (ttH) is particularly interesting as it involves the two heaviest known particles.
Measurements of the ttH process at the Large Hadron Collider (LHC) directly probes the Higgs-
Top Yukawa coupling since this is proportional to the square root of the cross-section. Higgs-Top
coupling can give insight to whether the Higgs boson was responsible for inflation, or help find new
phenomena by considering the stability of the electroweak vacuum [1]. Some people even claim
that "at the present moment the only quantity which can help us get an idea about the scale of
new physics is the top Yukawa coupling." [2]

ttH only accounts for 1% of Higgs boson production at the LHC, so a promising way to observe it
is to look for the Higgs boson’s main decay channel to two bottom quarks. Unfortunately, QCD
production of ttbar and b-jets has the same signature, and is more frequent by three orders of
magnitude [3]. An example of a signal and a background process is shown below. To separate
signal from background, Monte Carlo (MC) simulations are used. There are different simulations
depending on slightly different assumptions, e.g. how coloured final state partons radiate and
combine to become hadrons. The difference between these simulations is taken as a systematic
uncertainty, which is almost as large as the signal strength, posing the largest challenge in the
ttH(bb) analysis at the time of writing.

Figure 1: Feynman diagram examples for a) ttH(bb) production and b) tt +bb background.

Since ttH(bb) is very rare, simply removing the background signal and considering cuts by manually
eliminating events is insufficient. Machine learning (ML) is a powerful tool to classify signal and
background. The ML algorithm must also be robust against bias - that is, it must not be very
susceptible to picking up on features specific to the Monte Carlo simulation it is trained on, resulting
in a large uncertainty. Boosted decision trees (BDT) were used in the results published in 2017
[3]. They are well suited to the problem as they are quick to train, and are fairly robust against
bias. Neural nets (NN) are known to perform well on complex tasks, and might be a better option
than the BDTs. This paper explores how well neural nets extract the signal as compared to the
BDTs, and how biased they are.

2 Machine learning

Supervised machine learning is machine learning where the categories are known - here, signal
and background. Since we know which events are signal and background for the Monte Carlo
simulations, we can supervised machine learning. In general, a supervised ML algorithm takes
input arrays for m variables, and applies functions to them to sort them into the known categories.
It compares the classification to the correct category using a loss function, and updates itself to
minimise this function, thereby learning. A vast array of ML algorithms exists, but two of the
most popular are BDTs and NNs. BDTs are known to perform well with both Monte Carlo and
real data for ttH(bb), and is quite impervious to systematic overtraining or bias. It does not pick
up patterns that arise from low statistcs or is specific to the MC simulation it is training on that
are not present for all MC data. However, neural nets have been known to perform well on similar
tasks [4], and it is possible that neural nets will outperform BDTs if optimised well. The main
concern is that the NN would overtrain, so the increase in classification power would be outweighed
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by an increase in uncertainty. The neural nets discussed in this paper were all implemented in
Root’s TMVA’s Artificial Neural Net functionality, except those defined in Keras, discussed in
section 6.

2.1 Boosted Decision Trees

A decision tree makes a decision at each node which grows into a full tree that ends in a classi-
fication. Most decision trees use the Gini Impurity Coefficient to make each decision. To get an
intuitive understanding, consider Fig. 2. Each of the features input to the BDT will have a plot
like 2b. The Gini Coefficient will be calculated for all x-values along this plot, roughly measuring
the overlaps of each classification category. Consider the vertical blue line. To the right and left
of this line, a measure of how many of A’s events that fall within B’s histogram, C within B and
so on, will be calculated. This is combined to a weighted average, which is shown as the light blue
line on top of the plot. The minimum of this function reflects the best point to make a cut. This
is done for all variables, and the one with the minimum Gini coefficient is chosen as the node of
the decision tree. This is repeated for each node in the tree.

