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1 Introduction

1.1 Motivation

The Standard Model (SM) is a gauge theory based on the SU(3)×SU(2)×U(1) symmetry

group describing a wide range of phenomena in nature, as we know it, to very high precision.

One of the interactions the SM predicts is the electroweak (EW) interaction mediated by

particles known as the Z boson, W± bosons and the photon (γ). The first three are massive
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and the masses have been experimentally determined to considerable accuracy [1, 2]. This is

important, for example, in EW precision tests that allow to test the SM for hints of Beyond-

the-SM (BSM) physics [3]. The most current values for Z and W masses are given by [4]:

mZ = 91.1876± 0.0021 GeV (1.1)

mW = 80.3850± 0.0150 GeV. (1.2)

Evidently, the uncertainty on Z mass is an order of magnitude lower than that of W. Hence,

currently, the latter is limiting the constraints for BSM fits. One of the reasons why mW is

known less precisely than mZ lies in the way they decay. The leptonic decay Z → ll̄ produces

a pair of a lepton and an anti-lepton, however, the leptonic decay W± → lνl produces a pair

of a lepton and an anti-neutrino or vice versa. The latter decay channel was used in the

W mass measurement [2]. Since the neutrino escapes the detector, it requires evaluation of

missing momenta of the decay to reconstruct the lepton center-of-mass (COM) frame. This

is a challenging task itself as it requires precise tracking of leftover QCD radiation (jets) that

were produced in hadronic collisions which created W and Z in the first place. However, this

same decay could potentially be treated in the laboratory (lab) frame of the colliding hadrons

that produce the boson in the first place. In this way, the measured observables are also the

variables of the lab frame.

Additionally, it is important to mention that when higher order corrections to this decay

are considered, one must include processes where the colliding partons, for example, radiate

a gluon. What is more, the additional radiation provides recoil, so the tree-level case ~qT = 0

for the vector boson no longer holds true. Specifically, one may write

dσ

dq2
T

∼ δ(q2
T ) +O(αS), (1.3)

where σ is the cross section of the process and αS is the strong coupling constant. In the

high-qT region (qT ' mW ) the perturbative expansion of the differential cross section is

convergent. However, in the qT � mW region the convergence is spoiled by the presence

of high-order logarithmic terms which can schematically be given as αns lnm
(
mW
qT

)
, where

2n ≥ m. Nonetheless, it is possible to sum these logarithms to all orders which allows to

obtain predictions for all regions of qT [5]. This technique is known as qT -resummation. In

practice, the experiments use Monte Carlo event generators to reconstruct qT of the W in

lab frame. Hence, the perturbative accuracy of mW determination becomes limited by Monte

Carlo method accuracy. Since qT is a natural variable of the lab frame, finding a high-precision

relation between lepton transverse momentum pT` and qT will help to improve the accuracy.

This project will analyse the theoretical background of the Z and W decays into two

leptons, by separately considering the hadronic production of an intermediate boson and its

subsequent decay into leptons. This is done by decomposing the cross section in terms of

leptonic and hadronic tensors.
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Figure 1. A schematic example of the Drell-

Yan process [6].

Figure 2. Feynman diagram for Drell-Yan

processes.

1.2 Leptonic and Hadronic tensors

The matrix element for any process can be deduced from the Feynman rules for that process.

Consider the case of a Drell-Yan process p1(Pa)+p2(Pb)→ V (q)+X → `1(k1)+`2(k2)+X (Fig.

1), where p1,2 are incoming hadrons with momenta Pa,b, `1,2 are outgoing lepton states with

momenta k1,2 and V is the intermediate boson with momentum q. The X is an unconstrained

state outgoing of hadronic radiation. The matrix element in such a case will be built from

two independent currents:

M∼ JqµJµ` , (1.4)

where q stands for “quark” and ` stands for “lepton”. The ∼ sign is used to denote all the

factors that come in front of the two currents and depend on the process. The cross section

is proportional to the square of the matrix element which goes as

M†M = |M|2 ∼ JqµJ†qνJ
µ
` J

ν†
` . (1.5)

Note that in the case of W and Z these currents can be broken down further into a vector and

axial component Jµ = JµV − J
µ
A. Hence, the most general tensor should also include helicity

indices. Since Eq. (1.4) may be separated into the solely hadronic (i.e. q) part and into the

leptonic (i.e. `) part, one can write:

|M|2 =
∑
hh′

Hhh′µνL
µν
hh′ , (1.6)

where all the factors previously denoted as ∼ were now incorporated into the hadronic tensor

Hhh′µν ∼ JqµJ†qν and leptonic tensor Lµνhh′ ∼ J
µ
` J

ν†
` . It is conventional to demand that all the

couplings and gauge boson propagators be incorporated into only one of the tensors and in

this report all prefactors will be moved to the leptonic tensor. The full cross section can then

be decomposed as [7]

σ =
1

2E2
CM

∑
hh′

Hhh′µνL
µν
hh′ . (1.7)
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Figure 3. The Collins-Soper frame [9]. This frame is expressed in terms of two variables cos θ and φ

as depicted. Note that the proton momenta are not generally equal in any direction. Taken from [10].

1.3 Photon Exchange in the COM frame of leptons

For the Drell-Yan process (Fig. 2), only the vector current for the lepton part is present and

the elements of leptonic current are given by [7]:

Jµ`f = (k1, k2, q) =
∑
spins

−Qf
4πα

q2
(ū(k1)γµv(k2)) , (1.8)

where u and v are the appropriate spinors for the particles in the process, αem ≡ α = e2

4π is

the fine structure constant and Qf is the charge of a quark with flavour f . As in (1.4), the

leptonic tensor is formed by squaring the leptonic current from Eq. (1.8). Specifically, this

yields:

Lµν
ff ′

(k1, k2, q) = Jµ†`f (k1, k2)Jν`f ′(k1, k2)

=
2∑

s,r=1

(
4πα

q2

)2

QfQf ′ [v̄
s(k2)γµur(k1)] [ūr(k1)γνvs(k2)] ,

(1.9)

where s, r are the spin states of the spinors. Taking advantage of the sum and using the

completeness relations for the spinors
2∑
s=1

usūs = /p + m and
2∑
s=1

v̄svs = /p − m [8], one can

reduce the equation to

Lµν
ff ′

(k1, k2, q) =

(
4πα

q2

)2

QfQf ′Tr[ /k1γ
µ /k2γ

ν ]

= 4

(
4πα

q2

)2

QfQf ′
(
kµ1k

ν
2 + kν1k

µ
2 − g

µν(k1 · k2)
)
.

