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Abstract

The goal of this project is to support the flavor matching procedure in the c++

code chilipdf from scratch for the evolution of double parton density functions.

To manage this, several functions and classes had to be added. A matching

formula for αs has to be implemented in the Alpha s class. Kernel matching

functions are imported and the matching procedure of PDFs in the VFNS (variable

flavor number scheme) has been implemented in another class. All these feature

functions have been tested. Results and comments on these tests can be found in

this report.
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1. Introduction

The Large Hadron Collider (LHC) is currently operating at a centre of mass energy

of 13 TeV, this could increase with coming upgrades and with new hadron colliders,

for example the FCC (Future Circular Collider) which would run at energies of about

100 TeV. At these high energies the densities of partons (quarks and gluons) inside the

proton are very large and the gluon density is typically dominant. For a more accurate

theoretical (Monte Carlo) simulation of proton-proton collisions at these energies, one

can involve multi-parton interactions (MPI) in the calculations. In a single parton

interaction there are two partons that interact in the hard scatter, while in a multi

parton interaction two of such hard scattering interactions take place (i.e. four partons

interact).

1.1. QCD, PDFs & DPDs

Quantumchromodynamics (QCD) is the quantum field theory of the non-abelian group

SU(3) which is used for the description of the strong interaction in the standard model

of elementary particle physics. The fundamental parameters of this theory are scale- (Q,

or mostly indicated by the renormalization scale: µ) dependent as a result of renormal-

ization. Here, we concentrate on two scale dependent quantities: the strong coupling

αs(µ) and parton density functions (PDFs) fi(x, µ). The dependence of αs to the scale

can be described elegantly by the renormalization group equation or the beta-function

β(αs). The scale dependence of αs has been confirmed experimentally, which can be

seen in figure 1. For QCD with nF < 16 color charged fermionic fields (quark flavors),

the beta-function is negative and dictates a decreasing coupling for increasing energy

scales. In the standard model there are nF = 6 quark flavors.

Figure 1: Measurements of αs at different energies confirm the running of the strong

coupling. [3]
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To calculate cross sections of single hard processes, the non-perturbative low scale has

to be separated from the perturbative high scale part. A general cross section can be

factorized as:

σ =
∑

C ⊗ A (1)

where C are coefficient functions and A represents the partonic part of the cross section.

The hard and soft scales are separated by the factorization scale µF . The separation

of high scale and low scale dynamics is accomplished by the operator product expan-

sion (OPE). This factorizes highly singular operators into regular, local operators and

coefficient functions.

The OPE has to be renormalized to remove the UV divergences, and therefore the op-

erators become scale dependent. The low scale dynamics information of the partons

inside the proton is contained by the non-perturbative hadronic operator matrix ele-

ments (OMEs). PDFs can be distracted from OMEs (using the Mellin convolution).

They depend on Björken x and the scale µ. The dependence of the PDFs to the renor-

malization scale µ - evolution - can be described in a rigorous way by the DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations which can be written

in a compact form like:

∂

∂ log(µ)
fi(x, µ) =

∑
j

Pij ⊗ fj(x, µ) (2)

where Pij are the splitting functions.

The factorization theorem for a double parton interaction in double Drell-Yan produc-

tion most likely holds. There is a lot of progress in the proof of this, see [2]. The

calculation of the double parton scattering within this framework makes use of so-called

double patron distribution functions (DPDs). These are noted by fij(xi, xj;µ1, µ2).

DPDs fulfill evolution equations that are very similar to the DGLAP equations for

single PDFs. The aim is to produce DPDs from experimental results to make better

predictions of QCD phenomena.

chilipdf is an evolution code for DPDs and is currently in full development. It is

build from scratch in the c++ language. In the current state of the development, the

functions have structures that are only applicable on single PDFs. In this project, it is

aimed to treat the problem of matching of PDFs (or DPDs). This is necessary in an

effective field theory for energy scales under quark masses. The heavy quark effective

theory treats the heavy quarks with masses above the QCD mass scale (∼ 200 MeV)

non-perturbatively. The quark masses that are larger than the chosen energy scale are

treated like infinite masses. For larger energy scales, there are more light quarks nf to

be taken into account. This changes the fundamental parameters and functions slightly.

