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Abstract 

In this report, we present two different studies. First study is investigation of 

the accuracy of slowly varying envelope approximation (SVEA) in THz-pulse 

generation. The second study is investigation of two different schemes to see 

which one gives the strongest radiation in THz-pulse generation. These two 

schemes are continuous delay of the excitation matched to the pulse, which is 

named as CDM in the report, and discontinuous delay of the excitation 

matched to the pulse, which is named as DDM. CDM represents the TPF using 

grating and DDM represents TPF using echelon. 
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1 Introduction 

In this report, we present two different studies:  

 
In the first one, we did some investigation on how accurate slowly varying envelope 

approximation (SVEA) is for Gaussian pulses with different number of cycles. In any wave, if 

the envelope of the wave is varying much slower than the carrier wave in time, then the 

second derivative term with respect to time can be neglected in complex wave equation, 

which results a simpler version of the wave equation to handle. That’s why SVEA is often 

used. In the first study, we tried to see the relationship between the accuracy of the SVEA 

and the number of cycles of a Gaussian pulse.  

 
In the second study, we did some investigation of single-cycle pulse generation using two 

different approaches: (1) continuous delay of the excitation matched to the pulse, which is 

named as CDM in the report, and (2) discontinuous delay of the excitation matched to the 

pulse, which is named as DDM. CDM represents the TPF using grating and DDM represents 

TPF using echelon. We compared these two approaches to see which one gives stronger 

radiation. 

2 Theoretical Background 

2.1 Formulation of Field Update Equation 

𝜕2𝑉

𝜕𝑧2
−
1

𝑐2
𝜕2𝑉

𝜕𝑡2
= −

𝜌(𝑧, 𝑡)

휀
 (1) 

𝑉: scalar potential field 

𝜌: charge density 

𝜌(𝑧, 𝑡) = −𝑞 ∗ 𝛿(𝑧 − 𝑧𝑠(𝑡)) (2) 

𝑞: charge of the electron 

𝑧𝑠(𝑡): position of the electron 
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Numerical Formulation: 

For simplicity, let’s make the following substitution for now: 

𝑓𝑧 = −
𝜌(𝑧, 𝑡)

휀
 (3) 

So, (1) is equivalent to the following: 

𝜕2𝑉

𝜕𝑧2
−

1

𝑐2
𝜕2𝑉

𝜕𝑡2
= 𝑓𝑧    (4) 

Discretizing the equation, we obtain the following:  

𝑉𝑖+1
𝑛 −2𝑉𝑖

𝑛+𝑉𝑖−1
𝑛

𝑑𝑧2
−

1

𝑐2

𝑉𝑖
𝑛+1−2𝑉𝑖

𝑛+𝑉𝑖
𝑛−1

𝑑𝑡2
= 𝑓𝑧𝑖

𝑛    (5) 

𝑉𝑖
𝑛 ≜ 𝑉(𝑖 ∗ 𝑑𝑧, 𝑛 ∗ 𝑑𝑡)    (6) 

𝑓𝑧𝑖
𝑛 ≜ 𝑓𝑧(𝑖 ∗ 𝑑𝑧, 𝑛 ∗ 𝑑𝑡)    (7) 

Rearranging the terms in (5), we get the following equation: 

𝑉𝑖
𝑛+1 = 2𝑉𝑖

𝑛 − 𝑉𝑖
𝑛−1 + (

𝑐∗𝑑𝑡

𝑑𝑧
)
2

∗ (𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛 ) − (𝑐 ∗ 𝑑𝑡)2 ∗ 𝑓𝑧𝑖

𝑛    (8) 

 

 

Figure 1: FDTD discretization 

Now, we need to determine   𝑓𝑧𝑖
𝑛   term in terms of our particle trajectory.  𝑓𝑧  is a dirac-

delta function at the position of the particle.  

 

Figure 2: Dirac-Delta function representation in FDTD 
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The problem is that position of the particle might not be at the grid points (might be inside a 

cell) in our FDTD domain; however, only the grid points are defined in the computational 

domain. So, we will make an approximation described in the following figure. If particle is 

inside a cell, we will decompose the charge density into the neighbor grid points as reversely 

proportional to the distance between the particle and the grid point. 

 

Figure 3: Charge density decomposition 

Applying this approximation, we can calculate   𝑓𝑧𝑖
𝑛   for a given particle trajectory. 