(1.10)

Note that in Eq. (1.10), the lepton tensor is still manifestly covariant as no assumptions

have been made about the frame of reference. Moving into the lepton COM frame [9] (see

Fig. 3 for definitions of variables in Collins-Soper (CS) frame), the 4-vectors are parametrised

as [6]

kµ1,2 =
Q

2
(1,± sin θ cosφ,± sin θ sinφ,± cos θ), Q =

√
q2. (1.11)
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Note that Eq. (1.10) is differential in kµ1 and kµ2 , but their kinematics may be fully described

by the six independent variables {cos θ, φ, qµ}. Generally, this can be written in terms of

some measurement function of the leptonic phase space M(ΦL) as

Lµν(q,M) =

∫
dΦLL

µν(k1, k2, q
2)M(ΦL)δ4(q − k1 − k2). (1.12)

For M = 1, one integrates over all of the decay phase. On the other hand, for M = δ(cos θ−
cos[θ(ΦL)])δ(φ− φ(ΦL)) one retains variables {cos θ, φ}. Writing this explicitly yields:∫

dΦLL
µν(k1, k2, q

2) =

∫
d4kµ1 d4kν2

(2π)2
δ4(q − k1 − k2)Θ(k0

1)δ((k1)2)Θ(k0
2)δ((k2)2MLµν(k1, k2, q

2)

=
1

32π2

∫
d cos θdφLµν(k1(cos θ, φ), k2(cos θ, φ), q2) =

=

∫
d cos θdφLµν(cos θ, φ, q2),

(1.13)

where the prefactors were absorbed into

Lµνff ′(cos θ, φ, q2) =
2α2

q4
QfQf ′

(
kµ1k

ν
2 + kν1k

µ
2 − g

µν(k1 · k2)
)
. (1.14)

In the lepton COM frame the intermediate boson is stationary. Hence, with ~q = 0, the

hadronic tensor in such a reference frame can be expressed as [6]:

Hµν =


0 0 0 0

0 H11 H12 H13

0 H21 H22 H23

0 H31 H32 H33

 (1.15)

Dotting the lepton tensor Eq. (1.14) with Eq. (1.15) and by using Eq. (1.11), one acquires

the full scattering cross section for such process. For the diagonal elements:

L11H11 =
2α2

q4
QfQf ′

(
−Q

2

4
sin2 θ cos2 φ− Q2

4
sin2 θ cos2 φ− (−1)

Q2

2

)
H11

=
α2

q2
QfQf ′(1− sin2 θ cos2 φ)H11

(1.16)

And, hence, similarly:

L22H22 =
α2

q2
QfQf ′(1− sin2 θ sin2 φ)H22 (1.17)

L33H33 =
α2

q2
QfQf ′(1− cos2 θ)H33 (1.18)
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Repeating the same process, starting from Eq. 1.10 for the off-diagonal elements yields

L12H12 =
2α2

q4
QfQf ′

(
−Q

2

4
sin2 θ cosφ sinφ− Q2

4
sin2 θ sinφ cosφ

)
H12

= − α
2

2q2
QfQf ′ sin

2 θ sin 2φH12,

(1.19)

And so:

L21H21 = − α
2

2q2
QfQf ′ sin

2 θ sin 2φH21 (1.20)

L23H23 = − α
2

2q2
QfQf ′ sin 2θ sinφH23 (1.21)

L32H32 = − α
2

2q2
QfQf ′ sin 2θ sinφH32 (1.22)

L13H13 = − α
2

2q2
QfQf ′ sin 2θ cosφH13 (1.23)

L31H31 = − α
2

2q2
QfQf ′ sin 2θ cosφH31 (1.24)

All the expressions (Eqs.(1.16)-(1.24)) can be summed up to get the full differential cross

section of the γ decay. Eqs.(1.16)-(1.18) can be modified in order to be expressed in terms of

spherical harmonics (see Appendix A). Then summing up the diagonal elements expressed in

terms of spherical harmonics and using appropriate factors from Eqs.(1.16)-(1.18) gives:

L11H11 + L22H22 + L33H33 =

=
α2

2q2
QfQf ′

[
(1 + cos2 θ)(H11 +H22 +H33)

+ (1− 3 cos2 θ)H33 + (H22 −H11) sin2 θ cos 2φ
]
.

(1.25)

By integrating the leptonic tensor of Eq. (1.14) over the free variables cos θ and φ, one arrives

at the “unpolarised” inclusive leptonic tensor in the decay phase space [7]:

Lµν
ff ′

(q2) =
8πα2

3q2
QfQf ′

(
qµqν

q2
− gµν

)
. (1.26)

This construct can be used to further simplify Eqs.(1.16)-(1.24). Dotting Lµν
ff ′

(q2) result with

Eq. (1.15) yields the unpolarised cross section of this process

dσunpol

d4q
=

8πα2

3q2
QfQf ′ (H11 +H22 +H33). (1.27)

Defining a set of angular coefficients A0...7 (motivated by [6]):

A0 = 2H33 A1 = −(H13 +H31) A2 = 2(H22 −H11)

A3 = 0 A4 = 0 A5 = −(H12 +H21) (1.28)

A6 = −(H23 +H32) A7 = 0,
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one gets the final form for Eq. (1.25):

L11H11 + L22H22 + L33H33 =

=
3

16π

dσunpol

d4q

[
(1 + cos2 θ) +

1

2
A0(1− 3 cos2 θ) +

1

2
A2 sin2 θ cos 2φ

]
.

(1.29)

If the same procedure is repeated for all the off-diagonal elements (Eqs.(1.19)-(1.24))

as well, and then summed with Eq. (1.29) (see Appendix B), one arrives at the polarised

differential cross section given below. The expression agrees with the result of [6], after taking

the limit where vector and axial coupling vanish:

dσ

d4qd cos θdφ
=

3

16π

dσunpol

d4q

[
(1 + cos2 θ) +

1

2
A0(1− 3 cos2 θ)

+A1 sin 2θ cosφ+
1

2
A2 sin2 θ cos 2φ

+A5 sin2 θ sin 2φ+A6 sin 2θ sinφ
]
.

