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Abstract

The ttH(bb) search at ATLAS suffers from a prohibitively small signal-to-background
ratio. This led to the study of multivariate analysis tools such as Boosted Decision
Trees, in order to reduce the uncertainty in the measured signal-strength param-
eter. The systematic bias introduced in the BDT from the choice of background
event generator was investigated, by analyzing the effect of penalizing poorly-
modelled regions of phase-space. The method was found to be partially effective
against starkly different choices of generator, with scope for further improvement
and development outlined.
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1. Introduction

1.1. Motivation

The detection of the Higgs boson at the Large Hadron Collider (LHC) in 2012 heralded a
rich new era of precision High Energy Physics, wherein probing the Higgs sector allows us
to explore the boundaries of the Standard Model and verify its predictions. In particular,
measurement of the Yukawa coupling between the top quark and the Higgs boson - the
two heaviest particles in the Standard Model - may serve as a probe into the nature of
the Higgs field, and has garnered interest in recent years as a measurement potentially
sensitive to Physics Beyond the Standard Model. In so being, the focus of this analysis
is the Higgs boson production channel associated with two top quarks (referred to as
ttH), shown in Fig 1a.

(a) ttH(bb) signal (b) tt+bb dominant background

Figure 1: Relevant Feynman diagrams in the ttH analysis.

This particular production mode enables the direct investigation of the Top-Higgs
Yukawa coupling, as opposed to indirect measurements such as those involving a virtual
top loop, common in other Higgs production channels. The Standard Model predicts a
contribution of only around 1% from the ttH production mode to the total Higgs boson
production cross-section. As such, the Higgs boson decay to b-quark jets is selected in
this analysis, as it amounts to the largest branching ratio for the Higgs boson’s decay,
at Γ(H → bb) = 58% [1].

The dominant background in this analysis is top-quark production with associated
b-jets, shown in Fig 1b. The background is estimated to be 3 orders of magnitude larger
than the signal [2], which yields a significantly small signal-to-background ratio. This,
coupled with the extreme similarity of final state product signatures, poses a major
challenge in detecting and classifying events from the large plethora of data collected at
the LHC. These considerations thus provide the motivation for introducing multivariate
analysis techniques, discussed further in section 2.
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1.2. The ttH(bb) Analysis at ATLAS

The ATLAS search for the ttH(bb) signal was performed in 2017 utilizing 36.1 fb−1 of
pp collision data at

√
s = 13 TeV, collected at the LHC in 2015 and 2016. In May, 2018,

the Collaboration announced the ratio of measured ttH(bb) signal cross-section to the
Standard Model expectation to be µ = 0.84+0.64

−0.61, the large uncertainty found to stem
largely from the uncertainty on the Monte Carlo modelling of the tt+bb background [2].

The full analysis involved sub-classifying the data into separate regions of phase-
space, based on the events’ number of jets and the number of b-tagged jets. In the present
study we focus solely on the most sensitive signal region, namely the semileptonic decay
channel (ie, containing only one electron or muon from the top decay), and identified to
contain at least 6 jets and at least 4 b-tagged jets, consistent with the expected decay
product profile (shown in Fig 2). We specialize to this region in order to test features
of the multivariate analysis step with the highest possible signal statistics.

Figure 2: ttH(bb) nominal decay mode: 6 hadronic jets with 4 b-tagged jets

The prohibitively small signal-to-background ratio in this analysis engenders the
need for multivariate analysis techniques, such as Boosted Decision Trees (BDTs), in
order to classify signal and background events. The BDTs are generated (‘trained’) with
simulated Monte Carlo data, and are then applied to the real and simulated datasets.
The output of the BDT may then be utilized to perform a full fit of the theoretical sim-
ulation to the data, and thus extract the so-called ‘signal-strength parameter’ µ defined
above. An example of the output of this procedure is shown in Figure 3, published by
the ATLAS Collaboration. Even in the region with most classified signal data (shown
in red) on the rightmost bin in the plot, the uncertainty in the background (shown as
a hashed histogram) is of the same order as the classified signal, which clearly obscures
the possibility of making a precise measurement. Consequently, reducing the systematic
errors introduced via the BDT is of paramount importance in reducing the error in µ.
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Figure 3: BDT output showing a comparison between theoretical prediction and data [2].
The real data is shown as black dots, predicted background in blue, predicted
signal in red, and uncertainty on the background as a hashed histogram. The
size of the uncertainty on the background obscures any prospect of obtaining
precise signal measurements, motivating the study of this uncertainty.

