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Abstract

In this report, we present two different studies. First study is investigation of
the accuracy of slowly varying envelope approximation (SVEA) in THz-pulse
generation. The second study is investigation of two different schemes to see
which one gives the strongest radiation in THz-pulse generation. These two
schemes are continuous delay of the excitation matched to the pulse, which is
named as CDM in the report, and discontinuous delay of the excitation
matched to the pulse, which is named as DDM. CDM represents the TPF using
grating and DDM represents TPF using echelon.
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1 Introduction
In this report, we present two different studies:

In the first one, we did some investigation on how accurate slowly varying envelope
approximation (SVEA) is for Gaussian pulses with different number of cycles. In any wave, if
the envelope of the wave is varying much slower than the carrier wave in time, then the
second derivative term with respect to time can be neglected in complex wave equation,
which results a simpler version of the wave equation to handle. That’s why SVEA is often
used. In the first study, we tried to see the relationship between the accuracy of the SVEA

and the number of cycles of a Gaussian pulse.

In the second study, we did some investigation of single-cycle pulse generation using two
different approaches: (1) continuous delay of the excitation matched to the pulse, which is
named as CDM in the report, and (2) discontinuous delay of the excitation matched to the
pulse, which is named as DDM. CDM represents the TPF using grating and DDM represents
TPF using echelon. We compared these two approaches to see which one gives stronger

radiation.

2 Theoretical Background

2.1 Formulation of Field Update Equation

0’V 10%V _ p(zt)
0z2 c?29t? £

(1)

V: scalar potential field

p: charge density

p(z,t) = —q * 8(z — z5(1)) (2)

q: charge of the electron

z4(t): position of the electron



Numerical Formulation:

For simplicity, let’s make the following substitution for now:

_pzt)
&

f, =

So, (1) is equivalent to the following:

0%V 1 0%v _
227 oz Iz

Discretizing the equation, we obtain the following:

n n n n+1 n n-—1
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VP2 V(i xdz,n*dt)

fr; 2 f(i * dz,n * dt)
Rearranging the terms in (5), we get the following equation:

cxdt
dz

2
Vin+1 — ZVin — Vl]’l_1 + ( ) * ( L'T-:-l — ZVin + Vl'ril) - (C * dt)z * fZ:1
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Figure 1: FDTD discretization

Now, we need to determine fz? term in terms of our particle trajectory. f, is a dirac-

delta function at the position of the particle.

dz

1/dz

Figure 2: Dirac-Delta function representation in FDTD
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The problem is that position of the particle might not be at the grid points (might be inside a
cell) in our FDTD domain; however, only the grid points are defined in the computational
domain. So, we will make an approximation described in the following figure. If particle is
inside a cell, we will decompose the charge density into the neighbor grid points as reversely

proportional to the distance between the particle and the grid point.

1
dz
a 1
a+b dz
b ‘ 1
a+b dz
. a unit b unit
ind particle  ind+1

Figure 3: Charge density decomposition

Applying this approximation, we can calculate fz? for a given particle trajectory.

2.2 Slowly Varying Envelope Approximation (SVEA)

Slowly varying envelope approximation (SVEA) is an approximation that applies when the
envelope of a wave varies slowly in time and/or space compared to the wave itself. This
approximation allows us to neglect the second order derivatives in the wave equation,
which results simpler equation to handle. To apply SVEA, we need to go to complex phasor

representation as follows:

a%v 1 92%v
= Jz (9)

Let’s jump to the phasor domain taking the following equalities into account:

V = real{Vye "t} (10)

f, = real{fye ™"t} (11)



Plugging (10) and (11) into (9), our complex wave equation becomes as follows:

2 . 5

822 c? at?