(1.30)

2 General leptonic and hadronic tensors for vector bosons

2.1 The leptonic tensor for Z/γ∗ exchange

The leptonic tensor in the case of Z/γ∗ exchange is now given by interference of vector-vector

(VV), vector-axial (VA) and axial-axial (AA) currents. Furthermore, the Z is not massless,

which means the line shape of the Z must be accounted for. The reduced (dimensionless)

propagator for a vector boson is given by [11]

PX(q2) =
1

1− m2
X
q2

+ iΓXmX
q2

, (2.1)

where X = Z,W, γ. For the γ case (m = 0) this simply yields Pγ = 1.

Starting from leptonic currents for the joint Z/γ∗ case (given explicitly in [7]), and

including the decay width of the Z, one arrives at such expressions:

LµνV V ff ′ =
∑
spins

(
4πα

q2

)2
(
QfQf ′ [v̄(k1)γµu(k2)][ū(k2)γνv(k1)]

− Re[PZ ]Qf ′vf [v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γνv(k1)]

− Re[PZ ]Qfvf ′ [v̄(k1)γµu(k2)][ū(k2)γν(vl − alγ5)v(k1)]

+ |PZ |2vfvf ′ [v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γν(vl − alγ5)v(k1)]

)
,

(2.2)

LµνAAff ′ =
∑
spins

|PZ |2
(

4πα

q2

)2

afaf ′ [v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γν(vl − alγ5)v(k1)], (2.3)
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LµνV Af ′f = LµνAV ff ′ =
∑
spins

(
4πα

q2

)2
(

Re[PZ ]afQf ′ [v̄(p1)γµ(vl − γ5al)u(p2)][ū(p2)γνv(p1)]

− |PZ |2afvf ′ [v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γν(vl − alγ5)v(k1)]

)
.

(2.4)

Using Eq. (2.1), the Re[PZ ] and |PZ |2 are given by:

|PW,Z |2 =
1(

1− m2
W,Z

q2

)2

+
(
mW,ZΓW,Z

q2

)2
, (2.5)

Re[PW,Z ] =
1− m2

W,Z

q2(
1− m2

W,Z

q2

)2

+
(
mW,ZΓW,Z

q2

)2
. (2.6)

Using properties of traces [8] and the commutation relations of γ5 (see Appendix C) one

reduces Eqs.(2.2)-(2.4) to

Lµν
V V ff ′

(q2, k1, k2) = 4

(
4πα

q2

)2
[(
kµ1k

ν
2 + kν1k

µ
2 − g

µν(k1 · k2)
)
×
(
QfQf ′

− vlRe[PZ ](vfQf ′ + vf ′Qf ) + (v2
l + a2

l )|PZ |2vfvf ′
)

− iεµνρσk1ρk2σalRe[PZ ](vfQf ′ + vf ′Qf − 2vl
vfvf ′

1− m2
Z
q2

)

]
,

(2.7)

Lµν
AAff ′

(q2, k1, k2) = 4

(
4πα

q2

)2

afaf ′ |PZ |
2

[
(v2
l + a2

l )
(
kµ1k

ν
2 + kν1k

µ
2 − g

µν(k1 · k2)
)

+ 2ivlalε
µνρσk1ρk2σ

]
,

(2.8)

Lµν
AV ff ′

(q2, k1, k2) = Lµν
V Af ′f

(q2, k1, k2) = 4

(
4πα

q2

)2

(−af )Re[PZ ]

[(
−Qf ′vl +

vf ′ (v
2
l + a2

l )

1− m2
Z
q2

)

×
(
kµ1k

ν
2 + kν1k

µ
2 − g

µν(k1 · k2)
)
− ik1ρk2σε

µνρσ
(
Qf ′al − 2vf ′

vlal

1− m2
Z
q2

)]
.

(2.9)

In a similar procedure as described for the photon case these can be used to calculate the

differential cross sections in the case of Z/γ∗ [6]. Here, the coefficients A3, A4, A7 in Eq.

(1.28) no longer vanish, but instead receive contributions from AV , V A and AA terms.
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By introducing the following notation:

Kµν = kµ1k
ν
2 + kν1k

µ
2 − g

µν(k1 · k2),

ε(µ, ν, k1, k2) = k1ρk2σε
µνρσ,

L+
V V ff ′ = QfQf ′ − vlRe[PZ ](vfQf ′ + vf ′Qf ) + (v2

l + a2
l )|PZ |2vfvf ′ ,

L−V V ff ′ = alRe[PZ ](vfQf ′ + vf ′Qf )− 2vlal|PZ |2vfvf ′ ,

L+
AAff ′ = (v2

l + a2
l )|PZ |2afaf ′ , (2.10)

L−AAff ′ = −2vlal|PZ |2afaf ′ ,

L+
AV ff ′ = L+

V Af ′f = vlRe[PZ ]afQf ′ − (v2
l + a2

l )|PZ |2afvf ′ ,

L−AV ff ′ = L−V Af ′f = −alRe[PZ ]afQf ′ + 2vlal|PZ |2afvf ′ ,

the Eqs.(2.7)-(2.9) simplify into a straightforward form:

Lµνhh′ff ′(q
2, k1, k2) = 4

(
4πα

q2

)2 (
KµνL+

hh′ff ′ − iε(µ, ν, k1, k2)L−hh′ff ′
)
. (2.11)

Here ± denotes the parity of the coefficient under µ↔ ν interchange. Note that in the limit

of a = 0 and v = 0, the pure γ case is restored, as in Eq. (1.10). Furthermore, no assumptions

have been made about the form of Eq. (2.11), or its arguments k1, k2, q, hence this form is

manifestly covariant.

2.2 The leptonic tensor for W± exchange

The W± boson case differs from the two previous processes because it induces a flavour change

for the quarks. Hence, moving all EW couplings and propagators from the hadronic current

into the leptonic part, one gets a two-flavour-indexed leptonic current

Jµ`ud(q
2, k1, k2) =

4παVud

8q2 sin2 θw
ū(k1)γµ(1− γ5)d(k2)PW (q2). (2.12)

Here, e
sin θw

= gw and e2 = 4πα were used and Vud is an element of CKM matrix for an u→ d

type transition. Evidently, this is composed of two terms forming the V − A structure of

weak interaction with a common factor pulled out explicitly:

Jµ`ud(q
2, k1, k2) =

παVud

2q2 sin2 θw
(JµV − J

µ
A). (2.13)

In order to form the leptonic tensor, this equation needs to be squared like in the Z/γ∗ cases.