2.2 Slowly Varying Envelope Approximation (SVEA) 

Slowly varying envelope approximation (SVEA) is an approximation that applies when the 

envelope of a wave varies slowly in time and/or space compared to the wave itself. This 

approximation allows us to neglect the second order derivatives in the wave equation, 

which results simpler equation to handle. To apply SVEA, we need to go to complex phasor 

representation as follows: 

𝜕2𝑉

𝜕𝑧2
−

1

𝑐2
𝜕2𝑉

𝜕𝑡2
= 𝑓𝑧    (9) 

Let’s jump to the phasor domain taking the following equalities into account: 

𝑉 = 𝑟𝑒𝑎𝑙{𝑉0𝑒
−𝑗𝑤𝑡}    (10) 

𝑓𝑧 = 𝑟𝑒𝑎𝑙{𝑓0𝑒
−𝑗𝑤𝑡}    (11) 
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Plugging (10) and (11) into (9), our complex wave equation becomes as follows: 

𝜕2

𝜕𝑧2
(𝑉0𝑒

−𝑗𝑤𝑡) −
1

𝑐2
𝜕2

𝜕𝑡2
(𝑉0𝑒

−𝑗𝑤𝑡) = 𝑓0𝑒
−𝑗𝑤𝑡  (12) 

It is equivalent to the following equation: 

𝜕2𝑉0

𝜕𝑧2
𝑒−𝑗𝑤𝑡 −

𝑒−𝑗𝑤𝑡

𝑐2
[
𝜕2𝑉0

𝜕𝑡2
− 𝑗2𝑤

𝜕𝑉0

𝜕𝑡
− 𝑤2𝑉0] = 𝑓0𝑒

−𝑗𝑤𝑡    (13) 

Simplifying the exponentials, we get the following equation: 

𝜕2𝑉0

𝜕𝑧2
−

1

𝑐2
[
𝜕2𝑉0

𝜕𝑡2
− 𝑗2𝑤

𝜕𝑉0

𝜕𝑡
− 𝑤2𝑉0] = 𝑓0   (14) 

SVEA assumption:    |
𝜕2𝑉0

𝜕𝑡2
| ≪ 2𝑤 |

𝜕𝑉0

𝜕𝑡
|       𝑎𝑛𝑑/𝑜𝑟      |

𝜕2𝑉0

𝜕𝑡2
| ≪ 𝑤2|𝑉0|  

Now let’s apply SVEA only in time as follows:  

 
(15) 

So, our approximated equation is 

𝜕2𝑉0

𝜕𝑧2
−

1

𝑐2
[−𝑗2𝑤

𝜕𝑉0

𝜕𝑡
− 𝑤2𝑉0] = 𝑓0  (16) 

Rearranging the terms, we get the following equation: 

𝜕𝑉0

𝜕𝑡
= 𝑗

𝑤

2
𝑉0 + 𝑗

𝑐2

2𝑤
(
𝜕2𝑉0

𝜕𝑧2
− 𝑓0)    (17) 

Discretizing our equation, we get the following numerical equation: 

𝑉0𝑖
𝑛+1−𝑉0𝑖

𝑛

𝑑𝑡
= 𝑗

𝑤

2
𝑉0𝑖
𝑛 + 𝑗

𝑐2

2𝑤
(
𝑉0𝑖+1
𝑛 −2𝑉0𝑖

𝑛+𝑉0𝑖−1
𝑛

𝑑𝑧2
− 𝑓0𝑖

𝑛)    (18) 

Rearranging the terms, we obtain the following update equation: 

𝑉0𝑖
𝑛+1 = 𝑉0𝑖

𝑛 + 𝑗
𝑤𝑑𝑡

2
𝑉0𝑖
𝑛 + 𝑗

𝑐2𝑑𝑡

2𝑤
(
𝑉0𝑖+1
𝑛 −2𝑉0𝑖

𝑛+𝑉0𝑖−1
𝑛

𝑑𝑧2
− 𝑓0𝑖

𝑛)    (19) 
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2.3 Absorbing Boundary Conditions 

2.3.1 Without SVEA 

2.3.1.1 Left Boundary (𝒛 = 𝟎) 

𝜕𝑉

𝜕𝑧
−
1

𝑐

𝜕𝑉

𝜕𝑡
= 0   (20) 

𝜕𝑉

𝜕𝑡
= 𝑐

𝜕𝑉

𝜕𝑧
  (21) 