(a) Decision tree
(b) Gini Impurity Index

Figure 2: A decision tree like a) is built by making decisions at each purple node by the method
illustrated in b). (Figure b) adapted from [5]).

This process usually leads to a weak learner - a learner with poor classification power - since such a
simple algorithm rarely can reflect the appropriate complexity of the input distributions. One way
to remedy this is to combine weak learners, known as a boosted decision tree (BDT). This paper
considers the AdaBoost method. Simply put, one decision tree is built. The events misclassified
in this tree are then weighted more than the rest, and a new tree is built. This is repeated so that
each tree corrects the mistakes of the previous trees. When the set number of trees have been
built, they are all weighted by their classification power and combined into one strong learner. As
shown in Fig. 2b, how the BDT makes cuts on the variables can be read, giving insight to the
learning algorithm that may be useful for further analysis [6].

2.2 Neural Nets

Neural nets were made with the intention of emulating a biological brain. The same input as was
fed to the BDT is given to the neural net. Each neuron will calculate a weighted sum of its inputs
and add a constant. The neuron will apply an activation function to this value, essentially scaling
the input. If the final value is above a certain threshold, the neuron will fire - much like a biological
neuron firing if the electrical current is above a certain value. If the neuron does not fire, it will
be ignored for that cycle (see section 4.2 for more info on cycles). The neurons connect to each
other, and result in a classification, in this case as either signal or background. Like the BDT, this
is compared to the actual value using a loss function. The weights and connections of the neural
net are updated in cycles to minimise this loss.

This method has proven to be extremely effective on a wide range of tasks, and extensive research
has gone into the justification of this. Neural nets are also known to be the most difficult ML
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Figure 3: A simple neural net structure showing hyperbolic tangent as the activation function.
Each arrow has an associated weight, as illustrated. The final layer consists of two nodes so that
the output will be either signal or background.

algorithm to fine tune - just choosing different different loss functions can have a large impact on
the classification power. It is also considered a notorious "black-box", the final model is difficult
to interpret physically. [7]

2.3 Variable and data selection

The data from the Monte Carlo simulations are fully simulated MC events at reconstruction level,
and must be pre-processed. Only events with 5 or more jets where 3 or more are b-tagged are
considered here. The analysis is also restricted to a 70% b-tagging working point - corresponding
to the fraction of b-jets kept in the analysis. Three techniques were used to prepare the variables,
described in detail in [3]. 28 variables were then used as inputs to the ML algorithms, which can
be found in 7. Optimisation of these were explored in [8]. Five different Monte Carlo simulations
were considered for the background; a mixed sample, Sherpa, Powheg-Pythia8 (PP8), Powheg7
(PoH7) and aMC@NLO (aMC). All MLs discussed until section 5.2 were trained on a sample of
arbitrarily mixed Sherpa and PP8. All MLs from section 5.2 onwards were trained on PP8.

3 Performance and bias metrics

In order to compare BDTs and NNs, some figures of merit have to be used. The ones considered
here are calculated automatically when doing ML in TMVA.

3.1 Measuring bias

In this paper, the bias is measured qualitatively by considering overtraining plots, like Fig. 4. The
ML algortihm classifies each event as signal or background with a certain probability. The number
of events with this probability is counted for both signal and background and normalised. Positive
numbers on the x-axis denote the probability of an event being a signal-like event, and negative
denote the probability of being a background-like event. Note that for neural nets, this ranges
from 0 to 1 rather than -1 to 1. Events that are truly signal events are shown in blue, and true
background events are shown in red. A good classifier would therefore have most of the blue to
the right of the plot, correctly classifying the signal with a high certainty, and the red to the left,
correctly classifying the background with a high certainty.

