
Analysis of Access and Transfer data for the dCache
mass storage systems at DESY using Apache Spark

Gunay Abdullayeva, University of Tartu, Estonia

Supervisors: Thomas Hartmann and Christian Voss

September 5, 2018

Abstract

dCache is a system which is used to store and host large amounts of data. However,
transfers between dCache and individual clients may fail due to various reasons, e.g.
network disconnection. In this project, we have worked with Apache Spark to ana-
lyze all process in dCache. Apache Spark provides an interface to process data in clus-
ters implicitly parallel. Our aim is to study all kinds of transfers on data in dCache at
DESY. DESY is one of the world’s leading accelerator centres where researchers use
the large-scale facilities to explore the microcosm in all its variety - from the interac-
tions of tiny elementary particles and the behaviour of new types of nanomaterials to
biomolecular processes that are essential to life.

Contents
1 Introduction 3

2 Motivation 4

3 Analysis Methods 4
3.1 Apache Spark . 4
3.2 Apache Kafka . 6

4 Analysis 9
4.1 Analysis of Errors . 9
4.2 Analysis of Transfers . 11
4.3 Analysis of Transfers using Apache Kafka 15

5 Conclusion 18

2

1 Introduction
dCache is a system which manages storage and access to scientific data, transparently
distributed among a different number of disk storage nodes and tape backends. One
of the key design features of the dCache is that although the location and multiplic-
ity of the data are autonomously determined by the system, based on configuration,
CPU load, and disk space, the namespace is represented within a single file system
tree. The system has shown to be capable of improving the efficiency of connected
tape storage systems, by caching, and scheduled staging techniques. Furthermore, it
optimizes the throughput to and from data clients as well as smoothing the load of the
connected disk storage nodes by dynamically replicating datasets on detection of high
demand. The system is tolerant against failures of its data servers enabling adminis-
trators to go for commodity disk storage components. Supports a large set of standard
access protocols to the data repository and its namespace are provided by dCache.
DESY is one of the contributors. dCache stores billing files which contain information
about transfers, accesses, and removals of files. As the total size of the files is large
enough, which a local machine does not have the capacity to implement all operation,
we use Apache Spark for all analyses.

Apache Spark is a fast and general-purpose cluster computing system and it has the
architectural foundation which is called the resilient distributed dataset (RDD). Spark
and its RDDs were developed in 2012 in response to limitations in the MapReduce
cluster computing paradigm, which forces a particular linear dataflow structure on
distributed programs. MapReduce algorithm reads input data from disk, maps a func-
tion across the data, reduces the results of the map, and stores reduction results on
disk. Spark’s RDDs function is a working set for distributed programs that offers a
(deliberately) restricted form of distributed shared memory. Apache Spark allows the
distribution of processes on data items over a cluster of machines. It supports high-
level APIs in Java, Scala, Python and R and provides a rich set of higher-level tools
including Spark SQL for SQL and structured data processing, MLlib for machine learn-
ing, GraphX for graph processing, and Spark Kafka Streaming.

Apache Kafka is a distributed streaming platform which has three key capabilities:

• Publish and subscribe to streams of records, similar to a message queue or enter-
prise messaging system.

• Store streams of records in a fault-tolerant way

• Process streams of records as they occur.

Kafka is generally used for building real-time streaming applications that transform or
react to the streams of data.

3

2 Motivation
This section discusses two factors that motivate this analysis on the DESY dCache.
First, there is a need to use a fast and memory efficient tool to analyze billing files
which cover the time span 2016-2018. In this case, Apache Spark provides distributed
processes on these billing files. Second, as the billing file format has not a consistent
structure, there is a need for a generalised structure. That is why JSON file format is
used by Kafka. These are discussed in the following two subsections, where Subsection
3.1 and 3.2 discuss how Apache Spark and Apache Kafka are applied for this analy-
sis.

3 Analysis Methods
3.1 Apache Spark
Apache Spark is a fast and general-purpose cluster computing system and it has the
architectural foundation which is called the resilient distributed dataset (RDD). We
created our parser method to get RDD structure and used Apache Spark to do analy-
sis on it. The billing files contain information about time , operation type(transfer, re-
quest and, remove), file size, unique file id called pnfs id, pool to store files, pool group
to store pools, appropriate protocol, the result transaction and some additional infor-
mation. There is three type of operations: transfer, request and remove. It is given
one example for each type as follows:

Transfer:
01 .01 04 : 34 : 10 [pool : dcache−at la s89 −02: t r a n s f e r] [0000A7505A6E2B
394FCCB314439421952EFC ,2973444] [/ pnfs /desy . de/ a t l a s /dq2/
a t l a s da t ad i s k / ruc i o /mc15_13TeV/5a/ e f /EVNT.10366673 . _006883 . pool .
root . 1] a t l a s : at lasdatadisk@osm 2973444 375 f a l s e \{GFtp−2.0
130 . 246 . 176 . 69 51307} [door :GFTP−dcache−door−at la s13−AAVFABud_qg:
1483241649957000] { 0 : " " }

Request:
01 .01 01 : 50 : 07 [door :GFTP−dcache−door−at la s15−AAVE_c4oz4g@gridftp−
dcache−door−atlas15Domain : r eque s t] [" /DC=ch/DC=cern /OU=Organic Units /
OU=Users /CN=at l a c t 1 /CN=555105/CN=Robot : ATLAS aCT 1 " : 4 0 001 : 4 0 00 :
1 3 1 . 1 6 9 . 1 6 1 . 2 2 6] [00002C8EE4F7FE49468D96DC9AD0566BE0C9 ,4144006055]
[/ pnfs /desy . de/ a t l a s /dq2/ a t l a s da t ad i s k / ruc i o /data16_13TeV/4 f /2d/
data16_13TeV .00309759 . phys i c s _Main . merge .AOD. f750_m1689 . _lb0582 .
_0001 . 1] a t l a s : at lasdatadisk@osm 47206 0 { 0 : " " }

4

Remove:
01 .01 08 : 40 : 43 [pool : dcache−at las129 −05@dcache−at las129 −05Domain : remove]
[00002EDB507A343C40709A21C6628548E6D5 ,183923694] [Unknown] a t l a s :
at lasdatadisk@osm {0 : " " }

We created the database having taken important information from the billing file and
considered all different cases depending on the file type. The database is described in
Table 1 just for one instance.

Table 1: Data format with columns and values for one event.
Columns Values
Time 11.01.2017 00:00:00
MessageType transfer
Pool dcache-atlas32-03
PoolGroup atlasscratchdisk
PnfsId 0000B462D717D829475CB0E22DD9CE4BC136
FileSize 2071418723
Door Xrootd-dcache-door-atlas17
Protocol Xrootd
Domain xrootd-dcache-door-atlas17
ClientIp 131.169.163.184
ReturnCode 451
ReturnMessage Aborting transfer due to session termination

5

The analysis is split and distributed throughout the clusters. The following code snip-
pet shows how to connect to the cluster, to work with the executor nodes and create a
Spark dataframe object.

c l u s t e r = ’ spark :// os−spark−dev01 . desy . de :9618 ’
spark_conf = SparkConf () . setMaster (c l u s t e r)
. s e t (’ spark . executor .memory ’ , ’ 1 4G’)
. s e t (’ spark . d r i v e r .memory ’ , ’ 5G’)
sc = SparkContext (conf = spark_conf)
f i l e = ’/ B i l l i n g −Data/ATLAS/2018/∗/ b i l l i n g −2018.∗ .∗ ’
b i l l i ng_data = convert_data (f i l e)
b i l l i ng_data . createOrReplaceTempView (" b i l l i n g ")
b i l l i ng_data . cache ()

First, we connect to the cluster via spark://os-spark-dev01.desy.de:9618 using the
setMaster function. The other parameters such as spark.executor.memory and
spark.driver.memory define the amount of memory to use per executor memory and
for the driver process respectively. Then, we initialize the SparkContext object to be
used in the convert_data() function, where we used regular expression to parse the file
to the new data format. Finally, the temporary view is formed and the dataframe is
cached to accelerate subsequent queries.
Although we created the new data format, there were still some challenges in the con-
version of ClientIp. Sometimes, ClientIp is given like ipv4 or ipv6 and ipv6 is also
of different length. As ClientIp is formatted with different parameters and various
length, we should consider all different cases in our parser. Since we did not want to
lose much more time for parsing, we used JSON stream published by Apache Kafka
producer.