That is why matching of the coupling αs and of the PDFs has to be implemented in an

evolution code such as chilipdf.
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2. Theory

Several aspects of implementing the heavy quark thresholds to the DPD evolution are

clarified in this section. The variable flavor number scheme (VFNS) is the main tool

that is used for the right procedures of matching αs and the PDFs. Unlike the fixed

flavor number scheme (FFNS), the VFNS takes the masses of the quarks into account.

2.1. Variable Flavor Number Scheme

The VFNS is a renormalization scheme which works parallel to the modified minimal

subtraction (MS) scheme, with the difference that this scheme involves sub-schemes

that are parameterized by the number of active (light) quarks nf . The heavy flavors

decouple from the light quarks in this procedure. The only region where this is effective,

is for quark thresholds above the QCD scale ΛQCD ∝ 200 - 300 MeV. Consequently the

3 lightest quarks (u, d, s) 1 are not thresholds that have to be passed in matching,

because these quarks are produced non-perturbatively. The PDFs that are assigned

to light quarks (and the gluon) treat them as massless particles and describe the non-

perturbative features. The heavy quark has flavor number (nf+1). This quark does

not appear in tree level diagrams, but it can appear in the form of radiative corrections

(virtual).

To merge the sub-schemes into a continuous scheme that contains the whole range of

evolution [µ0, µ], one needs a matching scale µm for every merge of two sub-schemes.

The new PDFs with nf + 1 flavors are calculated in terms of the old PDFs of the nf

scheme and α
(nf )
s (µm). The matching scale is usually chosen to be the heavy quark

mass (mh). This choice is convenient because the terms in the matching conditions

that contain the logarithmic factor ln (mh
2/µm

2) will vanish. An illustration of four

sub-schemes with their corresponding nf is given in figure 2. In Figure-a the matching

scale is equal to the heavy quark mass.
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Figure 2: Matching scheme configurations. In Figure-a the matching scales are chosen

at the heavy quark masses, in Figure-b the matching scales are larger. [5]

1With MS masses respectively: mu = 2.2 MeV, md = 4.7 MeV, ms = 95 MeV [4]
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PDFs for the individual quark flavors exist in the parton basis, i.e. every parton i has

its own density function fi(x, µ
2). The scale evolution of PDFs is executed in a different

basis, called the evolution basis. In this basis there are three types of PDFs: the

non-singlet densities ∆±k (x, µ2, nf ), singlet densities Σ±(x, µ2, nf ) and the gluon density

G(x, µ2, nf ). They are linear combinations of the parton based functions as follows:

∆±k (x, µ2, nf ) = fk(x, µ
2, nf )± fk+1(x, µ2, nf ) (3)

fNS,±k (x, µ2, nf ) = ∆±k (x, µ2, nf )−∆±k+1(x, µ2, nf ) (4)

Σ(x, µ2, nf ) =
nf∑
k=1

[
fk(x, µ

2, nf ) + fk̄(x, µ
2, nf )

]
(5)

G(x, µ2, nf ) = g(x, µ2, nf ) (6)

The non-singlet and singlet PDFs consist only of combinations of quark densities (the

summation index k runs over active quark flavors). In the matching and evolution

procedures the gluon does mix with the singlet Σ+ combination.