Bias comes into play when there is a large difference between the data the ML is trained on and
tested on. The test set is shown by the solid colour, and the training by the markers. If the model
is overtrained, the training will differ from the test set. That is, the model trained on one MC
sample is not good at classifying another MC sample, reflecting bias. The MC simulations for the
signal are fairly uniform, so bias is only considered for the background. As will be shown in section
4, sudden spikes in the distribution may signify that the algorithm found a local optimum rather
than a global. Hence, these plots can give information about classifying power, bias and learner
convergence.
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Figure 4: BDT response for BDT with depth 5, 400 branches with an arbitrary superposed line.

3.2 Integral under the ROC curve

To measure performance quantitatively, the integral under the receiver operating characteristics
(ROC) curve can be used. Any classifier will correctly identify some signal events, known as a
a true positive, and fail to classify others - a false negative. It will also correctly classify some
background events - a true negative, and incorrectly classify others as signal - a false positive. The
ROC curve is a way to measure how many events fall into these categories. Consider the arbitrary
vertical line superposed on Fig. 4. The number of signal events to the right is divided by the
total number of actual signal events- i.e. the true positives by the signal events. This is the signal
efficiency. The same is done for the background - the false positives against all actual background
events, corresponding to the background rejection. This will be one point on the ROC curve. This
is repeated for all possible positions of the vertical line. The better the classifier, the closer the
ROC curve will get to the top right corner. A random classifier is shown in red. Thus, classification
power is largely reflected by the integral under the ROC curve [9].

Figure 5: ROC curve for a BDT of depth 5, 400 branches shown in black. Red and blue represent
supposed bad and excellent classifiers, respectively.

4 Achieving NN performance comparable with the BDT

The first step to compare BDT and NN bias is to achieve a similar performance. About 100
different NN architectures were tested. To reduce training time, 20 of the NNs tested only used
the 14 best variables as determined by the largest variable separation. This was disregarded as
the integral under the ROC curve was consistently lower and the error bars in the overtraining
plots were larger. There were 5 main parameters to explore in TMVA; sampling, number of cycles,
number of neurons and layers, activation functions, and the use of a regulator. The hyperparameter
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that decides how to update model parameters is called the loss function, and was set so BFGS, as
recommended by TMVA [10]. The learning rate - the hyperparameter deciding how much weights
are changed with respect to the loss function - was set to 0.007. This was only determined by a
some quick tests, and could very likely be better optimised. The NNs did not reach the same ROC
value as the BDT, and they generally took longer to train.

4.1 Sampling

In TMVA, a sample value can be set so that the NN only trains on a fraction of the data. If e.g.
0.6 is set, TMVA will take a random sample at each cycle so that the total fraction of data used
through all cycles is 0.6. The main advantage is to reduce training time, as sampling is roughly
proportional to training time. A sampling importance can also be set between 0 and 1. If it is less
than one, the probability that an event will be selected again depends on the error function. If an
event reduces the loss function, the probability that the event will be selected again is multiplied
with the sampling importance, i.e. the NN is well trained for that type of events, and should focus
on other events. If the event increases the error function, the NN should consider that event more
closely, and the probability that it will be selected again is divided by the sampling importance [10].
The number of training events was around 360 000 for the signal and 160 000 for the background.
The NN performed well with low sampling fractions such as 0.01, but the uncertainties on the
response plots decreased as sampling increased. The sampling also affected the shapes of the
response distributions. The sampling importance did not seem to have any effect.

The overall effect of sampling on performance is illustrated below. Even with a sampling below 0.1,
a ROC integral value above 0.74 can be reached, provided the NN architecture is good. The vertical
lines demonstrate that the other factors explored in this section also affect performance.

Figure 6: Integral under the ROC curve vs. sampling fractions for various NN architectures - each
point represents a different NN architecture

Guided solely by the above plot, one might think a low sampling is sufficient to achieve a good
model. The overtraining plots give a deeper insight; let us consider a very simple NN as shown
below.

An increased sampling reduces the error bars of the response drastically, but also changes the
shape of the distributions. However, the effect is a bit different when considering a more complex
network, as shown below.