2. Multivariate Analysis

2.1. Boosted Decision Trees

A decision tree is a machine learning technique utilized to detect patterns in data. It
operates as a binary classifier, in which a data set is successively split in an attempt
to maximally classify the entries as either one of two classes, in our case ‘Signal’ or
‘Background’. At each branching point (‘node’) in the tree, the classifier detects which
variable and value would most optimally yield a cut (by minimizing a pre-determined
loss function), and thus branches of the tree are created according to whether events lie
above or below this cut-off value. This is performed iteratively until a pre-determined
depth, or until the data set is completely classified into one of the classes. A schematic
decision tree is shown in Figure 4.

In order to generate a decision tree, the data set is generally split into a training
and a testing subset, whose true classification is already previously known. The training
subset is utilized to generate the tree architecture, and the testing subset is used to verify
the efficacy of the tree’s classifications. A perfect decision tree would thus classify all of
the testing dataset with exact correspondence to their true classification.

The advantage of utilizing decision trees as a multivariate analysis tool is their
simplicity and comprehensibility, in comparison with other machine learning techniques.
However, decision trees are also relatively unstable with respect to statistical fluctua-
tions in the training data, and are generally regarded as weak classifiers [3]. Hence, one
generally constructs a stronger classifier by combining many decision trees, which may
be achieved through a variety of methods. We focus in particular on Boosted Decision
Trees, which are frequently utilized in High Energy Physics statistical analyses.
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Figure 4: Schematic Decision Tree [3]. At each node, the optimal variable x and cut-off c
are determined and data is classified along the branches of the tree. Each event
begins at the root node and eventually reaches a final node (‘leaf’), where the
data is classified as either Signal or Background.

Boosting involves combining multiple decision trees (in the order of hundreds)
through an effective weighted average of classification outputs. Most common boost-
ing algorithms generate decision trees successively by accounting for the mistakes that
the previous classifier makes, as demonstrated in Figure 5. Upon combining many weak
classifiers, one is thus able to obtain a stronger classifier, namely the Boosted Decision
Tree (BDT).

Figure 5: Schematic BDT for classifying data as either a red cross or a blue dot. The
data set is classified across the two-variable phase space by multiple successive
decision trees, each taking the mistakes of the previous classifier into account
as it performs its own classification. The larger data points represent a larger
weighting given to the corresponding events upon classification. Upon com-
bining (‘boosting’) all weak classifiers, we obtain a stronger classifier.

The resulting quantity obtained is the BDT Discriminant Response, also called the
Classification Score. This score, measured from -1.0 to 1.0, is a probabilistic measure of
an event being signal-like (output = 1.0) or background-like (output = -1.0). A sample
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BDT output distribution is shown in Figure 6. An ideal classifier would thus classify
all true signal events (shown in blue) as signal-like, with a distribution skewed mostly
to the right, and all true background events (shown in red) as background-like, with
the corresponding distribution skewed mostly to the left. Indeed, the overlap of the two
distributions may serve as an indication for the performance of the BDT classification,
which is further discussed in Section 2.2.

Figure 6: BDT Classification Score for ttH signal and tt+bb background. The blue (red)
histograms correspond to normalized distributions of true signal (background)
event estimates.

The Boosting algorithm utilized in this analysis is the AdaBoost scheme, developed
by Freund and Schapire (1996) and implemented within the TMVA Multivariate Analysis
Tool interfaced within Root, the nominal data analysis software utilized in HEP. We
make this choice of Boosting algorithm due to its proven success as a robust boosting
scheme [4].

2.2. Classifier Performance

Once a BDT is trained, its performance may be evaluated by analyzing its Receiver
Operating Characteristic (ROC) curve, or analogously the area under the ROC curve
(AUROC). The ROC Curve is a measure of the BDT’s background rejection versus its
signal efficiency. Signal efficiency is defined as the ratio of correctly classified signal
events (‘true positives’) by incorrectly classified signal events (‘false negatives’), whereas
background rejection is defined as the ratio of incorrectly classified background events
(‘false positives’) by correctly classified background events (‘true negatives’). A visual
definition of such classification regions is shown in Figure 7a, and examples of different
ROC curves may be seen in Figure 7b.