3.2 Apache Kafka
Apache Kafka is a distributed streaming platform which provides an event stream be-
tween producer and consumer. In our case, the consumer takes the JSON stream pro-
vided by the producer. JSON stream is described for one instance as follows. JSON

stream:
{ ’ cellDomain ’ : ’ dcache−dot7−08Domain ’ ,
’msgType ’ : ’ t r an s f e r ’ ,
’ f i l e S i z e ’ : 942200 ,
’ t r a n s f e r S i z e ’ : 942200 ,
’ s tatus ’ :

{ ’msg ’ : ’ ’ ,
’ code ’ : 0} ,

’ ce l lType ’ : ’ pool ’ ,
’ t rans fe rPath ’ : ’Unknown ’ ,

6

’ s e s s i on ’ : ’ pool : dcache−dot7−08@dcache−dot7−08Domain :15339−1390 ’ ,
’ readActive ’ : ’PT0.001774434S ’ ,
’ p r o to co l In f o ’ :

{ ’ host ’ : ’ 1 31 . 1 69 . 1 91 . 2 40 ’ ,
’ p rotoco l ’ : ’ Http ’ ,
’ vers ionMajor ’ : 1 ,
’ port ’ : 0 ,
vers ionMinor ’ : 1} ,

’ isP2p ’ : True ,
’ i n i t i a t o r ’ : ’ pool : dcache−dot8−05@dcache−dot8−05Domain ’ ,
’ sub jec t ’ : [’ U idPr inc ipa l [0] ’ , ’ G idPr inc ipa l [0 , primary] ’] ,
’ r eadId l e ’ : ’PT0.02863589S ’ ,
’meanReadBandwidth ’ : 801808915.4950517 ,
’ pnfs id ’ : ’0000DFE174F3A8594C5FB8429C7CC1D0AE67 ’ ,
’ s t o rage In f o ’ : ’ dot : store@osm ’ ,
’ date ’ : ’Tue Aug 21 16 : 34 : 47 CEST 2018 ’ ,
’ ve r s ion ’ : ’ 1 . 0 ’ ,
’ i sWrite ’ : ’ read ’ ,
’ queuingTime ’ : 0 ,
’ b i l l i ngPath ’ : ’Unknown ’ ,
’ cellName ’ : ’ dcache−dot7 −08 ’ ,
’ t ransferTime ’ : 30}"

As we see, there is a key and value structure and it makes comfortable to get impor-
tant information from the stream. We created the new data format to analyze just
transfers. The structure of the data is shown in Table 2.
The following code snippet shows how to connect to the producer, get the stream data
and process it.

s c = SparkContext (appName="Streaming ")
sc . setLogLeve l ("WARN")
s s c = StreamingContext (sc , 1)
t op i c = " b i l l i n g "
broker = " dcache−b i l l i n g −c loud : 9092 "
o f f s e t = " sma l l e s t "
kvs = KafkaUt i l s . c r eateDi rec tSt ream (ssc , [t op i c] ,
{" metadata . broker . l i s t " : broker , ’ auto . o f f s e t . r e s e t ’ : ’ sma l l e s t ’ })
l i n e s = kvs .map(lambda row : JSON. loads (row [1]))
.map(lambda row : b i l l i n g (row , ’ t r a n s f e r . csv ’))
s s c . s t a r t ()
s s c . awaitTermination ()

Since the Spark cluster works similar to a batch system, it is necessary to prepare the
job before submission. This is the role of the sparkContext object. The job name is

7

Table 2: Data format with columns and values for one event.
Columns Values
Time 1535632685
Pool dcache-cloud07-08
PoolGroup volatile
PnfsId 0000ED2BD4D300DC4E6C8386E7C8AD306EEC
MeanWriteBandwidth 1324418597.1540759
MeanReadBandwidth 2065596142.8823228
BillingPath /pnfs/desy.de/dot/store/SET_testfile
FileSize 524288000
Door DCap-gsi-dcache-dot3-AAVz37Hv6ug
Protocol DCap
Domain dcache-dot3_gsidcap
ClientIp 131.169.223.91
ReturnCode 0
ReturnMessage

given by the appName parameter. The verbosity of the output can be configured with
the setLogLevel function. We pass the Spark context object along with the batch
duration, which here is set to 1 second to form a local Streaming Context object.
Topic and broker should be specified to create a direct stream. The offset parameter is
optional, but since we want to get all data in the stream, we should specify it. Using
the native Spark Streaming Kafka capabilities, we use the streaming context, topic,
broker and offset parameters to connect to the Kafka cluster. The inbound stream is a
DStream object, which supports various built-in transformations such as map which is
used here to parse the inbound messages from their native JSON format. In our case,
we transform the message from JSON to the dataframe format. Having defined the
streaming context, we can start the process and see the result of the transformation.

8

4 Analysis
In this section, we look at the result of all analysis. The sections 4.1 and 4.2 contain
the analysis of the billing files.