From the above plots, one can see that the ROC integral is very similar, as is the shape of the
distributions. The only difference seems to be that the error bars are smaller on the plot with no
sampling. The NN with sampling took 1 hour 40 min to train, the other took 4 hours. There was
extensive evidence that once the NNs grew complex enough to run for more than an hour, most
architectures had a similar overtraining plot and ROC integral, as is also shown in Fig. 12. If the
plots had any spikes or a shape otherwise dissimilar to Fig. 10, these trends disappeared as the
training time grew due to either an increased number of sampling, cycles, or layers/neurons. This
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ROC 0.724

Figure 7: Response of NN with 3 neurons, 50
cycles, sigmoid activation function and sam-
pling of 0.01

ROC 0.720

Figure 8: Response of NN with 3 neurons, 50
cycles, sigmoid activation function and sam-
pling of 0.4

ROC 0.754

Figure 9: Overtraining plot for NN with
structure 5-5-3-2, 800 cycles, sigmoid acti-
vation function and sampling of 0.2

ROC 0.751

Figure 10: Overtraining plot for NN with
structure 5-5-3-2, 800 cycles, sigmoid acti-
vation function, no sampling

was also true for Fig. 8. Using sampling might therefore be a good way to reduce training time,
provided the NN has enough cycles or layers/neurons to compensate.

4.2 Number of cycles

Increasing the number of cycles did not seem to lower the error bars, as sampling did. In fact, the
number seemed to have little effect on the distribution and ROC integral value for both complex
and simple networks, provided the number of cycles was above around 200. Above this, the
ROC integral would typically increase by 0.02 for a doubling of cycles, which may be within the
uncertainty of the ROC integral value.

4.3 Number of neurons and layers

There was no clear correlation between number of neurons and/or layers and performance, as
illustrated in Fig. 11. This also held true for a higher sampling than shown in this figure.

Fig. 11 shows that increasing the number of layers or number of neurons in each layer, does not
necessitate a higher performance or lower errors on the NN score. The top right plot suggests that
deeper neural nets need more statistic to achieve a good performance, i.e. either a higher sampling
or more cycles. This is quite intuitive, since a deeper NN has more parameters to learn. The same
NN was tried with a sampling of 0.6, which gave a similar shape to the other three plots, and a
ROC integral of 0.757. There is also extensive literature on how a single layered NN can perform
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ROC 0.738 ROC 0.734

ROC 0.739 ROC 0.736
10 10-10-5-5-3-2

5-5-3-2 28-28-15-8

Figure 11: Different NN architectures for sampling 0.01, 400 cycles, sigmoid activation function.
The hyphenated numbers denote the number of neurons in each layer.

as well as a multilayered NN e.g. as presented in [11] and [12]. However, as [12] states "Empirical
work, however, shows that it is difficult to train shallow nets to be as accurate as deep nets.".
A well optimised shallow learner can often do as well as a deeper learner, but may need more
optimisation. Since a deep learner has more parameters than a shallow learner, one furthermore
expects the bias to be higher for a deep learner. Therefore, both deep and shallow NNs were chosen
to compare bias, as outlined in section 5.2.

4.4 Activation functions

Unless one has set up multicore CPU or GPU training in TMVA, a single activation function is
defined for the whole NN, and the only two commonly used functions available are sigmoid and
hyberbolic tangent. This is a limitation, as e.g. the very popular function ReLu, which only
considers input above 0, has been shown to converge six times faster than tanh for certain tasks
[13]. Of the two available functions, sigmoid generally created a uniform peak for signal and
background, such as shown in Fig. 10. Tanh tended to have sharp peaks, similar to the top right
of Fig. 11. However, a tanh NN that ran for 4 hours converged on the same shape as sigmoid. Is is
therefore hypothesised that sigmoid converges faster than tanh for this task. One should generally
be careful when using sigmoid, as this is known to saturate, which may impair learning. As an
output function, sigmoid is also known to be inferior to softmax, which not only squashed the
input to between 0 and 1, but also normalises the sum of all events to 1. TMVA does not have
softmax, which is yet another limitation [14]. Therefore, sigmoid is considered the best option in
this case, but is very likely not the best option if using any other setup, including TMVAs deep
neural net functions. This was later confirmed using Keras, see section 6.1