A completely random classifier equally classifies signal and background events cor-
rectly and incorrectly. However, an ideal classifier would perform as to maximize the
signal efficiency and background rejection. This would be analogous to observing a dis-
tinct separation in the two BDT output distributions shown in Figure 6, and is reflected
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(a) Classification measures used in
calculating signal efficiency and
background rejection.

(b) Sample ROC Curves. A random
guesser performs equally badly in clas-
sifying events correctly or incorrectly;
a strong learner pushes the ROC curve
towards (1.0, 1.0).

Figure 7: Measuring BDT performance.

in an AUROC value as close to 1.0 as possible. As such, we may quantify the perfor-
mance of a BDT as a classifier in terms of an AUROC value: the closer to 1.0, the better
the BDT’s performance.

2.3. Overtraining and Bias

A highly important feature to take into account when generating and utilizing BDTs
is the risk of statistical overtraining, which refers to generating decision trees that
are too specific to the training data. If the classification becomes over-specialized to
the training dataset, the capability to accurately classify other data is lost. This may
be checked for by utilizing the testing dataset, and analyzing discrepancies in the BDT
outputs between training and testing sets. An example of overtraining is shown in Figure
8.

The overtraining may be quantified by performing a k-fold Cross-Validation Check
[5]. In general, a dataset is actually split into k randomly sampled subsets (called ‘folds’),
trained on k-1 folds, and tested with the remaining fold. The variance in the AUROC
values for each of the BDT outputs can thus be utilized as an indication for overtrain-
ing. In this analysis, however, we refrain from performing such checks, as they have
been previously carried out in other work. We hence utilize only visual clues to detect
significant changes in statistical overtraining.

Nevertheless, an important source of bias often not accounted for is systematic
overtraining, and is particularly pernicious in the ttH(bb) analysis. This bias arises
from the use of simulated Monte Carlo (MC) data used to train our BDTs, as we do not
have access to real-world data whose true classification as ‘Signal’ or ‘Background’ is
previously known. However, multiple MC event generators exist to model the dominant
tt+bb background, none of which model reality with 100% accuracy. As such, making

8



(a) A BDT displaying no overtrain-
ing.

(b) A BDT displaying clear overtrain-
ing.

Figure 8: An example of overtraining. The BDT output for the training dataset is shown
as a dotted distribution, and for the testing set as filled histograms. On the
left we see agreement between the two overlaid distributions, indicating little-
to-no overtraining. However on the right a clear discrepancy may be seen,
indicating this BDT has been overtrained.

a particular choice of MC event generator induces a systematic overtraining bias in the
BDT. In fact, this particular bias was determined to be the leading cause of the uncer-
tainty in the signal-strength µ published by the ATLAS Collaboration in May 2018 [2].
Seeking to reduce this systematic bias thus became the focus of the present study.

It is also worth mentioning in passing that the aforementioned k-fold Cross Vali-
dation Check is blind to systematic overtraining in the BDT, and as such is of no use
in mitigating this issue. This leads one to introduce a novel concept for mitigating
systematic bias, discussed in detail in Section 3.

3. Reducing BDT Systematic Training Bias

3.1. Penalty Weighting

The concept behind this study is to introduce penalty weights to events that fall in
regions of discrepancy between different MC event generators, when training the BDT.
Through penalizing such events, poorly-modelled regions of phase-space are given a lower
priority in the training, which would consequently reduce the dependence of the BDT
classifier on the particular choice of MC generator, and thus mitigate the systematic bias
discussed in Section 2.3. Even though some classification power is likely to be sacrificed
(given that one would now train a BDT with lower sensitivity to outlying events), the
expected reduction in the BDT’s model dependence is projected to have a significant
impact in reducing the large uncertainty in µ.
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This study makes use of the following MC event generators for the tt+bb back-
ground:

- PowHeg+Pythia 8 (PP8)

- Sherpa

- aMC@Nlo (aMC)

- PowHeg+Herwig 7 (PoH7)

We take PP8 as the nominal generator in this study, due to its observed closeness to
real data observed in previous work. The generators differ primarily in their number of
final state partons calculated by the hard process, the algorithms used to develop parton
showers, the modelling of multi-parton interactions, and the modelling of hadronisation,
among other features. The signal sample for this study is also generated using PP8.