This is obtained, as given in Appendix C, in the special case where couplings are taken to

be a = 1, v = 1 and Qf = 0 (note that the result is not exactly the limit, due to a different
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prefactor):

Lµνudu′d′(q
2, k1, k2) =

(
πα

2q2 sin2 θw

)2

(Jµ†V JµV + Jµ†A JµA − J
µ†
V JµA − J

µ†
A JµV ),

= 2

(
πα

q2 sin2 θw

)2 V ∗udVu′d′(
1− m2

W
q2

)2
+

mW2Γ2
W

q4

(Kµν − iε(µ, ν, k1, k2)), (2.14)

= 2

(
πα

q2 sin2 θw

)2

V ∗udVu′d′ |PW |2(Kµν − iε(µ, ν, k1, k2)),

(2.15)

where |PW |2is given by Eq. (2.5). Just like in the Z/γ/ boson case this can be, although

trivially, simplified to a similar form like Eq. (2.11). Introducing the following notation

L+
V V udu′d′ = L+

AAudu′d′ =

(
1

8 sin2 θw

)2

V ∗udVu′d′ |PW |2 (2.16)

L−V Audu′d′ = L−AV udu′d′ =

(
1

8 sin2 θw

)2

V ∗udVu′d′ |PW |2 (2.17)

L+
V Audu′d′ = L+

AV udu′d′ = L−V V udu′d′ = L−AAudu′d′ = 0 (2.18)

yields the exact same form as Eq. (2.11) up to interchange of indices f ↔ ud:

Lµνhh′udu′d′(q
2, k1, k2) = 4

(
4πα

q2

)2 (
KµνL+

hh′udu′d′ − iε(µ, ν, k1, k2)L−hh′udu′d′
)

(2.19)

2.3 The hadronic tensor for proton collisions

By covariance, current conservation qµHµν = 0 and the CP properties of QCD, the hadronic

tensor Hµν for a Drell-Yan process can be decomposed into nine form factors as [6]:

Hµν = H1g̃µν +H2P̃a,µP̃a,ν +H3P̃b,µP̃b,ν +H4

(
P̃a,µP̃b,ν + P̃b,µP̃a,ν

)
+H5

(
P̃a,µP̃b,ν − P̃b,µP̃a,ν

)
+ iH6ε(µ, ν, Pa, q) + iH7ε(µ, ν, Pb, q)

+H8

(
P̃a,µε(ν, Pa, Pb, q) + µ↔ ν

)
+H9

(
P̃b,µε(ν, Pa, Pb, q) + µ↔ ν

)
,

(2.20)

where g̃µν = gµν − qµqν
q2

and P̃a/b,µ = g̃µνP
ν
a/b. The tensor elements such as H11 are not frame

independent, however, the hadronic form factors H1−9 are. To get the structure of tensor

elements, expressed as Eq. (1.15), in terms of these frame-independent form factors one needs

to know the momentum of the protons in the lepton COM frame. However, that is not trivial

to determine. In the lab frame, the colliding proton momenta can be written as

Pµa = (ECM/2, 0, 0, ECM/2)T Pµb = (ECM/2, 0, 0,−ECM/2)T (2.21)

where ECM is their center of mass energy. The exchanged boson momentum is then

qµ = (q0, q1, q2, q3) (2.22)
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Boosting into the CS frame (see Appendix D), one then has such relations between proton

momenta PCS
a,b in the CS frame:

Pµa = e−Y Pµ P 0,1,2
b = eY P 0,1,2 P 3

b = −eY P 3, (2.23)

where Y = 1
2 ln q0+q3

q0−q3 is the rapidity of the proton and Pµ is defined as

Pµ ≡ ECM/2


√
Q2+(q1)2

Q

− q1
Q

0

1

 , (2.24)

Note that here a rotation was made, such that ~qT = q1~ex. At any point, full generality can

be restored by changing P1 → PT .

Returning to the decomposition of Hµν given in Eq. (2.20), one can note that in the CS

frame we always have g̃0ν = g̃µ0 = 0 and g̃ij = −δij . Hence, noting that Pa,2=Pb,2 = 0, some

simplifications may be applied:

P̃i = −Pi, for i=1,3, (2.25)

P̃i = 0, for i=0,2, (2.26)

ε(µ, ν, P, q) = 0, if µ = ν or µ, ν 6= 2, (2.27)

ε(µ, Pa, Pb, q) = 0, if µ, ν 6= 2. (2.28)

Using the definitions of Eq. (2.23), this finally yields such form for all the elements of Hµν in

the CS frame:

H11 = −H1 + (P1)2
(
H2e

−2Y +H3e
2Y + 2H4

)
, (2.29)

H22 = −H1, (2.30)

H33 = −H1 + (P3)2
(
H2e

−2Y +H3e
2Y − 2H4

)
, (2.31)

H13 = P1P3(H2e
−2Y −H3e

2Y − 2iH5), (2.32)

H12 = 2Q(P1)2P3(H8e
−2Y +H9e

2Y ) + iQP3(H7e
2Y −H6e

−2Y ), (2.33)

H32 = 2QP1(P3)2(H8e
−2Y −H9e

2Y ) + iQP1(H7e
2Y +H6e

−2Y ), (2.34)

where other off-diagonal elements are related to the ones given by H∗ij = Hji. Notice that at

tree level, i.e. ~qT = 0, all terms with P1 vanish, making the hadronic tensor much simpler.

However, some terms, such as the second one in H33 will not vanish. If Lam-Tung relation,

given as [6]

H1 =
1

2
Hµ

µ, (2.35)

is to be restored as qT → 0, there must be an intrinsic reason in the specific combination

H2e
−2Y +H3e

2Y − 2H4 forcing it to vanish.

– 11 –



3 Differential cross section for W± decays at tree level

3.1 Light cone coordinates

When working in the lab frame, the variables that are naturally simple to measure are the

rapidities of particles and their transverse momenta. Hence, it is useful to parametrise coor-

dinates as the so-called light-cone (LC) coordinates [12]:

kµ =
k−

2
nµ +

k+

2
n̄µ + kµ⊥, (3.1)

where vectors nµ and n̄µ are defined as any 4-vector pair to satisfy

n2 = n̄2 = 0, (3.2)

nn̄ = 2. (3.3)

For proton-proton collisions ~n = −~̄n = ~ez is chosen, which implies

k− = k0 + k3, (3.4)

k+ = k0 − k3, (3.5)

kµ⊥ = (0, k1, k2, 0)T . (3.6)

For experimental applications it is useful to have the cross section expressed in terms of

transverse momentum of one of the leptons pT`, rapidities of the colliding protons Y , and

the total energy of the intermediate boson Q. These variables are easily accessible in LC

coordinates.