4.5 Regulator

The regulator in TMVA adds a term to the error function, effectively penalising large NN weights,
and thereby reducing model complexity. For simple NNs, the regulator seemed to smooth the
overtraining distributions slightly. For neural nets running for an hour or more, it had no noticeable
effect, and was therefore not used for further analysis.
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4.6 Overall performance

None of the neural nets tested in TMVA’s Artificial Neural Net functionality performed as well
as the BDT. To achieve similar distributions and error bars in the BDT overtraining plot, several
hours of training were needed for the neural nets. Some architectures seemed to converge on
this shape faster than others - a structure of 5-5-3-2 seemed to do particularly well, even with
low sampling. However, increasing the sampling decreased the error bars, as discussed in section
4.1. Three different architectures that all performed similarly were chosen to proceed with the
comparison, which is discussed further in section 5.2.

5 Bias and performance comparison for NN and BDT

Based on the exploration outlined in section 4, three neural nets with different architectures were
chosen to compare with the BDT. The term performance here refers mainly to the integral under
the ROC curve, but other parameters like training time and response uncertainty is also consid-
ered.

5.1 Performance

Three of the highest performing NNs are shown next to the BDT below. The different architectures
were chosen to test whether bias increased with NN depth.

ROC 0.765 ROC 0.751

ROC 0.753 ROC 0.757
BDT 5-5-3-2

3 10-10-5-5-3-2

Figure 12: The BDT (upper left) and the three neural nets chosen for further analysis. All had
sampling 1 except the deepest, which had sampling 0.6. Number of cycles was 400 except the top
right, for which it was 800.

Even though the NNs have very different architectures, they all have similar response distributions.
Even the NN to the bottom right, which has a sampling of 0.6, achieves a similar shape as the
others. It is possible that once the NNs reach a certain complexity - reflected either in depth, neuron
numbers, number of training events or otherwise - they converge on a similar optimum.

5.2 Bias

All MLs discussed up to this point were trained on a background sample consisting of an arbitrary
mix of Sherpa and PP8. From now on, the discussion will involve MLs trained on PP8, and tested
on various Monte Carlo samples. 4 different testing samples were used for the background; PP8,
Sherpa, POH7, and aMC. There was no evidence that the neural nets were more biased than the
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BDT for any of these. The generator with lowest statistics that is also known to be the most
different from the other MC samples is aMC. The overtraining plot for this generator is shown for
the BDT and the deepest NN in Fig. 13

ROC 0.765 ROC 0.728

ROC 0.760 ROC 0.722
BDT BDT

10-10-5-5-3-2 10-10-5-5-3-2

Figure 13: The BDT (upper row) and the deepest neural net (lower row) trained and tested on
PP8 (left) and trained on PP8 and tested on aMC (right).

The drop in the ROC integral value as the algorithm is tested on aMC instead of PP8 is almost
identical between the NN and the BDT, as is the difference in test and training points by visual
inspection. The drop in ROC integral value occurs because the events are classified as more signal-
like, reducing the ability to separate signal and background. The two other MC samples did not
display this trend as strongly, and there was no evidence of higher bias of the NN than the BDT
for any of the NNs showed here.