2.2. Matching of αs

The Callan-Symanzik beta-function of QCD describes the µ dependence of αs. Both

the beta-function and αs depend on the number of active quark flavors. The beta-

function can be calculated perturbatively and therefore also αs can. The calculation

of the matching relation between α
(nf )
s and α

(nf−1)
s comes down to calculating all the

loop-diagrams that contain the heavy quark (with flavor number nf ) till certain order

to renormalize the coupling constant. In [6] this is done for three loops in the MS

scheme. The result to second order (NNLO) of this calculation is cited here, where

a = a(nf )(µ(nf )) = α
(nf )
s /π and a′ = a(nf−1)(µ(nf )):

a′

a
= 1− lh

6
a+

(
l2h
36
− 19

24
lh +

11

72

)
a2 +O(a3) (7)

where lh = ln
[

(µ
(nf )

)2

µh2

]
, with µh the MS mass of the heavy quark. This is the equation

for matching to lower scales (matching down).

For the matching to higher scales, one needs the inverse of equation 7. This is accom-

plished with a series inversion [7]. The inverted function for NNLO is:

a

a′
= 1 +

lh
6
a′ +

(
lh

2

36
− 19

24
lh −

11

72

)
a′

2
+O(a3) (8)

To cover all possible choices of the user of chilipdf, the matching formulas for αs

should also be implemented for the usage of the pole mass (Mh) instead of the MS mass

(µh) for the heavy quark. The pole mass is the experimentally measured mass of a

particle. The name originates from the fact that the propagator has a pole at the pole

mass value. The MS mass is the renormalized mass that is dependent on the scale. The
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assumption for equations 7 and 8 is: µh = mh(µh), the heavy quark mass at the scale

of this mass.

It is sufficient to use the relation between Mh and µh up till first order in αs to find an

accurate version of the matching formulas for the pole mass. The relation between the

pole mass and the MS mass is [6]:

µh
Mh

= 1− 4

3

a(Mh)

π
(9)

The matching relation for αs with the usage of the pole mass becomes:

a′

a
= 1− Lh

6
a+

(
L2
h

36
− 19

24
Lh −

7

24

)
a2 +O(a3) (10)

where Lh = ln
[

(µ
(nf )

)2

Mh
2

]
. The inverse is similar to equation 8, instead of the last factor

11
72
a2 this is − 7

24
a2.

2.3. Flavor matching

In a scheme with nf + 1 flavors, the heavy quark (quark number nf + 1) is treated

as completely massless. The scale evolution of this PDF behaves like the evolution

with nf + 1 massless quarks. In a scheme with nf flavors, this specific quark is not

treated as massless. The connection between the nf -flavor and (nf+1)-flavor schemes is

established by the equalization of both schemes at the matching scale µ. Therefore one

has to factorize the Wilson coefficients in massless Wilson coefficients Ci,a and massive

operator matrix elements (OMEs) Aij. The heavy quark OMEs (AQj and Aij,Q)2 are

the kernels for the matching relations of PDFs. These objects are free from collinear

divergences [9]:

AQj

(
nf ,

µ2

m2

)
= 〈j(p) | OQ(0) | j(p)〉 (11)

with OQ(0) the renormalized operator from the operator product expansion of two

electromagnetic currents near the light cone [9]. The quantities Aij,Q
(
nf ,

µ2

m2

)
represent

the heavy-quark-loop contributions to the light-quark and gluon OMEs and are defined

in the same manner as equation 11 but with the operator Ol(0) with l = q, g. The

explicit form of these kernels are given in the appendices of [9], [10], [11] and [12]. The

matching relations for the PDFs in the evolution basis are:

fNSk (nf + 1) = ANSqq,Q(nf + 1)fNSk (nf )

+
1

nf
APSqq,Q(nf + 1)Σ(nf ) +

1

nf
ASqg,Q(nf + 1)G(nf ) (12)

G(nf + 1) = ASgq,Q(nf + 1)Σ(nf ) + ASgg,Q(nf + 1)G(nf ) (13)

2The notation of the heavy quark as Q in this report is based on the notation in [10]
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Σ(nf + 1) =
[
ANSqq,Q(nf + 1) + APSqq,Q(nf + 1) + APSQq (nf + 1)

]
Σ(nf )

+
[
ASqg,Q(nf ) + ASQg(nf )