It is equivalent to the following equation:

aZVOe—th e_th [BZV
0z2 c? at2

—j2w—=2— WZVO] foe Iwt (13)

Simplifying the exponentials, we get the following equation:

Vo _ 1[0%o i OVo 2 ]_
9z2 c2 [atz ]ZW ot w VO - fO (14)
2
SVEA assumption: 2 VO KL 2w |6V° and/or |a %l « w2V
Now let’s apply SVEA only in time as follows:
azvo_ia%x?o_. %_ 2 ]_
dz2 2 [,fitz Wor =W Vo] = fo (15)
So, our approximated equation is
v, 1[ ., 9V
— | w - WZVO] =fo (16)
Rearranging the terms, we get the following equation:
Wo_juy 4 j (L g
=5 Vet ity (51 (17)

Discretizing our equation, we get the following numerical equation:

Vo —Voii _ jKV n +ji(V0i+1_2V0i toi—y f n) (18)
dt 2 0i 2w dz? 0;

Rearranging the terms, we obtain the following update equation:

2 Vot . —2Vo ' +V ™
Vort™ = Vol + j 2t Vol 4+ j S0 (=i o o) (19)

2w dz?



2.3 Absorbing Boundary Conditions

2.3.1 Without SVEA

2.3.1.1 Left Boundary (z = 0)

Discretizing the equation, we get the following numerical equation:

yitioyn _ CVZ”—V{L

dt dz

Rearranging the terms, we obtain boundary-update equation:

dt
Vit = v+ (5) v - v
2.3.1.2 Right Boundary (z = m *x dz)
v 10V
a2 tear =0
w_ _ v
at oz

Discretizing the equation, we get the following numerical equation:

VENVE _ VA=V,

dt dz

Rearranging the terms, we obtain boundary-update equation:

) (e = Vi)

(20)
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2.3.2 With SVEA

2.3.2.1 Left Boundary (z = 0)

V = real{Vye "t}
Plugging (30) into (29),

d _ d _
E(Voe wt) = ¢ (Voe /¥

Taking derivatives and canceling the exponentials,

Rearranging the terms, we obtain boundary-update equation:

cdt

1

Vol = Vol + jwatVo! + (5) (Vo = Vo?')

(28)

(29)

(30)

(31)

(32)

(33)

(34)



2.3.2.2 Right Boundary (z = m x dz)

av 10V
Z 12—
az+cat

v _ v
at az

V = real{Vye "t}

Plugging (37) into (36),

3 _i 3 i
a(VOe wt) = —c—-(Voe wty

Taking derivatives and canceling the exponentials,

Rearranging the terms, we obtain boundary-update equation:

Vor = Vol + jwdtVo?, — (55) (VoI = Vo' _,)
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3 Simulations

3.1 1st Simulation

3.1.1 Description

In this simulation, we simulated the following case:

There is a particle in space, and it oscillates around the origin. Since particle oscillates, it
radiates electric and magnetic field. We simulated this radiation solving the Maxwell’s
equation in two different ways: In the 1* way, we solved the equations in real domain and
discretized the resulting equation by FDTD. In the second way, we solved the same
equations by complex phasor representation and applied slowly varying envelope
approximation (SVEA). So, we checked how accurate the SVEA is. We checked the accuracy

of the SVEA for different number of cycles.
Aim: to obtain the relationship of the accuracy of SVEA and number of cycles.

3.1.2 Formulation

Particle Trajectory

(t—tg)?

—21n2 2 (42)

zs(t) = A, *sin(wt) x e

Z : position of the particle

|y

: cycle duration

T : pulse duration

number of cycles = E
w



3.1.2.1 Without SVEA

Let’s start with (8), which is the update equation without SVEA:

(8) cxdt\ 2
Vin+1 i) 2Vin — Vin_l + ( ) * ( ir-:-l - ZVin + Viril) - (C * dt)z * fzn

dz i

We need to determine the f, interms of the particle trajectory.

5 p(zt) @ q
~ L)
£, === - 146(2 - 2,()

&

(43)

(44)

Applying dirac delta approximation described in theoretical background, we can calculate

f; asfollows:

ind = floor (—ZS(::U)
(a1 . _ zg(ndt) . )
s*dz*[lnd-l-l dz ] Lf i=ind
n _
fif = -G L [E090 ) if i=ind+1
\ 0 else

3.1.2.2 With SVEA

Let’s start with (19), which is the update equation with SVEA:

19 wdt c2dt (Vo =2V + V™
n+1 —~— n : n . O0i41~%Y0{ TV0j—1 __ M
Vog " = Vo ¥ Vo, i, ( iz’ fi)

We need to determine the f, interms of the particle trajectory.