6 Keras

Keras is a high level neural net package written in Python that can run on top of e.g. Tensorflow
or Theano. As discussed in section 4, TMVA has several limitations. Keras, however, is a state
of the art package. TMVA is generally preferred since data for these types of analysis are usually
handled in Root due to their mere size. It can be a tedious task to convert these to a Python-
friendly format. Even then, after a NN is trained, it can be challenging to integrate it to C++
code. Luckily, TMVA integrates with Keras, so that root files can be imported to a Python script
using TMVA commands. The NN is then defined in Keras, and the prediction works very similarly
to TMVA, giving identical output analysis options. Many advanced Keras options are not available
in TMVA using this method, but the method can still provide the best of root’s data handling and
Keras’ freedom of choice in hyperparameters.

About 50 different neural nets were tried in Keras by varying similar parameters to those presented
in section 4. Most of these converged on a very similar response distribution, often with a ROC
value higher than the BDT. Keras allows batch training (see section 6.2), which TMVA does not,
unless one has set up multiple CPU or GPU training. Therefore, the Keras NNs only took a few
minutes to train, even with hundreds of neurons. A slight drawback is that applying the model
after training and testing is a bit more complicated than TMVA. A prediction function has to be
applied to each event, and the result is appended to an array. As a reference point, this took about
an hour for about one million events. Considering that the model would mostly be applied on real
data and not Monte Carlo data, this is not a major drawback. The plots in this section were made
using matplotlib.
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6.1 Activation functions

As argued in section 4.4, it is likely that sigmoid is not the best activation function. Using a layered
nerual net of 28-50-40-15-2 neurons, this hypothesis was tested. The first layer of this architecture
equals the number of input variables, and expands into a pyramid shape, which is commonly done
[7]. This was not tested in TMVA as it would have taken very long to train without minibatch
training. One neural net was then made using only sigmoid neurons, another with ReLu neurons
and softmax as the output layer. Both took just as long to train, but the sigmoid NN achieved a
ROC integral of 0.742 and the other achieved 0.779. It is therefore possible that the nerual nets in
TMVA could have achieved a performance similar to the BDTs if appropriate activation functions
were available. This poses an argument against using TMVA’s Artificial Neural Net package for
this and similar tasks. Relu is available in TMVA’s Deep Neural Net package, but softmax is not.
The NN described earlier was trained with only ReLu neurons, which resulted in a ROC integral
of 0.757, showing that using softmax as the output neuron makes a noticeable difference. It is
possible that the results would have been different in TMVA since the training methods are quite
different from Keras. However, the shape of the sigmoid NN’s overtraining plot was very similar
to the well performing NNs defined in 4, suggesting that the activation functions were indeed a big
limitation.

6.2 Number of epochs and minibatches

The number of epochs is the number of times the algorithm passes through the whole NN. Mini
batch training is not available in TMVA’s Artificial Neural Net package, but is available in the Deep
Neural Net package. Minibatch training takes a random sample from the training set and updates
the loss function based on the average loss of this sample. This avoids the very computationally
expensive method of evaluating each training event separately. This is often referred to as batch
training, but should not be confused with full batch training, where all samples are considered as
the loss function is updated. An attempt was made to replicate the results from section 5.1 in
Keras. Training took more than 14 hours and crashed, suggesting that setting the batch size to 1
and assuming an equivalence between TMVA’s cycles and Keras’ epochs might not be valid. The
batch training, however, is very quick and offers more exploration of the effect of NN depth and
neuron number than could be explored in TMVA. A common method is to start with a minibatch
size of 32 and tweak it [15]. The number of epochs is very easy to tweak as the loss and validation
accuracy can be output as the NN is training. In Keras, TMVA also allows early stopping - a
number of epochs n can be set so that the NN stops training if the loss has not decreased in that
last n epochs. A batch number of around 32 seemed to perform well for this task, but this was not
finely optimised. NNs with a batch of 500 converged to a similar distribution as smaller batches,
but generally with a lower performance. Most NNs converged in under 40 epochs.