The kinematic variables listed in Appendix A are utilized to train the BDT in this
analysis. Previous work has been conducted to investigate and verify this particular
choice of training variables [6].

The proposed method to introduce this penalty weighting into the training of the
BDT is as follows:

1. Obtain ratios of binned distributions of all input variables from two different gen-
erators: the Nominal Generator (PP8) and the Test Generator (Sherpa, aMC or
PoH7). These ratios are used to define the penalty weights.

2. For each event:

- For each variable, determine the corresponding bin the event falls into and
assign it the corresponding weight.

- Compound all weights.

- Assign the event its overall weight when training the BDT.

3. Train the BDT with and without the penalty weighting, and test with the nom-
inal and test generators without penalty weights, to hopefully observe a reduced
discrepancy between the two testing sets.

The above steps are discussed in more detail in the following section.

3.2. Implementation

The distributions of each input variable generated by the Nominal and Testing Gen-
erators were plotted to the same binning and their ratios taken, an example of which
may be seen in Figure 9. The discrepancies between the two generators, in this case
PP8 and Sherpa, may be clearly seen: whereas for one variable (Fig. 9a) the generators
seem to yield a similar event profile, they yield distinctly different distributions for other
variables (Fig. 9b). The calculated ratios are then utilized as the penalty weight for
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(a) Average ∆R between any two b-
jets

(b) Average ∆η between any two b-jets

Figure 9: Obtaining ratios for penalty weighting. Events generated by PP8 are shown in
blue, and by Sherpa in red. The bottom half of the diagrams shows the ratios
of the distributions, which are utilized to define the penalty weights.

that variable. If a ratio is computed to be above 1, the reciprocal value is taken, such
that events are always penalized by the relative difference between the two generators.

Each event is determined to come from a certain bin in the aforementioned dis-
tributions, and the corresponding weight for the variable is obtained (Fig. 10a). Upon
combining all weights across all variables, the events are assigned an overall total weight,
to be used in training the BDT. Figure 10b shows an example distribution of overall
penalty weights to be assigned to the BDT training set. Whereas the distributions com-
puted for this analysis do not take the errors in the ratio values into consideration, one
should not expect these to be highly significant in the overall analysis, since these regions
of high error arise from regions of low bin statistics (which by definition are statistically
rare).

(a) Each event is identified in the binned input
variable distributions and the correspond-
ing weight from each variable is assigned.
All weights are then compounded together.

(b) Overall penalty weight distribu-
tion for training BDT, com-
puted using ratios of PP8 against
Sherpa.

Figure 10: Assigning penalty weighting to events prior to training the BDT.
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Lastly, the third step involved training the BDT with and without penalty weights,
and cross-testing. The resulting distributions using PP8 and PoH7 are shown in Figure
11. On the top left we observe the BDT being tested and trained with PP8 and no
penalty; it appears to be very robust against statistical overtraining. The top right
shows testing with PoH7, whereupon we may notice a discrepancy between training and
testing, as expected. However, once we introduce penalty weighting we may see that
the testing and training sets for both generators deviate significantly from one another.
This reflects the expected reduction in classification power from introducing the penalty
weighting to the training dataset. This is explored further in Section 4.1.

Figure 11: BDT Outputs comparing training using PP8 with and without penalty
weights, and testing agaisnt PP8 and PoH7. A discussion of quantitative
results is deferred to Section 4.1.

4. Results and Discussion

4.1. BDT Performance

The above methodology was implemented across all three testing generators, and tables
similar to Figure 11 generated. The corresponding AUROC values for each testing set
is recorded in Table 1, as an estimate for the BDT classification power. In particular,
the expectation of reduced performance was confirmed; the BDT generally performs as
a worse classifier upon implementing penalty weights in training. However, one may
also see that the reduction in its classification power is indeed small (of the order of at
most ∼8%) such that this method may still be implemented without compromising the
classification.