Calculating the cross section for a vector boson decay in the lab frame again requires the

computation of LµνHµν . For experimental applications it is very interesting to have the cross

section expressed in terms of rapidities of the colliding protons Y , transverse momentum of

one of the leptons pT` and the total energy of the intermediate boson Q and most of these

variables are directly accessible in LC coordinates. To calculate various contractions of tensors

in LµνHµν one may find it simpler to decompose the structures in terms of LC variables. Any

tensor, can be rewritten as

Tµν =
1

4

(
T++n̄µn̄ν + T−−nµnν + T+−n̄µnν + T−+nµn̄ν

)
+

1

2

(
T+⊥,ν n̄µ + T⊥+,µn̄ν + T−⊥,νnµ + T⊥−,µnν

)
+ T⊥⊥,µν .

(3.7)

3.2 Tree level decay of W

One of the ways to obtain the cross section differential in certain variables is to integrate over

the phase space in a given order and introduce a measurement function, as done previously

in Eq. (1.12). Consider the differential cross section expressed in such a way that

dσ

d4qdp+
l dp−l

=

∫
d4k1d4k2

(2π)2
δ(k2

1)δ(k2
2)δ4(q − k1 − k2)HµνL

µνM(p+
` , p

−
` ), (3.8)
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where p±` stands for light cone momenta of one of the leptons. This means that the other lep-

ton has to be fully integrated over. In the case of W decay this is preferred, as experimentally

the neutrino is not detected. Choosing to integrate over all of the second lepton 4-momenta

yields:
dσ

d4qdp+
` dp−`

=

∫
d4k1

(2π)2
δ(k2

1)δ(k2
2)M(p+

` , p
−
` ))HµνL

µν , (3.9)

and a constraint kµ2 = qµ − kµ1 . The on-shell δ function for k1 can be integrated trivially by

going to LC variables d4k = 1
2dk+dk−d2~kT :

dσ

d4qdp+
` dp−`

=
1

4

∫
dk+

1 dk−1 d2~k1T

(2π)2
δ(k+

1 k
−
1 − |k1T |2)δ(k+

2 k
−
2 − |k2T |2)M(p+

` , p
−
` ))HµνL

µν

=
1

8

∫
dk+

1 dk−1 d|k1T |2dφ

(2π)2
δ(k+

1 k
−
1 − |k1T |2)δ(k+

2 k
−
2 − |k2T |2)M(p+

` , p
−
` ))HµνL

µν

=

∫
dk+

1 dk−1 dφ

32π2
δ(k+

2 k
−
2 − |k2T |2)M(p+

` , p
−
` ))HµνL

µν ,

(3.10)

giving another constraint k+
1 k
−
1 = |k1T |2. Note that, at this point, the remaining δ is just

shorthand for writing δ(k+
2 k
−
2 −|k2T |2) = δ((q+−k+

1 )(q−−k−1 )−k+
1 k
−
1 −|qT |2+2|qT ||k1T | cosφ).

The measurement functions, however, are now trivial in terms of k±1 and integrating over

them simply swaps with the variables p±l . Hence the final result is given by

dσ

d4qdp+
` dp−`

=

∫
dφ

32π2
δ(k+

2 k
−
2 − |k2T |2))HµνL

µν , (3.11)

or equivalently

dσ

dq+dq−dp+
` dp−`

=

∫
d2~qTdφ

64π2
δ(k+

2 k
−
2 − |k2T |2))HµνL

µν . (3.12)

For the hadronic tensor this holds [7] at tree level:∫
d2~qTH

µν
hh′qq′(q

2, Y, ~q2
T ) = hµνhh′qq′fq(xa)fq′(xb) + hµνhh′q′qfq′(xa)fq(xb) +O(αs), (3.13)

where Y is the proton rapidity, xa,b are the Bjorken x, fq - parton distribution functions

(PDFs) and hµνhh′qq′ is the hard function, given as:

hµνV V ff ′qq′ = hµνAAff ′qq′ = − 1

2Nc

(
gµν − 1

2
(nµn̄ν + nµn̄ν)

)
δfqδf ′q′ +O(αs),

hµνV Aff ′qq′ = hµνAV ff ′qq′ =
1

4Nc

(
iεµνλκnλn̄κ

)
δfqδf ′q′ +O(αs),

(3.14)

where Nc is the number of quark colors and only leading order terms are considered. Essen-

tially, since at this order integration over qT becomes trivial, and in the no-recoil case ~qT = 0,
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one can write Eq. (3.12) by using Eqs.(3.13) and (3.14) as:

dσ

dq+dq−dp+
` dp−`

=

∫
d2~qTdφ

64π2
δ((q+ − p+

` )(q− − p−` )− p+
` p
−
` − |qT |

2 + 2|qT ||pT`| cosφ)HµνL
µν

~qT=0
=

∑
hh′

∫
dφ

32π2
δ((q+ − p+

` )(q− − p−` )− p+
` p
−
` )

×
(
hhh′ud,µνfu(xa)fd̄(xb) + hhh′du,µνfd̄(xa)fu(xb)

)
Lµνhh′ .

(3.15)

Light cone coordinates are convenient here because for massless particles one may express

p±` = |pT`|e∓η, where η is the rapidity. Hence, trading ± variables dq+dq−dp+
` dp−` for

Q,Y, pT`, η gives

dσ

dQ2dY dp2
T`dη

=
∑
hh′

∫
dφ

32π
δ((Qe−Y − pT`e−η)(QeY − pT`eη)− p2

T`)HµνL
µν

×
(
hhh′ud,µνfu(xa)fd̄(xb) + hhh′du,µνfd̄(xa)fu(xb)

)
Lµνhh′

(3.16)

This allows us to freely integrate over the φ angle, leaving

dσ

dQ2dY dp2
T`dη

=
1

16π

∑
hh′

δ(Q2 − 2QpT` cosh(Y − η)) (3.17)

×
(
hhh′ud,µνfu(xa)fd̄(xb) + hhh′du,µνfd̄(xa)fu(xb)

)
Lµνhh′ . (3.18)

where the Dirac δ was expanded by multiplying out the brackets. Another simplification is

to integrate over the δ function with respect to η, which yields

dσ

dQ2dY dp2
T`

=
1

16π

∑
hh′

(
hhh′ud,µνfu(xa)fd̄(xb) + hhh′du,µνfd̄(xa)fu(xb)