Discretizing the equation, we get the following numerical equation:  

𝑉1
𝑛+1−𝑉1

𝑛

𝑑𝑡
= 𝑐

𝑉2
𝑛−𝑉1

𝑛

𝑑𝑧
  (22) 

Rearranging the terms, we obtain boundary-update equation: 

𝑉1
𝑛+1 = 𝑉1

𝑛 + (
𝑐𝑑𝑡

𝑑𝑧
) (𝑉2

𝑛 − 𝑉1
𝑛)   (23) 

2.3.1.2 Right Boundary (𝒛 = 𝒎 ∗ 𝒅𝒛) 

𝜕𝑉

𝜕𝑧
+
1

𝑐

𝜕𝑉

𝜕𝑡
= 0  (24) 

𝜕𝑉

𝜕𝑡
= −𝑐

𝜕𝑉

𝜕𝑧
  (25) 

Discretizing the equation, we get the following numerical equation:   

𝑉𝑚
𝑛+1−𝑉𝑚

𝑛

𝑑𝑡
= 𝑐

𝑉𝑚
𝑛−𝑉𝑚−1

𝑛

𝑑𝑧
  (26) 

Rearranging the terms, we obtain boundary-update equation: 

𝑉𝑚
𝑛+1 = 𝑉𝑚

𝑛 + (
𝑐𝑑𝑡

𝑑𝑧
) (𝑉𝑚

𝑛 − 𝑉𝑚−1
𝑛 )   (27) 
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2.3.2 With SVEA 

2.3.2.1 Left Boundary (𝒛 = 𝟎) 

𝜕𝑉

𝜕𝑧
−
1

𝑐

𝜕𝑉

𝜕𝑡
= 0  (28) 

𝜕𝑉

𝜕𝑡
= 𝑐

𝜕𝑉

𝜕𝑧
  (29) 

𝑉 = 𝑟𝑒𝑎𝑙{𝑉0𝑒
−𝑗𝑤𝑡}   (30) 

Plugging (30) into (29),  

𝜕

𝜕𝑡
(𝑉0𝑒

−𝑗𝑤𝑡) = 𝑐
𝜕

𝜕𝑧
(𝑉0𝑒

−𝑗𝑤𝑡)  (31) 

Taking derivatives and canceling the exponentials, 

𝜕𝑉0

𝜕𝑡
− 𝑗𝑤𝑉0 = 𝑐

𝜕𝑉0

𝜕𝑧
  (32) 

Discretizing the equation, we get the following numerical equation:  

𝑉01
𝑛+1−𝑉01

𝑛

𝑑𝑡
− 𝑗𝑤𝑉01

𝑛 = 𝑐
𝑉02
𝑛−𝑉01

𝑛

𝑑𝑧
  (33) 

Rearranging the terms, we obtain boundary-update equation: 

𝑉01
𝑛+1 = 𝑉01

𝑛 + 𝑗𝑤𝑑𝑡𝑉01
𝑛 + (

𝑐𝑑𝑡

𝑑𝑧
) (𝑉02

𝑛 − 𝑉01
𝑛)   (34) 
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2.3.2.2 Right Boundary (𝒛 = 𝒎 ∗ 𝒅𝒛) 

𝜕𝑉

𝜕𝑧
+
1

𝑐

𝜕𝑉

𝜕𝑡
= 0  (35) 

𝜕𝑉

𝜕𝑡
= −𝑐

𝜕𝑉

𝜕𝑧
  (36) 

𝑉 = 𝑟𝑒𝑎𝑙{𝑉0𝑒
−𝑗𝑤𝑡}   (37) 

Plugging (37) into (36),  

𝜕

𝜕𝑡
(𝑉0𝑒

−𝑗𝑤𝑡) = −𝑐
𝜕

𝜕𝑧
(𝑉0𝑒

−𝑗𝑤𝑡)  (38) 

Taking derivatives and canceling the exponentials, 

𝜕𝑉0

𝜕𝑡
− 𝑗𝑤𝑉0 = −𝑐

𝜕𝑉0

𝜕𝑧
  (39) 

Discretizing the equation, we get the following numerical equation:  

𝑉0𝑚
𝑛+1−𝑉0𝑚

𝑛

𝑑𝑡
− 𝑗𝑤𝑉0𝑚

𝑛 = −𝑐
𝑉0𝑚
𝑛 −𝑉0𝑚−1

𝑛

𝑑𝑧
  (40) 