4.1 Analysis of Errors
The following error analysis is performed on the billing data 2018. We counted errors
in which the file transfer is successful, however, the file access fails with errors such
as 451 which means the session is terminated. Totally, the number of the errors is
24384634 and the number of 451 error is 424082. The errors are ordered and associ-
ated by the number of occurrence per IP address in the Figure 1.

Figure 1: The number of the request errors by clients

We specified the errors which happen inside and outside DESY network. The Figure 2
and Figure 3 show the most 20 errors by clients inside and outside DESY, respectively.

9

Figure 2: The number of the request errors by clients inside Desy

Figure 3: The number of the request errors by clients outside Desy

As we see from figures, the most of request errors come from outside of the DESY net-
work.

10

4.2 Analysis of Transfers
All analyses are performed on the billing-2017.11.01 file for the first of November 2017.
Figure 4 shows how many transfers happened on the first day of November. The x
and y axes represent the number of unique pnfs ids and transfers, respectively. Pnfs
id is unique for each file and we have 122844 unique Pnfs ids in this case. As we see,
the number of transfers is high in some cases and the most transferred file is
00002D881EDA74CA46E9A9C36E690ED65342 which was transferred about 1600.

Figure 4: The number of transfers for each file in the first day of November.

11

Figure 5 is a different representation of the same data shown in Figure 4. This figure
depicts how many files have been transferred a certain number of times. It is visible
that the transfers are executed mostly once or twice time in more than 50000 files.

Figure 5: The same number of transfers for different files.

12

Figure 6 is the log scale description of the Figure 5. The number of the files for the
same number of transfers is not readable in most cases. So this figure helps to see how
the amount of files differs in the low rate of the same number of transfers.

Figure 6: The log scale description of the Figure 5.

13

Figure 7 is analog to Figure 6, however, the data is split by pool groups. We have 3
types of pool group: scratch, data, and local disk. The scratch disk stores temporary
files and remove arbitrary data depending on the free space. That is why, the transfers
are implemented on the scratch disk mostly. The most transferred file is also in the
scratch disk.

Figure 7: The log scale description of the Figure 5 for the different pool groups.

14

4.3 Analysis of Transfers using Apache Kafka
In contrast to the previous sections, we have performed the analysis on the Kafka
stream data in this section. The stream data covers the information from 20.08.2018
to 28.08.2018.
Figure 8 shows the transfer rate over time. The x axis represents the unix time. The
y axis shows the mean of instantaneous IO bandwidth while reading the file. The red
and yellow lines indicates the mean and the standard deviation of the data points.

Figure 8: The speed distribution of transferred files in different time.

15

The streaming analysis is run agaist a different dCache instance. This contains the
poolgroup store among others. The pools dcache-dot7-01, dcache-dot7-05, dcache-dot7-
08,dache-dot8-04, dcache-dot7-04 are located in the store pool group. We selected the
transfers in dcache-dot7 and dcache-dot8 in the Figure 9 separately. The total number
of transfers is about identical for both hosts during the stream period of eight days.

Figure 9: The number of transfers for dcache-dot7 and dcache-dot8 in the store pool
group.

16

Figure 10 shows the dependence of the transfer rate on the file size. The x axis repre-
sent the file size with a unit byte and the y shows the transfer rate of the file with a
unit bit per second. The interesting thing is that, although the files size is small, the
transfer rate of the same sized files can be slow or fast.

Figure 10: The transfer rate of files depending on the files size.

17

Figure 11 describes the different transfer rates of the files which are transferred at the
same time. The color represents the various transfer rate in this heatmap. The dark
and light colors show the high and low speed respectively. The purpose of this analysis
is to see whether the transfer rate of the files differ for the same time.

Figure 11: The transfer rates of the files which are transferred at the same time.

5 Conclusion
We used Apache Spark to analyze on the files in clusters. As we see from the results,
Apache Spark is able to parallelize all processes on the executor nodes equally. As the
billing files contain different variations, parsing of the billing files took several weeks
to consider all various cases. That is why we moved to Apache Kafka to work with
JSON formatted stream data and did all analysis later on it.

18

References
[1] https://www.dcache.org/. dCache

[2] https://spark.apache.org/. Apache Spark

[3] https://en.wikipedia.org/wiki/Apache_Spark. Wikipedia

[4] https://kafka.apache.org/. Apache Kafka

[5] https://spark.apache.org/docs/2.3.0/streaming-kafka-0-8-integration.html. Apache
Spark

[6] hhttps://medium.com/@kass09/spark-streaming-kafka-in-python-a-test-on-local-
machine-edd47814746. Medium

19