)
Lµνhh′

2Qp`T sinh(Y − η)
, (3.19)

and a constraint for η, being now defined as

η = Y − cosh−1 Q

2pT`
. (3.20)

Evidently this also requires that pT` <
Q
2 , i.e. the transverse momentum of leptons may only

take certain values limited by this relation. Note that this only holds true at leading-order,

i.e., when ~qT = 0. Introducing Θ as the Heaviside function and using the leptonic tensor for

the W case from Eq. (2.14) yields

dσ

dQ2dY dp2
lT

=
1

16π

∑
hh′

(
(hhh′ud,µνfu(xa)fd̄(xb) + u↔ d̄)L+

hh′udK
µν

2QpT` sinh(Y − η)

− i
(hhh′ud,µνfu(xa)fd̄(xb) + u↔ d̄)L−hh′udε(µ, νk1, k2)

2QpT` sinh(Y − η)

)
Θ(
Q

2
− pT`). (3.21)
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Since, for the W case, all helicity combinations produce the same prefactor, and due to

|Vud|2 = |Vdu|2, all the PDFs have the same common factor here, up to a sign. Hence,

summing up all the products (see Appendix E) of hard functions and leptonic tensor as given

by (3.14) and (2.14) respectively, yields

dσ

dQ2dY dp2
T`

=
1

16π

fu(xa)fd̄(xb) + u↔ d̄

2QpT` sinh(Y − η)
Θ(
Q

2
− pT`)

× 2
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2 (
pT`Qe

Y−η − p2
T`

)
.

(3.22)

Putting in the constraint pT` <
Q
2 in the form of η = Y − cosh−1 Q

2pT`
, one arrives at the

differential following cross section:

dσ

dQ2dY dp2
T`

=
1

16π

fu(xa)fd̄(xb) + u↔ d̄

QpT` sinh(cosh−1 Q
2pT`

)
Θ(
Q

2
− pT`)

× 2
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2(
pT`Qe

cosh−1 Q
2pT` − p2

T`

)
=

1

16πE2
CM

fu(xa)fd̄(xb) + u↔ d̄

Q
√
Q2 − 4p2

T`

Θ(
Q

2
− pT`)

× 2
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2(
pT`Qe

cosh−1 Q
2pT` − p2

T`

)
(3.23)

An intuitive way to check this result is to plot dσ/dpT l. Hence, integrating the previous result

over two of the three variables, produces the following equation form:

dσ

dpT`
=

∫
dQdY · 4pT`

1

16πE2
CM

fu(xa)fd̄(xb) + u↔ d̄√
Q2 − 4p2

lT

Θ(
Q

2
− pT`)

× 2
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2(
pT`Qe

cosh−1 Q
2pT` − p2

T`

) (3.24)

Note that xa,b can be related to Q and Y as xa,b = Q
ECM

e±Y . Furthermore, to get the cross

section for annihilating quarks of all flavours, this needs to be summed up for all u and d

indices, where u = {u, c} and d = {d, s, b}.
The sketch of this graph agrees with the expected behaviour (see Fig. 4 and Fig. 5).

Furthermore, one can see that in the narrow width approximation (NWA), i.e. ΓW → 0 (see

Appendix F), there is a sharp cut-off at mW /2, which comes from the constraint on pT`.

Nonetheless, for a finite width, some spill over happens into the pT` > mW /2 region. The

PDFs used for this calculation were provided by LHAPDF [13] and interfaced by SCETlib

[14].

However, when comparing the graph directly with the points from Monte Carlo-based

fixed order code MCFM 8.2 [15], some disagreement can be clearly seen (see Fig. 6). One
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Figure 4. Sketch of dσ
dpT`

as given by Eq. (3.24). A sharp cut-off is seen at mW /2 in NWA case, but

some spill over happens in the finite width case (see Fig. 5).

Figure 5. Sketch of differential sp[ectrum dσ
dpT`

as given by Eq. (3.24), zoomed in on finite width

graph. Spill over due to finite width can clearly be seen.

of the causes, may be binning artifacts. Monte Carlo points correspond to binned points

from 2 GeV wide regions, whereas the graphs produced here were integrated in the whole

region. Nonetheless, this does not explain the mismatch in low-pT` region, where any binning

artifacts should be irrelevant. Furthermore, integrating Eq. (3.24) over the same 2 GeV wide

bins and plotting bin by bin does not reproduce the Monte Carlo result (see Fig. 7). Finally,

inefficient integration over the point close to the fall-off (pT` = mW /2) may also produce a

mismatch, however, again this does not provide a good explanation for the disagreement in
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the lower pT` region. Further analysis of the approach described in Section 3.2 will be needed,

however, due to time constraints of the project will not be presented here.

Figure 6. Monte Carlo data compared with the differential spectrum dσ
dpT`

given by Eq. (3.24). A

mismatch can be seen.

Figure 7. Monte Carlo data compared with the points from 2 GeV wide integrated regions of dσ
dpT`

given by Eq. (3.24). The selected bins were centered at MCFM data points. A mismatch can be seen.
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4 Summary and Outlook

The W boson mass is a very important parameter in the Standard Model that is currently

challenging to directly measure in collider experiments. One of the limiting factors is the

treatment of the W decay in the leptonic center-of-mass frame, where the momenta of both

leptons must be known for efficient reconstruction of the frame. In this project, the founda-

tions for a treatment of the decay in the lab frame were analysed.

The Drell-Yan process of two quarks annihilating into an intermediate boson and its

subsequent decay into two leptons was treated by encoding the quark annihilation process in

the hadronic tensor, and the decay process in the leptonic tensor. The most general leptonic

tensors were calculated for the Z/γ and W± decay cases. We show that they may be written

in a similar form by decomposing them in terms of different parities. In addition, the elements

of the hadronic tensor in the center-of-mass frame of leptons were expressed in terms of the

coefficients of a general Lorentz decomposition of the hadronic tensor.

The produced leptonic tensors may be used to calculate the cross section at any order.