6.3 Number of neurons and layers

Since Keras allows batch training, the depth of the NN and the number of neurons in each layer
can be increased drastically from what was attempted in section 4. It is of particular interest to
see whether a dramatic increase in depth or number of neurons increases bias, as hypothesised.
The computer scientist Prof. Bengio suggests that an excessive amount of neurons usually has
no negative impact on prediction power, so a few potentially excessive NNs were tested [15]. He
also claims that an overcomplete first hidden layer (number of neurons exceeds number of input
variables) usually performs better than an undercomplete NN. These hypotheses are explored in
Fig. 14.

The deep neural net in Fig. 14c performs better than the other two, and perhaps surprisingly,
is also less biased. It is possible that this NN had enough parameters to find a good minimum
of the loss function that the others could not. The NN with an excessive amount of neurons
seems to possibly have overtrained, resulting in a large bias. Considering that the award winning
GoogLeNet only had 22 layers to classify more than 1000 categories, there is perhaps no need to
go any deeper than 15 layers. This task is very different, but it is clear that a depth similar to
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(a) NN with 28-50-40-15-2 neu-
rons

(b) NN with 14 layers with 50
neurons each

(c) NN with 100-100-200-200-
300-300-200-100-2 neurons

Figure 14: Various complexities for NNs with ReLU activation functions and output layer of two
neurons and softmax activation function. All were trained with minibatch of 500 over 40 epochs.
The integral under the ROC curve was 0.758, 0.765 and 0.760 respectively.

that of Fig. 14b is sufficient for very complex tasks. Hence a depth around 15 and a considerably
lower neuron number that in Fig. 14c is a good starting point for further exploration.

6.4 Dropout

One of the very appealing points of using Keras is that it enables dropout - a mechanism designed
specifically to address overtraining. This can be done in TMVA as well, but only when multiple
CPU or GPU training has been setup. Dropout disregards a set fraction of the neurons in each
batch, creating an ensemble of learners that contain all possible combinations of dropout neurons.
It is common to define the dropout as the first hidden layer and add another dropout layer before
the output layer. This was done for the same NN as in Fig. 14a, where the first dropout layer had
a fraction of 0.2, and the second had 0.5.

ROC 0.750

Figure 15: NN with a structure of 28-Dropout0.2-50-40-15-Dropout0.5-2, minibatch 500, 40 epochs

Comparing this to 14a, there is very little difference between the two, except that dropout has
reduced the performance. It is possible that dropout would have been better with a deeper neural
net and lower fractions.

6.5 Learning with momentum

Momentum can be set when doing a stochastic gradient descent, which was the optimization
method used for the plots earlier in this chapter. The momentum adds a short term memory to
the loss function, so that if the loss is great, the descent is steeper. This can cause a quicker
convergence and may prevent the learning algorithm from getting stuck in local minima [7]. A
momentum of 0.2 was set for the plot shown below.
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ROC 0.758

Figure 16: NN with 28-50-40-30-15-2 neurons and gradient descent momentum of 0.2

There was no change in prediction power, and based on a visual inspection, the bias seems compa-
rable to that of 14a. However, it decreased the training time from 54 minutes to 3 minutes. This
can therefore be a good solution if stochastic gradient descent is used. Another way to reduce
training time is using another optimizer, e.g. Adam, as explored in the next section.

6.6 Optimization functions

In TMVA, the optimization function was set to the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
method, which is a slight alteration of standard back propagation. The TMVA guide suggests this
as the best optimiser [10]. In Keras, other alternatives such as Adam and Adagrad are available.
With Adam, each weight has its own learning rate, which is updated as the training progresses.
This was introduced in 2014 and has proven quite successful on a range of tasks [16].

ROC 0.774

Figure 17: NN with 28-50-40-30-15-2 and the optimizer Adam

This NN outperforms any other NN tested, and also halves the training time as compared to
stochastic gradient descent. The bias is also lower, as compared to Fig. 14. Adam might indeed
be a good option, but this also suggests that the learning rate, which was not optimised either
for TMVA or Keras, has a large impact on the NN. This should be the first step of a further
exploration.