It is also worthwhile noting that Sherpa and PP8 appear to be the closest genera-
tors in terms of BDT classification power, whereas aMC seems to be the most distinct
compared to PP8. This matches expectation from known properties of these generators.
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AUROC Test on PP8 Test on Sherpa Test on PoH7 Test on aMC

No Penalty 0.769 0.767 0.782 0.729
With Sherpa Penalty 0.752 0.749 - -
With PoH7 Penalty 0.756 - 0.770 -
With aMC Penalty 0.759 - - 0.708

Table 1: AUROC values for BDT classification of testing samples, with and without
penalty weights. A clear trend is recognized in that classification power goes
down as penalties are added; however the reduction is deemed to be sufficiently
small as to not compromise the BDT. Sherpa is recognized as the closest gen-
erator to PP8, and aMC as the most distinct.

A visual representation of the BDT output distributions for each of the testing gen-
erators is shown in Figure 12. The distributions from PP8 and the alternative generator
are overlaid, and the signal distribution is shown in blue. The ratio of the distributions is
shown in the bottom half of each plot. The left-hand column represents training without
penalties, and the right-hand column with penalty weights added.

The ratio between the two background generator output responses, shown in the
bottom half of figures 12a-12f, is an indicator of systematic bias in the BDT. If the ratio
were exactly 1.0 (within uncertainty due to limited size of the testing sample), this would
be an indication that the algorithm is entirely model independent. Hence, a deviation
from 1.0 may serve as a measure for systematic bias in the BDT.

For a better comparison, Figures 13-15 show Figures 12a-12f overlaid for each gen-
erator, along with a line of best fit fitted to the ratio plots. It is worthwhile noting that
although this line of best fit may serve as a rough indicator of the deviation of the ratios
from 1.0, there is no reason to believe that the ratios should follow a linear trend. Hence
the lines of best fit are included for completeness, but not for further analysis.

Inspecting the plots displayed in Figures 13-15, one may observe that introducing
penalty weighting in training seems to smear the signal distributions towards a more
spread-out classification, and the background distributions to be more populated deeper
into the background- and signal-like regions. The large number of events in the cross-
over region between distributions (from -0.2 to 0.2) is suppressed, and events are pushed
further towards more signal- or background-like classification. The cross-over region
represents particularly indistinct events, such that the multiple decision trees used in
the BDT on average classify them as signal or background with commensurate certainty.
This change may be due to the penalty weights effectively eliminating outlying back-
ground events, that would otherwise be used by the BDT to discern similar-looking
signal and background events. Thus, events are now more coarsely classified by the
BDT such that previously indistinct events fall (both correctly and incorrectly) in more
signal- or background-like regions. This reflects the expected reduction in the BDT’s
classification power.
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(a) PP8/Sherpa No Penalty (b) PP8/Sherpa With Penalty

(c) PP8/PoH7 No Penalty (d) PP8/PoH7 With Penalty

(e) PP8/aMC No Penalty (f) PP8/aMC With Penalty

Figure 12: Cross Testing Results. The training is always performed with PP8, and BDT
outputs of the two background testing sets are overlaid. On the left-hand
side no penalty is used in training, on the right penalty weights are applied.

An unexpected effect of introducing penalty weighting was the impact on the sig-
nal distributions, despite no direct weighting ever being applied to signal samples. De-
spite obtaining a more spread distribution, we appear to also obtain a higher signal-to-
background ratio in the signal-like regions, which are of primary interest. A promising
prospect for future study would be to analyze this ratio as a figure of merit and study
its dynamics as different testing generators are used.
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Secondly, one may see that introducing penalty weighting in training the BDT is
successful for the aMC generator (Fig. 15). In the signal-sensitive region of the BDT
classifier output (from ∼0.6 onwards), one may observe a ∼20% improvement in reduc-
ing the discrepancy between testing sets. This may directly reflect in a proportional
reduction in the uncertainty in µ.

However, the penalty weighting method does not appear to work for Sherpa or
PoH7 (Figs. 13, 14). We observe little-to-no improvement in reducing the systematic
bias, and since there is a definite loss in classification power as discussed above, this
method is rendered unfavourable for these generators. This might be because PoH7
and Sherpa are similar enough to PP8 to begin with, such that the correction caused
by the weighting is too coarse to add any differentiating power between the two. The
current implementation of the penalty weighting thus seems to overcompensate given a
relatively small initial difference between generators.