]
G(nf ) (14)

where NS is non-singlet, S is singlet and PS = S - NS is pure singlet. These expressions

are taken from [13]. They are general and defined without order. The matching equa-

tions simplify in our case because some kernels are zero to first or second order. The

simplified and factorized formulas are:

fNS,±k (nf + 1) = fNS,±k (nf ) +
(
αs
4π

)2

A
NS,(2)
qq,Q ⊗ fNS,±k (nf ) (15)

G(nf + 1) =

[
1 +

(
αs
4π

)
A
S,(1)
gg,Q +

(
αs
4π

)2

A
S,(2)
gg,Q

]
⊗G(nf )

+
(
αs
4π

)2

A
S,(2)
gq,Q ⊗ Σ(nf ) (16)

Σ+(nf + 1) =

[
1 +

(
αs
4π

)2 (
A
NS,(2)
qq,Q + A

PS,(2)
Qq

)]
⊗ Σ+(nf )

+

[(
αs
4π

)
A
S,(1)
Qg +

(
αs
4π

)2

A
S,(2)
Qg

]
⊗G(nf ) (17)

Σ−(nf + 1) =

[
1 +

(
αs
4π

)2

A
NS,(2)
qq,Q

]
⊗ Σ−(nf ) (18)

fNS,+nf
fNS,+nf+1 (nf + 1) = fNS,+nf

(nf + 1)−
[(
αs
4π

)
A
S,(1)
Qg +

(
αs
4π

)2

A
S,(2)
Qg

]
⊗G(nf )

−
(
αs
4π

)2

A
PS,(2)
Qq ⊗ Σ(nf ) (19)

fNS,−nf
fNS,−nf+1 (nf + 1) = fNS,−nf

(nf + 1) (20)

where fNSnf
means the heaviest non singlet PDF from the set with nf light quarks. And

fNSnf+1 is the heaviest non singlet PDF from the new set with nf + 1 light quarks.

3. Flavor matching in c++

3.1. Operator matrix elements

The matching OMEs (Aij,Q and AQj) that are needed for the matching up to NNLO are

functions of the Björken variable3 z, the heavy quark mass mh and the matching scale µ.

The scale and heavy quark mass only appear in the logarithmic factor LM = ln
(
m2

h

µ2

)
.

The matching kernels do not depend on nf .

To implement the kernel functions in a correct way, the first check is to compare the

functions that are given in [9] with the same functions in [10], [11] and [12] and verify

3Noted as x in [10]
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if they give the same results for general values of z and LM . This is done in a Maple

sheet. The entered functions in Maple made it possible to shorten the functions a bit.

Primarily some polynomials and logarithms could be merged. This is also used as a

method to check which form of the two was the shortest one, dependent on the amount

of (logarithmic) multiplications.

In the matching kernels, harmonic polylogarithms [14] are used. These functions -

noted as Ha,~b - are a generalization of Nielsen’s polylogarithms. Both are combinations

of polylogarithms:

Lin(z) ≡
∞∑
k=1

zk

kn

From the check with Maple, it could be concluded that the usage of harmonic polylog-

arithms is more economical than the usage of ordinary polylogarithms.

To be able to do the multiplication of a matching function with a PDF (which is a

vector), the kernels have to be transformed to a matrix. This procedure is already im-

plemented in the code. To make sure that this procedure works, the function has to be

divided in pieces depending on their degree of singularity. The general structure of a

kernel can be written down as:

A

(
z,
m

µ

)
= Areg

(
z,
m

µ

)
+ A+

(
z,
m

µ

)
+ Aδ

(
z,
m

µ

)
δ(1− z)

= regular + singular + singular integral (21)

The regular part does not contain singularities in z. The δ part has to be integrated

and is fully added to the singular integral part. The term with the + needs the treat-

ment of the plus-description. Then some terms with δ-function appear which end up

in singular integral and the rest can be devided in terms that are singular (terms with

ln(z) or powers of 1/z) and terms that are regular (including terms with ln(z)/z).