Rearranging the terms, we obtain boundary-update equation: 

𝑉0𝑚
𝑛+1 = 𝑉0𝑚

𝑛 + 𝑗𝑤𝑑𝑡𝑉0𝑚
𝑛 − (

𝑐𝑑𝑡

𝑑𝑧
) (𝑉0𝑚

𝑛 − 𝑉0𝑚−1
𝑛 )  (41) 
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3 Simulations 

3.1 1st Simulation 

3.1.1 Description 

In this simulation, we simulated the following case:  

There is a particle in space, and it oscillates around the origin. Since particle oscillates, it 

radiates electric and magnetic field. We simulated this radiation solving the Maxwell’s 

equation in two different ways: In the 1st way, we solved the equations in real domain and 

discretized the resulting equation by FDTD. In the second way, we solved the same 

equations by complex phasor representation and applied slowly varying envelope 

approximation (SVEA). So, we checked how accurate the SVEA is. We checked the accuracy 

of the SVEA for different number of cycles. 

Aim: to obtain the relationship of the accuracy of SVEA and number of cycles. 

3.1.2 Formulation 

Particle Trajectory 

𝑧𝑠(𝑡) = 𝐴𝑧 ∗ sin(𝑤𝑡) ∗ 𝑒
−2 ln2

(𝑡−𝑡0)
2

𝜏2     (42) 

𝑧𝑠 : position of the particle 

2𝜋

𝑤
 : cycle duration 

𝜏  : pulse duration 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝜏

2𝜋
𝑤  
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3.1.2.1 Without SVEA 

Let’s start with (8), which is the update equation without SVEA: 

𝑉𝑖
𝑛+1  = ⏞

(8)

2𝑉𝑖
𝑛 − 𝑉𝑖

𝑛−1 + (
𝑐∗𝑑𝑡

𝑑𝑧
)
2

∗ (𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛 ) − (𝑐 ∗ 𝑑𝑡)2 ∗ 𝑓𝑧𝑖

𝑛  (43) 

We need to determine the   𝑓𝑧   in terms of the particle trajectory. 

𝑓𝑧  = ⏞
(3)

−
𝜌(𝑧,𝑡)

𝜀
 = ⏞
(2)

−
𝑞

𝜀
∗ 𝛿(𝑧 − 𝑧𝑠(𝑡))  

(44) 

Applying dirac delta approximation described in theoretical background, we can calculate   

𝑓𝑧𝑖
𝑛   as follows:   

𝑖𝑛𝑑 = 𝑓𝑙𝑜𝑜𝑟 (
𝑧𝑠(𝑛𝑑𝑡)

𝑑𝑧
)   (45) 

𝑓𝑧𝑖
𝑛 =

{
 
 

 
 −

𝑞

𝜀
∗
1

𝑑𝑧
∗ [𝑖𝑛𝑑 + 1 −

𝑧𝑠(𝑛𝑑𝑡)

𝑑𝑧
]                            𝑖𝑓     𝑖 = 𝑖𝑛𝑑       

−
𝑞

𝜀
∗
1

𝑑𝑧
∗ [

𝑧𝑠(𝑛𝑑𝑡)

𝑑𝑧
− 𝑖𝑛𝑑]                                     𝑖𝑓    𝑖 = 𝑖𝑛𝑑 + 1 

0                                                              𝑒𝑙𝑠𝑒

  (46) 

 

3.1.2.2 With SVEA 

Let’s start with (19), which is the update equation with SVEA: 

𝑉0𝑖
𝑛+1  = ⏞

(19)

𝑉0𝑖
𝑛 + 𝑗

𝑤𝑑𝑡

2
𝑉0𝑖
𝑛 + 𝑗

𝑐2𝑑𝑡

2𝑤
(
𝑉0𝑖+1
𝑛 −2𝑉0𝑖

𝑛+𝑉0𝑖−1
𝑛

𝑑𝑧2
− 𝑓0𝑖

𝑛)  (47) 

We need to determine the   𝑓0   in terms of the particle trajectory. 