(11)
f;, = real{fye "t}

(t=tg)?
)

We know that f, isdetermined by z.(t) = A, * sin(wt) * g 2In2

10

(45)

(46)

(47)

(48)



To determine f,, let’s first find an imaginary particle trajectory such that:

zs(t) = real{z;.(t)e "} (49)

So, the solution is clearly as follows:

(t=tg)?

—2In2=—3 ¥« oT/2 (50)

zs(t) = A, xe

/2

Note: e appears in zy.(t) for phase correction because we have sin(wt) term in

zs(t) instead of cos(wt).

Then we can determine f;, as follows:

fo(z,0) = —q * 8(z — 25 (1)) (51)

Numerical formulation of f(z,t):

indc = floor (%) (52)
q_ 1 . Zsc(ndt) , . .
(_Z*E*[mdc-l_l_T] if i=indc
n_
fo; _<—%*é*[%—indc] if i=indc+1 (33)
\ 0 else

11



3.1.3 Results

10716 when number of cycles is 1
T T T T T

T
—without SVEA
—with SVEA
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Graph 1: Radiation strength vs Space coordinates after the radiated for Ty seconds

10716 when number of cycles is 2
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Graph 2: Radiation strength vs Space coordinates after the radiated for Ty seconds
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1016 when number of cycles is 5
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Graph 3: Radiation strength vs Space coordinates after the radiated for Ty seconds
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Graph 4: Radiation strength vs Space coordinates after the particle radiated for T, seconds
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Error vs Number of Cycles
I

Mean Square Error (%)

| n
0
0 5 10 15 20 25 30
Number of Cycles

Graph 5: Error of the SVEA method vs number of cycles of the Gaussian pulse

3.1.4 Conclusion of the 1st Simulation

Results (see Graph 5) clearly show that SVEA in time becomes more and more accurate as
the number of cycles of the Gaussian pulse increases. So, this conclusion should be taken
into account in single-cycle pulse generation.

14



3.2 2nd Simulation

3.2.1 Description

In this simulation, we did some investigation of single-cycle pulse generation using two
different approaches: (1*) continuous delay of the excitation matched to the pulse, which is
named as CDM in the report, and (Z”d) discontinuous delay of the excitation matched to the
pulse, which is named as DDM. CDM represents the TPF using grating and DDM represents

TPF using echelon.

This time we do not have a moving charged particle, instead we have energizing units in

space and they energize the field.

Aim: to obtain which approach, CDM or DDM, generates stronger radiation in single-cycle

pulse generation

3.2.2 Formulation of CDM

dz 2dz 3dz Ndz
t t—— t—— t—— t——
c c c c

Figure 4: Energizin Scheme for CDM

2

4
-2In 2(t;§)

(54)

p(t,z) = —q *x cos(wt — k,z) x e

p(t, z) : charge density

w

k, = — 1 wave number

21 .

— : cycle duration

w

T : pulse duration

number of cycles = 5—
2r

w
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3.2.2.1 Without SVEA

Let’s start with (8), which is the update equation without SVEA:

®)

" 2
vt = 2vt vt + (Cdjt) « (Vi — 2V + VL) — (e = d)? = f] %)

We need to determine f, interms of the energizing scheme.

2

(3) (54) (t-2)
£=— pED) — _a, cos(wt — k,z) * o 2In2 3 (56)
& &
Discretizing (56),
(-2
fop = — % x cos(wndt — k,idz) x e 21"¥ =2 (57)
3.2.2.2 With SVEA
Let’s start with (19), which is the update equation with SVEA:
n+1 (r-l-i) n o, .wdton | .cidt (Voil,—2Voi +Voi, n (58)
Voi = Vo + 5 Vol + ) S (L ~ fot)

We need to determine f, interms of our energizing scheme. To do that, let’s consider the

following equations:

(56) 1 (t_%)z 59
L= —%*cos(wt—kzz)*e_2 nFm (59)

(1)
£, = real{fye ") (60)

One can trivially determine f;, as follows:
2
fr= =24 p21n z(t;E) « plksz (61)
&
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Discretizing (61), we get the numerical equation as follows:

fO? — _% —2In2—073"— elkzidz (62)
3.2.3 Results
107 CDM with number of cycles is 1
—Real sc;In. | 1 I
- - -Complex soln. without SVEA
18 Complex soln. with SVEA in TIME \ b
1+ \ [ -
0.5 f .
f
0 — | >—
VY
05 { b
Ak -
-1.5
oL -
25 | ! | ! I I ! |
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Graph 6: Radiation strength vs Space coordinates for CDM (T seconds after the radiation)