After entering the matching kernels in a class in c++ the outcome of this can be com-

pared to the outcome of the Maple file(s). This test is performed for the second order

terms of the kernels without factors of αs in test matching.cpp. The first order terms

are not being checked because they are very short.

3.2. Structure of the flavor matching procedure

The implementation of the necessary parts of flavor matching requires 3 classes in the

code: ”Matching”, ”Matching matrices” and ”Flavor conversion”. Here the con-

tents of the classes is shortly clarified.

In the Matching class the kernel functions are coded. Two first order kernels: A
S,(1)
gg,Q ,
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A
S,(1)
Qg and five second order kernels: A

S,(2)
Qg , A

S,(2)
gg,Q , A

PS,(2)
Qq , A

NS,(2)
qq,Q , A

S,(2)
gq,Q . The multipli-

cations with powers of αs is done in a later step because of the formation of common

combinations. Powers of logarithms that appear often are defined as const double to

reduce the calculation time. In this class, the devision of regular, singular and singu-

lar integral parts is applied. In this way, it can be passed to the kernel matrix class to

form matrices. The arguments of the functions are y = 1 − z and a set of parameters.

The only parameter needed is the logarithm of the heavy quark mass divided by the

matching scale. Using 1 − z instead of z facilitates a more accurate value of the loga-

rithms for z → 1. The logarithm of z is then calculated as: ln(z) = log1p(-y). This

function is more accurate to calculate the logarithm for arguments close to 1 (where the

logarithm becomes 0).

In ”Matching matrices” the matrices are formed and combined in a way that matches

with equations 15 - 20. The constructor of this class automatically makes the matrices

and stores them in a container. The arguments of the constructor are LM , the order of

the matching, the mass type (MS mass or pole mass) and the Chebyshev grid on which

the kernel matrices are constructed. The grid is the same grid on which the PDF is

interpolated. The name originates from Chebyshev interpolation [15]. The mass type is

a necessary enum for making the matching kernels that have both a NLO and a NNLO

part. The only factor in which the heavy quark mass appears is in the logarithm LM .

The correction for using the MS mass instead of the pole mass is equal to:

ln

(
Mh

µ

)
= ln

(
µh
µ

)
+

4

3

(
αs
4π

)
+

8

9

(
αs
4π

)2

(22)

where Mh is the pole mass and µh is the MS mass. This only leads to new NNLO terms

if there is a NLO term in the same kernel. All the other multiplications give terms of

O(α3
s).

The ”Flavor conversion” class applies equations 15 - 20 to a PDF set. To match

only the non-singlet combinations that are defined in the specific scheme, the function

loops over all active (nf ) non-singlet PDFs. Also new non-singlet PDFs that contain

the heavy quark (qQ±) must be added.

The constructor of this class makes an object of Matching matrices, which contains a

container with all necessary matrices for the given order. It also calculates LM using

the argument mh

µ
. When the constructor is called, one can match a PDF from nf light

quarks to nf + 1 light quarks with the function PDFset nFp1. This function has the

arguments: the old PDF set, the new PDF set, the matching scale µ and an object of

the Alpha s class. In this function, first the related nf is checked. Namely the new PDF

set should possess nf + 1 flavors if the old set possesses nf . Then the new set PDFs can

be calculated according to the matching order using the old set, the (combinations of)

kernel matrices and factors of αs/4π.
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4. Results

4.1. αs matching

The matching of αs is implemented in both directions: matching up (to nf + 1) and

matching down (to nf−1). For a check of the running and matching of αs the commonly

used starting value is the experimental value at the Z boson mass scale (see [3]) MZ =

91.1876 GeV.

αs(MZ) = 0.118

At this scale, the most logical choice of scheme is the nf = 5 scheme because the mass

of the Z boson is much higher than the bottom quark mass. Matching up from this

scale does not make sense currently because energy transfers above the top quark mass

are very rare within collisions that take place at the current accelerators.