However, due to time constraints only the leading order was considered. The calculation of

the leading order differential cross section of the transverse spectrum of the lepton momenta
dσ

dpT`
produced the correct qualitative behaviour of the function, explicitly showing a fall-off

at mW /2, which was very sharp in the case of narrow width approximation. Nonetheless,

some spill over to the pT` > mW /2 in the finite width case could be seen, as expected. The

data points from a Monte Carlo simulation at leading-order showed some deviations from the

expected distributions here, however. Further research is needed to clarify why the results

produced here show disagreement with the Monte Carlo data generated by MCFM 8.2 code.
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Appendices

A Expressing unpolarised cross section in spherical harmonics

Consider Eqs.(1.16)-(1.18). Rewriting cos 2φ = 1 − 2 sin2 φ = 2 cos2 φ − 1 and dropping the

common factor in front of each term, one can write:

(1− sin2 θ cos2 φ)H11

= (1− sin2 θ · 1

2
(cos 2φ+ 1))H11

= (1− 1

2
sin2 θ cos 2φ− 1

2
sin2 θ)H11

= (1− 1

2
sin2 θ cos 2φ− 1

2
(1− cos2 θ))H11

= (1− 1

2
sin2 θ cos 2φ− 1

2
(1− cos2 θ))H11

=
1

2
(1 + cos2 θ − sin2 θ cos 2φ)H11

(A.1)

and

(1− sin2 θ sin2 φ)H22 =
1

2
(1 + cos2 θ + sin2 θ cos 2φ)H22 (A.2)

(1− cos2 θ)H33 =
1

2
(2 + cos2 θ − 3 cos2 θ)H33, (A.3)

which expresses the the coefficients in Eqs. (1.16)-(1.18) in terms of spherical harmonics.

B Expressing HµνL
µν in terms of angular coefficients

Consider Eq. (1.25). One can take out the unpolarised cross section in Eq. (1.27) as the

common factor to yield:

L11H11 + L22H22 + L33H33 =

=
8πα2

3q2
QfQf ′(H11 +H22 +H33)

3

16π

(
(1 + cos2 θ)

+ (1− 3 cos2 θ)
H33

H11 +H22 +H33

+ sin2 θ cos 2φ
H22 −H11

H11 +H22 +H33

)
.

(B.1)

Which reproduces exactly Eq. (1.29). Consider Eqs.(1.19)-(1.24). Summing them up yields:

L12H12 + L21H21 + L13H13 + L31H31 + L23H23 + L32H32 = (B.2)

− α
2

2q2
QfQf ′

(
sin2 θ sin 2φH21 + sin2 θ sin 2φH12

+ sin 2θ sinφH23 + sin 2θ sinφH32

+ sin 2θ cosφH13 + sin 2θ cosφH31

)
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Again taking out the unpolarised cross section as the common prefactor:

=
8πα2

3q2
QfQf ′(H11 +H22 +H33)

3

16π

(
sin2 θ sin 2φ

−(H12 +H21)

H11 +H22 +H33
(B.3)

+ sin 2θ sinφ
−(H23 +H32)

H11 +H22 +H33

+ sin 2θ cosφ
−(H13 +H31)

H11 +H22 +H33

)
Given the set of angular coefficients in Eq. (1.28), one can immediatelly sum Eqs. (B.1) and

(B.3) to get Eq. (1.30).

C Trace Evaluations for Z/γ leptonic tensor

As in Eq. (1.10), one can reduce the rather complicated structures of Eqs.(2.2)-(2.4) to the

evaluation of traces. In the structures, four types of traces will appear:∑
spins

[v̄(k1)γµu(k2)][ū(k2)γνv(k1)] = Tr[ /k1γ
µ /k2γ

ν ] (C.1)

∑
spins

[v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γνv(k1)] = vlTr[ /k1γ
µ /k2γ

ν ]− alTr[ /k1γ
µγ5 /k2γ

ν ]

(C.2)∑
spins

[v̄(k1)γµu(k2)][ū(k2)γν(vl − alγ5)v(k1)] = vlTr[ /k1γ
µ /k2γ

ν ]− alTr[ /k1γ
µ /k2γ

νγ5]

(C.3)∑
spins

[v̄(k1)γµ(vl − alγ5)u(k2)][ū(k2)γν(vl − alγ5)v(k1)] = v2
l Tr[ /k1γ

µ /k2γ
ν ] + a2

l Tr[ /k1γ
µγ5 /k2γ

νγ5]

− vlal
(
Tr[ /k1γ

µ /k2γ
νγ5] + Tr[ /k1γ

µγ5 /k2γ
ν ]
)

(C.4)

By using the commutation properties of γ5 and Tr[γ5γµγνγργσ] = 4iεµνρσ [8] all the traces

can be evaluated to yield:

Tr[ /k1γ
µ /k2γ

ν ] = 4(kµ1k
ν
2 + kν1k

µ
2 − g

µν(k1 · k2)) (C.5)

Tr[ /k1γ
µγ5 /k2γ

ν ] = 4ik1ρk2σε
ρµσν = −4ik1ρk2σε

µνρσ (C.6)

Tr[ /k1γ
µ /k2γ

νγ5] = −4ik1ρk2σε
µνρσ (C.7)

Tr[ /k1γ
µγ5 /k2γ

νγ5] = 4(kµ1k
ν
2 + kν1k

µ
2 − g

µν(k1 · k2)). (C.8)

Using the relations in Eq. (C.5)-(C.8) with Eqs.(2.2)-(2.4) will yield the Eqs.(2.7)-(2.9).

D Boosting into the Collins-Soper frame

Consider two protons with momenta given in Eq. (2.21) and a boson with momentum given

in Eq. (2.22). It is always possible to do such a rotation so that one of the spatial components
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of qµ would vanish. In this case, q2 = 0 is chosen. To express Eq. (2.21) in the leptonic COM

frame (CS frame [9]), two Lorentz boosts are required: a longitudinal and a transverse one.

In this particular frame, the intermediate boson must be at rest, so that

qµ
′ = (q0

′, 0, 0, 0). (D.1)

Applying a boost in the z direction with velocity βL = q3

q0
and again in x direction with

velocity βT = q1√
(q0)2−(q3)2

, one arrives at

qµ′ = (
√

(q0)2 − (q1)2 − (q3)2, 0, 0, 0) = (Q, 0, 0, 0). (D.2)

Hence, applying the same boosts to Eq. (2.21) will yield an expression for the proton mo-

mentum in the same frame. Applying the first boost in the z direction for Pa:

P lab
a =


ECM/2

0

0

ECM/2

→


γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ



ECM/2

0

0

ECM/2



= ECM/2


√

1−β
1+β

0

0√
1−β
1+β

 = e−YECM/2


1

0

0

1

 ,

(D.3)

where Y = 1
2 ln 1+β

1−β = 1
2 ln q3+q0

q3−q0 is the rapidity of the protons. Applying the second boost in

the x direction yields

e−YECM/2


1

0

0

1

→ e−YECM/2


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




1

0

0

1



= e−YECM/2


√
Q2+(q1)2

Q

− q1
Q

0

1

 ≡ PCS
a .