𝑓𝑧  = ⏞
(11)

𝑟𝑒𝑎𝑙{𝑓0𝑒
−𝑗𝑤𝑡}   (48) 

We know that   𝑓𝑧   is determined by   𝑧𝑠(𝑡) = 𝐴𝑧 ∗ sin(𝑤𝑡) ∗ 𝑒
−2 ln2

(𝑡−𝑡0)
2

𝜏2    
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To determine  𝑓0 ,  let’s first find an imaginary particle trajectory such that: 

𝑧𝑠(𝑡) = 𝑟𝑒𝑎𝑙{𝑧𝑠𝑐(𝑡)𝑒
−𝑗𝑤𝑡}   (49) 

So, the solution is clearly as follows: 

𝑧𝑠𝑐(𝑡) = 𝐴𝑧 ∗ 𝑒
−2 ln2

(𝑡−𝑡0)
2

𝜏2 ∗ 𝑒𝜋/2    (50) 

Note: 𝑒𝜋/2   appears in  𝑧𝑠𝑐(𝑡)  for phase correction because we have   sin(𝑤𝑡)  term in   

𝑧𝑠(𝑡)  instead of   cos (𝑤𝑡).  

Then we can determine   𝑓0   as follows: 

𝑓0(𝑧, 𝑡) = −𝑞 ∗ 𝛿(𝑧 − 𝑧𝑠𝑐(𝑡))   (51) 

Numerical formulation of   𝑓0(𝑧, 𝑡):  

𝑖𝑛𝑑𝑐 = 𝑓𝑙𝑜𝑜𝑟 (
𝑧𝑠𝑐(𝑛𝑑𝑡)

𝑑𝑧
)   (52) 

𝑓0𝑖
𝑛 =

{
 
 

 
 −

𝑞

𝜀
∗
1

𝑑𝑧
∗ [𝑖𝑛𝑑𝑐 + 1 −

𝑧𝑠𝑐(𝑛𝑑𝑡)

𝑑𝑧
]                            𝑖𝑓     𝑖 = 𝑖𝑛𝑑𝑐       

−
𝑞

𝜀
∗
1

𝑑𝑧
∗ [

𝑧𝑠𝑐(𝑛𝑑𝑡)

𝑑𝑧
− 𝑖𝑛𝑑𝑐]                                     𝑖𝑓    𝑖 = 𝑖𝑛𝑑𝑐 + 1 

0                                                              𝑒𝑙𝑠𝑒

  (53) 
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3.1.3 Results 

 

Graph 1: Radiation strength vs Space coordinates after the radiated for 𝑻𝟎 seconds 

 

 

Graph 2: Radiation strength vs Space coordinates after the radiated for 𝑻𝟎 seconds 
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Graph 3: Radiation strength vs Space coordinates after the radiated for 𝑻𝟎 seconds 

 

 

Graph 4: Radiation strength vs Space coordinates after the particle radiated for 𝑻𝟎 seconds 
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Graph 5: Error of the SVEA method vs number of cycles of the Gaussian pulse 

3.1.4 Conclusion of the 1st Simulation 

Results (see Graph 5) clearly show that SVEA in time becomes more and more accurate as 

the number of cycles of the Gaussian pulse increases. So, this conclusion should be taken 

into account in single-cycle pulse generation. 
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3.2 2nd Simulation 

3.2.1 Description 

In this simulation, we did some investigation of single-cycle pulse generation using two 

different approaches: (1st) continuous delay of the excitation matched to the pulse, which is 

named as CDM in the report, and (2nd) discontinuous delay of the excitation matched to the 

pulse, which is named as DDM. CDM represents the TPF using grating and DDM represents 

TPF using echelon. 

This time we do not have a moving charged particle, instead we have energizing units in 

space and they energize the field.  

Aim: to obtain which approach, CDM or DDM, generates stronger radiation in single-cycle 

pulse generation 

3.2.2 Formulation of CDM 

 

Figure 4: Energizin Scheme for CDM 

𝜌(𝑡, 𝑧) = −𝑞 ∗ cos(𝑤𝑡 − 𝑘𝑧𝑧) ∗ 𝑒
−2 ln2

(𝑡−
𝑧
𝑐
)
2

𝜏2      
(54) 

𝜌(𝑡, 𝑧) : charge density   

𝑘𝑧 =
𝑤

𝑐
 : wave number  

2𝜋

𝑤
 : cycle duration 

𝜏  : pulse duration 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝜏

2𝜋
𝑤  
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3.2.2.1 Without SVEA 

Let’s start with (8), which is the update equation without SVEA: 

𝑉𝑖
𝑛+1  = ⏞

(8)

2𝑉𝑖
𝑛 − 𝑉𝑖

𝑛−1 + (
𝑐∗𝑑𝑡

𝑑𝑧
)
2

∗ (𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛 ) − (𝑐 ∗ 𝑑𝑡)2 ∗ 𝑓𝑧𝑖

𝑛  (55) 

We need to determine   𝑓𝑧   in terms of the energizing scheme. 