Checks are done for evolving αs from µ = MZ down to µ = 1 GeV with matching

from nf = 5 to nf = 3. The evolution works and was already implemented in the

Alpha s class. To observe the effect of matching, different matching scales are chosen

and the matching order is varied. For the comparison, the absolute value of αs is plot-

ted for a specific scheme or multiple schemes and the relative difference between two

schemes is plotted. For example, the relative difference between scheme 1 and scheme

2 is calculated as:

Rel. diff. = 1− α(1)
s

α
(2)
s

In figure 3 the matching of αs is shown with the choice of matching scales equal to the

heavy quark masses (µ1 = mb and µ2 = mc). This means that lh in equation 7 is zero

and the matching does not cause large changes at the matching scale. The differences

between the three perturbative orders (LO, NLO and NNLO) are caused by the change

of the beta function when going to higher orders. In figure 4 the relative difference of

the NLO and NNLO matching is given. These effects due to matching are visible, but

very small.
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Figure 3: The running of αs with matching at the heavy quark masses GeV µ1 = mb =

4.18 GeV and µ2 = mc = 1.275 for LO, NLO and NNLO.
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Figure 4: Relative difference between NNLO and NLO. Matched with the matching

scales from figure 3.

In the next two figures the same plots are made, but here the matching scales are not

equal to the heavy quark masses. The matching scales are µ1 = 2mb and µ2 = 2mc.

The mass logarithm lh is non-zero (lh = ln(1/2)) so the matching is non-trivial. In the

plot with the relative difference between NLO and NNLO (figure 6) the matching points

are clearly visible because of the discontinuities.
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Figure 5: The running of αs with matching at twice the heavy quark masses µ1 = 2mb

and µ2 = 2mc GeV for LO, NLO and NNLO.
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Figure 6: Relative difference between NNLO and NLO matching with matching scales

from figure 5.

Finally, comparisons are done for fixed order matching with different matching scales.

Again αs has been evolved from µ = MZ to µ = 1 GeV, but only the range µ ∈ [1, 10]

GeV is plotted. For one run, the matching scales are set to µ1 = mb, µ2 = mc. For the

other run, the matching scales are µ1 = 2mb, µ2 = 2mc. The relative difference between

these runs in LO and in NNLO are shown in figure 7 and 8.
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Figure 7: Relative difference of matching at LO with two different matching scales.

µ1 = 8.36 GeV / 4.18 GeV. µ2 = 2.55 GeV / 1.275 GeV.
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Figure 8: Relative difference of matching at NNLO with two different matching scales.

µ1 = 8.36 GeV / 4.18 GeV. µ2 = 2.55 GeV / 1.275 GeV.

4.2. Flavor matching

Firstly the evolution in a VFNS is compared to the exact same evolution with the same

starting PDF set, and the same matching scales which has already been done and these

Benchmark results are tabled in [16]. The starting PDF set consists of fake data, i.e.

these are polynomials that do not represent physical PDFs but are suitable for a good

comparison. The relative difference between the matching and evolving procedure from

chilipdf and the Benchmark results are given in Appendix A.

Secondly, the flavor matching (or implementation of the VFNS) of PDFs is tested against

a fixed flavor evolution with nf = 4. The starting PDF LesHouchesWG2002 is evolved

from µ =
√

2 GeV to µ = 100 GeV. The application of the VFNS is executed at two

quark thresholds with matching scales at the heavy quark masses: mc =
√

2 GeV and
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mb = 4.5 GeV. The relative difference between the evolved gluon density at the final

scale µ = 100 GeV using the FFNS and the VFNS is shown in figure 9. The same

comparison is shown for the evolved u valance quark density in figure 10.
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Figure 9: Comparison FFNS (nf = 4) and VFNS (nf = 3 to 5) for the gluon density at

µ = 100 GeV with NNLO matching and evolution.
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Figure 10: Comparison FFNS (nf = 4) and VFNS (nf = 3 to 5) for the u valance

density (u-u) at µ = 100 GeV with NNLO matching and evolution.