(D.4)

Similarly, for the other proton momentum Pb one arrives at

P lab
b =


ECM/2

0

0

ECM/2

→ eYECM/2


√
Q2+(q1)2

Q

− q1
Q

0

−1

 ≡ PCS
b (D.5)
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The two momenta PCS
a,b can still be related. Defining

Pµ ≡ ECM/2


√
Q2+(q1)2

Q

− q1
Q

0

1

 , (D.6)

one then has such relations between PCS
a,b :

Pµa = e−Y Pµ P 0,1,2
b = eY P 0,1,2 P 3

b = −eY P 3. (D.7)

Using these to construct the hadronic form factors in the CS frame explicitly from Eq. (2.20):

H11 = −H1 +H2(Pa,1)2 +H3(Pb,1)2 + 2H4Pa,1Pb,1,

H22 = −H1,

H33 = −H1 +H2(Pa,3)2 +H3(Pb,3)2 + 2H4Pa,3Pb,3,

H13 = H2(Pa,1Pa,3) +H3(Pb,1Pb,3) +H4(Pa,1Pb,3 + Pb,1Pa,3),

+ iH5(Pa,1Pb,3 − Pb,1Pa,3)

H12 = −iH6Pa,3Q− iH7Pb,3Q+H8

(
− Pa,1Q(Pa,1Pb,3 − Pa,3Pb,1)

)
,

+H9

(
− Pb,1Q(Pa,1Pb,3 − Pa,3Pb,1)

)
H32 = iH6Pa,1Q+ iH7Pb,1Q+H8

(
− Pa,3Q(Pa,1Pb,3 − Pa,3Pb,1)

)
,

+H9

(
− Pb,3Q(Pa,1Pb,3 − Pa,3Pb,1)

)
,

(D.8)

where applying the simplifications given in Eqs.(D.7) allows to write the hadronic form factors

as Eqs.(2.29)-(2.34).

E W Lepton tensor contracted with the leading order hard functions

Looking at the products of hard functions given by Eqs.(3.14) and the decomposed leptonic

tensor of W decay given by Eq. (2.19), one gets:

hµνAAudL
+
AAudK

µν = hµνV V udL
+
V V udK

µν = − 1

2Nc

(
gµν − 1

2
(nµn̄ν + nµn̄ν)

)
LV V udK

µν

= −|Vud|
2|PW |2

2Nc

(
πα

q2 sin2 θw

)2
(

2(k1 · k2)− 4(k1 · k2)

− 1

2
(2k−1 k

+
2 + 2k+

1 k
−
2 − 4(k1 · k2))

)

=
|Vud|2|PW |2

2Nc

(
πα

q2 sin2 θw

)2
(
k−1 k

+
2 + k+

1 k
−
2

)

=
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2
(
pT`Qe

Y−η + pT`Qe
−Y+η − 2p2

T l

2

)
,

(E.1)
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and

hµνAV udL
−
AV udiε(µ, ν, k1, k2) = hµνV AudL

−
V Audiε(µ, ν, k1, k2)

= i
|Vud|2|PW |2

4Nc

(
πα

q2 sin2 θw

)2

εµνλκn
λn̄κεµνρσk1ρk2σ

= i
|Vud|2|PW |2

4Nc

(
πα

q2 sin2 θw

)2

2(δρλδ
σ
κ − δσλδρκ)nλn̄κk1ρk2σ

= i
|Vud|2|PW |2

2Nc

(
πα

q2 sin2 θw

)2

(nρn̄σ − nσn̄ρ)k1ρk2σ

= i
|Vud|2|PW |2

2Nc

(
πα

q2 sin2 θw

)2

(k+
1 k
−
2 − k

−
1 k

+
2 )

= i
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2
(
pT`Qe

Y−η − pT`Qe−Y+η

2

)

(E.2)

Note that here k±2 = q± − k± = q± − p±` and k1T = k2T = pT` were used in both expressions.

Summing up the terms from Eqs.(E.2) with (E.1):

(hµνAAudL
+
AAud + hµνV V udL

+
V V ud)K

µν − i(hµνAV udL
−
AV ud + hµνV AudL

−
V Aud)ε(µ, ν, k1, k2)

= 2
|Vud|2|PW |2

Nc

(
πα

q2 sin2 θw

)2 (
pT`Qe

−Y+η − p2
T`

) (E.3)

Using these relations, Eq. (3.21) can be expressed as Eq. (3.22).

F Narrow width approximation

Consider the limit representation of the Dirac Delta function, as a Lorentzian going to zero

δ(x) =
2

π
lim
ε→0

ε

x2 + ε2
. (F.1)

In the Narrow Width Approximation (NWA), one has to consider vanishing width, i.e. Γ→ 0.

The propagator given in Eq. (2.5) can be written as:

|PW |2 =
1(

1− m2
W
q2

)2
+
(
mWΓW
Q2

)2
=

Q4

(Q2 −m2
W )2 + (mWΓW )2

. (F.2)

Using Eq. (F.1), in the limit of NWA this then becomes:

lim
Γ→0
|PW |2 =

π

2

Q4

(mWΓW )
δ(Q2 −m2

W ) =
π

2

Q4

(m2
WΓW )

δ(Q−mW ). (F.3)

Consider a cross section differential only in Q:

dσ

dQ
= A(Q)|PW |2, (F.4)
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where A(Q) is a function dependent only on the variable Q. Hence, in the NWA limit:

dσNWA

dQ
= A(mW )× π

2

Q4

(m2
WΓW )

δ(Q−mW )

=

(
dσ

dQ

1

|PW |2

) ∣∣∣∣∣
Q=mW

× π

2

Q4

(m2
WΓW )

δ(Q−mW )

=

(
dσ

dQ

(Q2 −m2
W )2 + (mWΓW )2

Q4

) ∣∣∣∣∣
Q=mW

× π

2

Q4

(m2
WΓW )

δ(Q−mW )

=
dσ

dQ

∣∣∣∣∣
Q=mW

m2
WΓ2

W ×
π

2

1

(m2
WΓW )

δ(Q−mW )

= δ(Q−mW )
π

2
ΓW

dσ

dQ

∣∣∣
Q=mW

(F.5)
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