It is also worthwhile noting the upwards trend in the ratios for Sherpa and PoH7,
and the downwards trend in the ratios using aMC. This may be attributed to the initial
similarities between Sherpa or PoH7 and PP8, and the relatively large initial difference
between aMC and PP8. Since Sherpa and PoH7 are initially similar to PP8, the BDT
classifies them as background-like, as it trains on a similar-looking dataset which it calls
‘Background’. However, given the difference between PP8 and aMC, the BDT classifies
aMC as less background-like, and consequently as more signal-like. Hence, since the
ratios are calculated as PP8/Test Generator, we obtain the observed trend. As such,
the penalty weighting in its current implementation seems to perform better for initially
starkly different generators.

It is interesting to note in Figure 13, however, that the BDT appears to classify a
larger proportion of the PP8 cross-over region events as signal-like compared to Sherpa
after the penalties are introduced. It thus appears that the BDT performs better in
classifying Sherpa events, suggesting that the penalty weighting might be morphing the
training set to be more Sherpa-like than PP8-like. However, this does not seem to be the
case for aMC, which might possibly be due to the large initial differences in generators.
In the case of PoH7, the limited number of statistics obscures the prospect of drawing
meaningful comparisons. A prospect for further investigation would be to analyze how
different penalty weight algorithms affect this trend, and whether training on a different
generator also induces the same observed effects.

The above observations motivate the prospect of refining the weighting algorithm,
in order to detect any improvement in Sherpa and PoH7 and to investigate the perfor-
mance of the BDT in classifying cross-over region events after penalty weights are added.
Unfortunately, a detailed analysis lies beyond the scope of the present study. However,
a brief attempt at modifying the weighting algorithm was performed, whose result and
suggestions for further work are discussed in Section 4.2 below.
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Training: PP8 no penalty, PP8 with penalty (compared to Sherpa). Testing: PP8, Sherpa

Line of Best Fit

Figure 13: Top: Results of BDT Output for PP8/Sherpa with and without penalty
weights, overlaid. Middle: ratios of background distributions with and with-
out penalty weights, overlaid. Bottom: ratios with added line of best fit. The
distributions indicate the penalty weighting mostly impacts the cross-over re-
gion around [-0.2, 0.2], as discussed in the text. The penalty method appears
to be ineffective in combating systematic bias.
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Training: PP8 no penalty, PP8 with penalty (compared to PoH7). Testing: PP8, PoH7

Line of Best Fit

Figure 14: Top: Results of BDT Output for PP8/PoH7 with and without penalty
weights, overlaid. Middle: ratios of background distributions with and with-
out penalty weights, overlaid. Bottom: ratios with added line of best fit.
The two generators appear to perform very similarly, indicating that the cur-
rent implementation of the weighting algorithm is ineffective against initially
similar generators.
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Training: PP8 no penalty, PP8 with penalty (compared to aMC). Testing: PP8, aMC

Line of Best Fit

Figure 15: Top: Results of BDT Output for PP8/aMC with and without penalty
weights, overlaid. Middle: ratios of background distributions with and with-
out penalty weights, overlaid. Bottom: ratios with added line of best fit. The
penalty weights appear to induce a significant decrease in systematic bias in
the signal-sensitive region, potentially due to stark initial differences between
the generators.
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4.2. Modifying the Weighting Algorithm

The initial implementation of the penalty weights was performed only as a proof of prin-
ciple for this method of reducing systematic bias in BDT training. As discussed above,
the pilot implementation compounds all penalty weights across all variables together in
equal measure as woverall =

∏N
i=1wi, where N is the number of input variables shown in

Appendix A and wi the weight for the ith variable.
As a second approach, rather than compounding all weights, the variable with

the highest weighting was identified and only its weight was assigned to the event in
training, such that woverall = whighest. This method was tested with Sherpa as the
testing generator, and the results are shown in Figure 16.

(a) Results of Cross-Testing. We observe a very
small shift in the BDT response when the
woverall = whighest algorithm is used, almost
negligible.

(b) BDT outputs overlaid and the ratios
with and without penalty shown. The
penalty weights have a negligible effect
on the BDT response.

Figure 16: New Penalty Weighting Algorithm. Training was performed with PP8, and
testing with Sherpa. A coarser binning is utilized for clarity.