Finally, the evolved and matched PDFs are plotted for the three implemented pertur-

bation orders (LO, NLO and NNLO) with error bands that are produced by changing

the matching scales. The upper limits of these error bars are produced by matching

at twice the heavy quark masses on the one hand and matching at half of the bottom

quark mass on the other side. The fat lines represent the PDF that is matched at the
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heavy quark masses. So three different combinations of matching scales give the error

band:

1. µ1 = mc & µ2 = mb/2

2. µ1 = mc & µ2 = mb

3. µ1 = 2mc & µ2 = 2mb

The evolution range in the two examples given here is µ =
√

2 GeV to µ = 100 GeV

and two heavy quark thresholds are passed, namely these of the charm and the bottom

quark. The choice of the quark mass values is equal to the choice in [16]: mc =
√

2

GeV and mb = 4.5 GeV. In figure 11 the gluon distribution and in figure 12 the c + c̄

distributions at µ = 100 GeV are shown.
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Figure 11: gluon PDF at µ = 100 GeV. The evolution of the PDF for different matching

scales creates an error band for each perturbative order.
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Figure 12: charm + anti-charm quark PDF at µ = 100 GeV. The evolution of the PDF

for different matching scales creates an error band for each perturbative order.

4.3. Other tests and subtleties

4.3.1. Maple versus c++; trilogarithm

After some checks between the numerical matching kernel results from c++ against the

Maple results it seemed that there were different approaches of the trilog. Therefore

a check has been done to compare the Maple values against these of the xmath im-

plementation of chilipdf. Apparently, in xmath the trilogarithm with the argument

−z (which is used in one of the matching kernels, namely in A
(2)
Qg) is not accurately

calculated. Therefore Li3(−z) has been rewritten with the square relationship4:

Lis(−z) + Lis(z) = 21−sLis(z
2) (23)

with this implementation, the matching kernels corresponded with a relative difference

to orders of 10−16 which is machine precision.

4.3.2. Mellin moments

A check for the matching kernels to be right is to transform them to Mellin space and

compare it with the Mellin transformed functions which are also given in the papers

[10] and [11].

The Mellin convolution is famous for the simplicity of the operation. Instead of the

integral convolution in x space, one can transform this to a simple multiplication of

4https://en.wikipedia.org/wiki/Polylogarithm

17



numbers (instead of matrices and vectors). This makes the check rigorous. The check

is only done for the Aqq kernel, because it is a short one and at the matching the gluon

mixes with all other PDFs in the evolution basis. It is also one of the fewer kernels that

contains regular, singular and singular integral parts.

5. Conclusion

The matching of αs is implicitly verified by comparing the values with the Benchmark

values at the same scales. This seems to agree on a high accuracy. There are still some

slight doubts whether the implementation of the matching kernels and the combining of

the matrices is done at the exactly right way. The tests that are done give a signal that

it is not far off. But still, the relative difference of our implementation with the Bench-

mark results (on which we could rely) are a bit too large. In some points the relative

difference is of the order of 10−4 (see A) which is not small enough for a good agreement.

The usage of different matching scales in figures 11 and 12 produce very small error

bands, but there is a difference. First the lower matching scales were taken at mc/2 and

mb/2. This seemed wrong, because then the PDF has been evolved back from mc (the

starting scale) to the lower scale mc/2 which is matched to a higher number of flavors

there. Next, the same region is passed in evolving to higher scale but with nf + 1 light

flavors. So therefore the first matching scale has been changed to mc. Then the error

bands became much smaller.

What can be seen very clearly is that the gluon distribution and the u valance distribu-

tion contribute oppositely to fulfill the momentum rule which states that all integrated

PDFs give the total momentum fraction of the proton, which is 1.