𝑓𝑧  = ⏞
(3)

−
𝜌(𝑧,𝑡)

𝜀
 = ⏞
(54)

−
𝑞

𝜀
∗ cos(𝑤𝑡 − 𝑘𝑧𝑧) ∗ 𝑒

−2 ln2
(𝑡−

𝑧
𝑐
)
2

𝜏2   (56) 

Discretizing (56),    

𝑓𝑧𝑖
𝑛 = −

𝑞

𝜀
∗ cos(𝑤𝑛𝑑𝑡 − 𝑘𝑧𝑖𝑑𝑧) ∗ 𝑒

−2 ln2
(𝑡−

𝑖𝑑𝑧
𝑐
)
2

𝜏2    
(57) 

3.2.2.2 With SVEA 

Let’s start with (19), which is the update equation with SVEA: 

𝑉0𝑖
𝑛+1  = ⏞

(19)

𝑉0𝑖
𝑛 + 𝑗

𝑤𝑑𝑡

2
𝑉0𝑖
𝑛 + 𝑗

𝑐2𝑑𝑡

2𝑤
(
𝑉0𝑖+1
𝑛 −2𝑉0𝑖

𝑛+𝑉0𝑖−1
𝑛

𝑑𝑧2
− 𝑓0𝑖

𝑛)   (58) 

We need to determine   𝑓0   in terms of our energizing scheme. To do that, let’s consider the 

following equations: 

𝑓𝑧  = ⏞
(56)

−
𝑞

𝜀
∗ cos(𝑤𝑡 − 𝑘𝑧𝑧) ∗ 𝑒

−2 ln2
(𝑡−

𝑧
𝑐
)
2

𝜏2    (59) 

𝑓𝑧  = ⏞
(11)

𝑟𝑒𝑎𝑙{𝑓0𝑒
−𝑗𝑤𝑡}    (60) 

One can trivially determine   𝑓0   as follows: 

𝑓0 = −
𝑞

𝜀
∗ 𝑒

−2 ln2
(𝑡−

𝑧
𝑐
)
2

𝜏2 ∗ 𝑒𝑗𝑘𝑧𝑧    (61) 
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Discretizing (61), we get the numerical equation as follows:  

𝑓0𝑖
𝑛 = −

𝑞

𝜀
∗ 𝑒

−2 ln2
(𝑡−

𝑖𝑑𝑧
𝑐
)
2

𝜏2 ∗ 𝑒𝑗𝑘𝑧𝑖𝑑𝑧  
(62) 

 

3.2.3 Results 

 

Graph 6: Radiation strength vs Space coordinates for CDM (𝑻𝟎 seconds after the radiation) 
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3.2.4 Formulation of DDM 

 

Figure 5: Energizing Scheme for DDM 

𝜌(𝑡, 𝑧) = −𝑞 ∗ 𝑐𝑜𝑠 (𝑤𝑡 − 𝑘𝑧 ∗ 𝑓𝑙𝑜𝑜𝑟 (
𝑧

𝐿
) ∗ 𝐿) ∗ 𝑒

−2 𝑙𝑛 2

(𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2         
(63) 

𝜌(𝑡, 𝑧) : charge density   

𝑘𝑧 =
𝑤

𝑐
 : wave number  

2𝜋

𝑤
 : cycle duration 

𝜏  : pulse duration 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝜏
2𝜋

𝑤
 
  

𝐿 = 𝑙    : energizing block length  

𝜆 = 𝑐 ∗
2𝜋

𝑤
   : wavelength 

3.2.4.1 Without SVEA 

Let’s start with (8), which is the update equation without SVEA: 

𝑉𝑖
𝑛+1  = ⏞

(8)

2𝑉𝑖
𝑛 − 𝑉𝑖

𝑛−1 + (
𝑐∗𝑑𝑡

𝑑𝑧
)
2

∗ (𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛 ) − (𝑐 ∗ 𝑑𝑡)2 ∗ 𝑓𝑧𝑖

𝑛   (64) 

We only need to change   𝑓𝑧   term as follows: 
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𝑓𝑧  = ⏞
(3)

−
𝜌(𝑧,𝑡)