As the figure demonstrates, this particular algorithm appears to be too weak to
generate any significant change to the systematic bias in the BDT training. This may
serve as an indication that the optimal weighting method is somewhere in between
compounding all variables and using only one – or that utilizing a different algorithm
might be beneficial.

A suggestion for future research would be to further investigate ways to refine
the weighting algorithm, perhaps giving larger priority to certain variables’ weights if
they are deemed to be particularly sensitive to the differences in the generators. In
particular, one could define the overall weight as woverall =

∏N
i=1 ciwi, where ci is some

weighting related to the variables’ separation power, or a parameter that quantifies the
differences between how the generators model different variables. An optimization could
be performed to these ci’s to determine the most optimal weighting algorithm.
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5. Summary, Conclusions and Outlook

The prohibitively small Signal/Background ratio in the ttH(bb) analysis led to the im-
plementation of multivariate analysis tools such as classification BDTs. However, large
uncertainties in the dominant background modelling reflected large uncertainties in the
signal-strength parameter, thus motivating the study of model dependence in the BDT.
A novel method for reducing the systematic bias in the BDT training was investigated,
consisting of implementing penalty weights to events that fall in regions of discrepancy
between different MC background event generators. The current implementation of the
method was shown to be effective for test generators with large initial discrepancy (PP8
vs. aMC), but ineffective against others with smaller initial discrepancy (PP8 vs. PoH7,
PP8 vs. Sherpa).

Repeating the study with an increased number of MC generator statistics would be
beneficial in mitigating statistical ambiguities in these results (particularly for the PoH7
generator). Alternatively, the weighting algorithm could be modified as to ignore regions
of low statistics when compounding the penalty weights.

Further study is also required to investigate the implementation of the weighting algo-
rithm, with particular focus on optimizing the method for compounding the weights.
Further analysis on the effect of the weighting on the overall BDT performance is also
advised, in particular through performing the training with a different generator, as to
check whether trends in the results match those observed in the current study.
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A. Variable List for BDT Training

Variable Name Variable Description

nHiggs30 70 Number of b-jet pairs with invariant mass within 30 GeV of the Higgs
boson mass

nJets Pt40 Number of jets with pT ≥ 40 GeV
pT jet5 pT of fifth leading jet
HT jets Scalar sum of jet pT

HT all Scalar sum of all pT

H1 all Second Fox-Wolfram moment computed using all jets and charged leptons
dEtajj MaxdEta Maximum ∆η between any two jets
Centrality all Scalar sum of the pT divided by the sum of E for all jets and the lepton
dRbb avg 70 Average ∆R for all b-tagged jets
Mbb MindR 70 Invariant mass of the combination of any two b-jets with the smallest ∆R
Mbj MaxPt 70 Invariant mass of the combination of jet and b-jet with the largest vector

sum pT

dRbb MaxPt 70 ∆R between the two b-jets with the largest vector sum pT

dRbb HiggsMass 70 ∆R between b-jets from the Higgs candidate
dRlepbb MindR 70 ∆R between the lepton and the combination of the two b-tagged jets with

the smallest ∆R
Aplanarity jets 1.5λ2, where λ2 is the second eigenvalue of the momentum tensor built with

all jets
Mjj MindR Invariant mass of the combination of any two jets with the smallest ∆R
dRbj Wmass 70 ∆R between a b-jet and any other jet from the W boson candidate
Mbj Wmass 70 Invariant mass of a b-jet and any other jet from the W boson candidate
Mbj MindR 70 Mass of the combination of any jet and b-jet with the smallest ∆R
dRlj MindR ∆R between any jet and a b-jet with the smallest ∆R
pT jet3 pT of the jet with third largest pT

dRbb MaxM 70 ∆R between the two b-jets with the largest invariant mass
H4 all Fifth Fox-Wolfram moment computed using all jets and charged leptons
Aplanarity bjets 70 As Aplanarity jets, for b-tagged jets
Mjjj MaxPt Invariant mass of three jets with largest vector sum pT

Mbb MaxM 70 Largest invariant mass of the combination of any two b-jets
Mjj MinM Smallest invariant mass of the combination of any two jets
dEtabb Avg 70 Average ∆η for all b-jets

Table 2: List of variables used in the BDT. All b-tagged variables correspond to a b-
tagging at 70% efficiency.
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