There are no signals for big mistakes in the matching procedure of the PDFs in the

code. All the tests that are performed (comparison with Maple, calculating Mellin

moments, comparison to Benchmark data) indicate a well performed matching.

Epilogue

I want to thank my supervisor Markus Diehl for this opportunity and the many discus-

sions we had on the topic of flavor matching and QCD. Also many thanks to Riccardo

Nagar for helping me finding my way in c++ and other technical issues. He was also a

great help for explaining theoretical issues. I also want to thank the organization of the

DESY summer school for a very nice 8 weeks at this institute. It has been a wonderful

time.
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A. VFNS comparison with Benchmark results

The comparison of evolving the metadata set LesHouchesWG2002 in a variable flavor

number scheme is given here. In table A, the relative differences from our procedure

compared to the Benchmark results are shown. The d valance and gluon distribution

at NNLO in point x = 10−7 are most likely typos in table 15 in [16].

x xuv xdv xL− 2xL+ xs+ xc+ xb+ xg

NLO nf = 3 to 5

10−7 1.412−5 3.270−6 4.197−6 1.276−5 3.965−6 5.379−6 5.624−6 2.301−5

10−6 3.083−6 7.420−6 1.573−5 4.277−6 2.317−6 3.986−6 1.035−6 9.703−6

10−5 6.065−6 2.684−5 2.855−6 1.220−5 1.951−5 2.469−5 1.891−5 1.471−5

10−4 1.657−5 1.582−6 6.100−6 1.789−5 5.814−6 9.297−7 8.554−8 2.077−6

10−3 1.042−6 7.580−6 2.565−5 8.074−7 1.474−5 3.494−6 1.475−5 1.351−5

10−2 9.249−6 2.404−5 2.298−6 4.511−6 4.776−6 7.837−7 7.891−6 6.330−6

0.1 3.202−6 1.287−5 1.747−6 9.411−6 2.136−5 5.122−6 1.298−5 5.358−7

0.3 1.906−6 2.445−5 5.257−6 1.049−5 3.349−6 8.027−6 1.626−5 2.695−6

0.5 1.692−5 1.264−5 5.877−6 1.391−5 2.077−6 4.301−6 9.578−6 3.162−6

0.7 7.019−5 8.078−6 7.935−6 6.020−6 3.609−5 8.442−6 5.935−6 8.732−6

0.9 1.344−5 6.752−6 1.752−5 5.941−5 6.495−5 1.749−4 2.239−5 3.351−5

NNLO nf = 3 to 5

10−7 1.450−5 9.000 3.606−6 1.874−5 1.124−7 5.696−6 1.134−5 9.000−1

10−6 5.777−6 9.378−6 8.332−6 6.671−6 5.423−6 7.896−6 5.997−6 3.138−6

10−5 5.843−7 2.122−5 3.803−5 1.007−5 2.817−5 3.306−5 4.372−6 6.909−6

10−4 1.918−5 3.472−6 3.836−6 2.689−5 2.551−6 4.762−6 6.991−6 2.618−6

10−3 3.219−6 4.851−6 1.591−5 6.123−7 1.210−5 1.278−5 1.360−5 1.963−6

10−2 1.903−6 9.760−6 3.924−7 8.060−6 1.629−6 2.160−5 7.031−7 5.472−6

0.1 2.075−6 8.355−6 3.340−6 8.596−6 1.842−5 2.467−5 6.872−6 5.218−6

0.3 8.320−6 9.436−6 1.205−5 2.865−6 9.518−8 6.268−5 5.364−5 2.803−6

0.5 1.422−5 1.136−5 9.948−6 3.676−6 3.371−6 1.726−4 8.162−5 9.685−7

0.7 9.540−6 1.660−5 2.568−5 1.428−6 2.559−5 3.556−4 1.937−4 3.863−6

0.9 4.496−6 4.003−6 5.816−5 1.784−4 1.979−5 5.418−6 1.456−4 2.107−6

Table 1: Relative difference with evolution benchmark values VFNS.
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