7 Conclusion

None of the neural nets defined in TMVA achieved the same ROC integral as the BDT, the closest
obtaining 0.757 as compared to the BDT’s 0.765. There was no evidence that the NNs in TMVA
were more biased than the BDTs. Some of the NNs defined in Keras exceeded the BDT’s ROC
integral, the highest achieving 0.774. Several of the NNs in Keras were more biased than the
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BDT, but this did not seem to increase with the depth of the NNs. The hyperparameters of the
NNs affected performance and bias extensively for both TMVA and Keras. In TMVA, most NNs
converged on a similar distribution of signal and background when trained for more than an hour.
In Keras, no NNs were trained for that long. With only a few minutes of training, Keras NNs
obtained a better performance than TMVA did with hours of training. Several of Keras’ options
that are not available in TMVA impacted performance, including advanced activation functions and
optimizers. Neural nets might be a better option than BDTs when continuing the ttH(bb) analysis,
as the performance was slightly exceeded through this brief analysis, and there is no evidence of
increased bias. Keras is a promising option, but needs fine-tuning. Adding dropout layers in
particular did not seem to reduce the bias, as hypothesised. There is especially evidence that the
learning rate should be optimised further, both in Keras and TMVA. Considering how Keras learns
quickly using batch training, and TMVA learns slowly by considering all events separately, it could
be interesting to combine several learners from each of these to an ensemble, mimicking the BDT
mechanism.
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Appendices
Variables used for machine learning

A Variable List for BDT Training
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Variable Name Variable Description
nHiggs30_70 Number of b-jet pairs with invariant mass within 30 GeV of the Higgs boson mass
nJets_Pt40 Number of jets with pT ≥ 40 GeV
pT_jet5 pT of fifth leading jet
HT_jets Scalar sum of jet pT
HT_all Scalar sum of all pT
H1_all Second Fox-Wolfram moment computed using all jets and the lepton
dEtajj_MaxdEta Maximum ∆η between any two jets
Centrality_all Scalar sum of the pT divided by the sum of E for all jets and the lepton
dRbb_avg_70 Average ∆R for all b-tagged jets
Mbb_MindR_70 Invariant mass of the combination of any two b-jets with the smallest ∆R
Mbj_MaxPt_70 Invariant mass of the combination of jet and b-jet with the largest vector sum pT
dRbb_MaxPt_70 ∆R between the two b-jets with the largest vector sum pT
dRbb_HiggsMass_70 ∆R between b-jets from the Higgs candidate
dRlepbb_MindR_70 ∆R between the lepton and the combination of the two b-tagged jets with the

smallest ∆R
Aplanarity_jets 1.5λ2, where λ2 is the second eigenvalue of the momentum tensor built with all jets
Mjj_MindR Invariant mass of the combination of any two jets with the smallest ∆R
dRbj_Wmass_70 ∆R between a b-jet and any other jet from the W boson candidate
Mbj_Wmass_70 Invariant mass of a b-jet and any other jet from the W boson candidate
Mbj_MindR_70 Mass of the combination of any jet and b-jet with the smallest ∆R
dRlj_MindR ∆R between any jet and a b-jet with the smallest ∆R
pT_jet3 Transverse momentum of the jet with the third largest transverse momentum
dRbb_MaxM_70 ∆R between the two b-jets with the largest invariant mass
AH4_all 5th Fox-Wolfram moment computed using all jets and charged leptons
Aplanarity_bjets_70 As Aplanarity, for b-jets
Mjjj_MaxPt Invariant mass of three jets with largest vector sum pT
Mbb_MaxM_70 Largest invariant mass of the combination of any two b-jets
Mjj_MinM Smallest invariant mass of the combination of any two jets
dEtabb_Avg_70 Average ∆η for all b-jets

Table 1: List of variables used in the BDT. All b-tagged variables correspond to a b-tagging at
70% efficiency.
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