17



3.2.4 Formulation of DDM
=2
[ 21 Nl
t t—— -— t——
c [ [
Figure 5: Energizing Scheme for DDM
. _floor(%)*L
z —-2In2 : (63)
p(t,z) = —q * cos (Wt — k, = floor (Z) * L) * e 2
p(t, z) : charge density
k, = % : wave number
21 .
~ : cycle duration
T : pulse duration
number of cycles = é
L =1 :energizing block length
A=c+Z : wavelength
3.2.4.1 Without SVEA
Let’s start with (8), which is the update equation without SVEA:
8
(8) C*dt)z . (VP 2V + VM) — (c * dt 2 n (64)
dz i+1 — 4V i-1) — (€ )E* oy

Vin+1 ) ZVin _ Vin—l + (

We only need to change f, term as follows:

18



- 2

(t_floor(z)*L> ( )

(3) (63) — < 65
£, = _ p(z,t) = _ % % COS (Wt — k, * floor G) N L) N e—Zan—TZ

&

Discretizing (65),

rloor(42).\’
S (56)

foi = ——*cos(wndt— *floor( )*L) -2in2 —

3.2.4.2 With SVEA

Let’s start with (19), which is the update equation with SVEA:

) wdt ,c2dt (Volt =2V +Vo T
V0n+1 -~ Vol +]_VOL ] ( Oi+1 0{ ""0j—1 __ fO:l) (67)

2w dz?

We need to determine f, interms of our energizing scheme. To do that, let’s consider the

following equations:

(t_floor(%)*L>2
(65) ; (68)
L= —%*cos(wt—kz>s<floor(%)>|<L)>l<e_2m2 Z

(CRY)

f, = real{fye "%} (69)
One can trivially determine f;, as follows:
7 2
(t_floorc(z)*L> "
_ _4a -2ln2————— jkz*floor(z)*L (70)
fo=— - * e T * e L
Discretizing (70),
idz 2
ndt—floor(T)*L
‘ (71)

idt
fo? — q " e—Zan ., e}kz*floor( L) L
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3.2.5 Results

4 x10° DDM with number of cycles is 1

—Real soln. | I | I

= -Complex soln. without SVEA
5 Complex soln. with SVEA in TIME -
2
1

fil |
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A B
2+ 4
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-0.6 -0.4 -0.2 0 0.2 04 0.6

Graph 7: Radiation strength vs Space coordinates for DDM (T seconds after the radiation)

3.2.6 Comparison of CDM and DDM

<108 CDM vs DDM
—CDM
15'—pDM
n ]
05 .
o \
0.5 .
A1+ -
1.5 -
-ol.:s -d.z -o|.1 5 o.‘1 o.lz ois

Graph 8: Radiation strength vs Space coordinates for CDM and DDM

(T seconds after the radiation)
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We did some investigation to reveal what size of the energizing block unit, L, gives the
strongest radiation in DDM. In Graph 7, L was set to be a wavelength. Now we varied L/A

ratio keeping A constant to see what ratio gives the strongest radiation.

«10¢  Strength of the Radiation vs Delay Unit/Wavelength

1.8

|Peak Value of CDM Radiation

Peak Value of DDM Radiation

02 | 1 | 1 | | 1 el il ™ Y ot
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

delay unit/wavelength

Graph 9: Peak value of the radiation for DDM vs delay unit/wavelength (L/A)

3.2.7 Conclusion of the 2nd Simulation

There are several conclusions here.
Graph 6 shows that SVEA can be used in CDM approach.
Graph 7 shows that SVEA is a very bad approximation for DDM approach.

Graph 8 shows that CDM is a much better approach than DDM to generate the strongest
radiation.

Graph 9 strongly verifies the conclusion made for Graph 8 because Graph 9 shows that
the smaller the size of the energizing blocks chooses the stronger radiation is obtained. One
needs to notice that when the size of the energizing blocks in DDM gets smaller and smaller,
then DDM converges to CDM. So, Graph 9 verifies that CDM is the best version of DDM to
generate the strongest field.
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