𝜀
 = ⏞
(63)

−
𝑞

𝜀
∗ 𝑐𝑜𝑠 (𝑤𝑡 − 𝑘𝑧 ∗ 𝑓𝑙𝑜𝑜𝑟 (

𝑧

𝐿
) ∗ 𝐿) ∗ 𝑒

−2 𝑙𝑛 2

(𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2       
(65) 

Discretizing (65),    

𝑓𝑧𝑖
𝑛 = −

𝑞

𝜀
∗ 𝑐𝑜𝑠 (𝑤𝑛𝑑𝑡 − 𝑘𝑧 ∗ 𝑓𝑙𝑜𝑜𝑟 (

𝑖𝑑𝑧

𝐿
) ∗ 𝐿) ∗ 𝑒

−2 𝑙𝑛 2

(𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑖𝑑𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2   
(66) 

3.2.4.2 With SVEA 

Let’s start with (19), which is the update equation with SVEA: 

𝑉0𝑖
𝑛+1  = ⏞

(19)

𝑉0𝑖
𝑛 + 𝑗

𝑤𝑑𝑡

2
𝑉0𝑖
𝑛 + 𝑗

𝑐2𝑑𝑡

2𝑤
(
𝑉0𝑖+1
𝑛 −2𝑉0𝑖

𝑛+𝑉0𝑖−1
𝑛

𝑑𝑧2
− 𝑓0𝑖

𝑛)   (67) 

We need to determine   𝑓0   in terms of our energizing scheme. To do that, let’s consider the 

following equations: 

𝑓𝑧  = ⏞
(65)

−
𝑞

𝜀
∗ 𝑐𝑜𝑠 (𝑤𝑡 − 𝑘𝑧 ∗ 𝑓𝑙𝑜𝑜𝑟 (

𝑧

𝐿
) ∗ 𝐿) ∗ 𝑒

−2 𝑙𝑛 2

(𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2    
(68) 

𝑓𝑧  = ⏞
(11)

𝑟𝑒𝑎𝑙{𝑓0𝑒
−𝑗𝑤𝑡}    (69) 

One can trivially determine   𝑓0   as follows: 

𝑓0 = −
𝑞

𝜀
∗ 𝑒

−2 𝑙𝑛 2

(𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2 ∗ 𝑒𝑗𝑘𝑧∗𝑓𝑙𝑜𝑜𝑟(
𝑧

𝐿
)∗𝐿  

(70) 

Discretizing (70),  

𝑓0𝑖
𝑛 = −

𝑞

𝜀
∗ 𝑒

−2 𝑙𝑛 2

(𝑛𝑑𝑡 − 
𝑓𝑙𝑜𝑜𝑟(

𝑖𝑑𝑧
𝐿
)∗𝐿

𝑐
)

2

𝜏2 ∗ 𝑒𝑗𝑘𝑧∗𝑓𝑙𝑜𝑜𝑟(
𝑖𝑑𝑡

𝐿
)∗𝐿  

(71) 
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3.2.5 Results 

 

Graph 7: Radiation strength vs Space coordinates for DDM (𝑻𝟎 seconds after the radiation) 

3.2.6 Comparison of CDM and DDM 

 

Graph 8: Radiation strength vs Space coordinates for CDM and DDM 

(𝑻𝟎 seconds after the radiation) 
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We did some investigation to reveal what size of the energizing block unit, 𝐿,  gives the 

strongest radiation in DDM. In Graph 7,  𝐿  was set to be a wavelength. Now we varied  𝐿/𝜆   

ratio keeping  𝜆   constant to see what ratio gives the strongest radiation. 

 

Graph 9: Peak value of the radiation for DDM vs delay unit/wavelength (𝐋/𝛌) 

3.2.7 Conclusion of the 2nd Simulation 

There are several conclusions here. 

Graph 6 shows that SVEA can be used in CDM approach. 

Graph 7 shows that SVEA is a very bad approximation for DDM approach. 

Graph 8 shows that CDM is a much better approach than DDM to generate the strongest 

radiation. 

Graph 9 strongly verifies the conclusion made for Graph 8 because Graph 9 shows that 

the smaller the size of the energizing blocks chooses the stronger radiation is obtained. One 

needs to notice that when the size of the energizing blocks in DDM gets smaller and smaller, 

then DDM converges to CDM. So, Graph 9 verifies that CDM is the best version of DDM to 

generate the strongest field. 
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