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Abstract

The cosmological stochastic gravitational wave background consists of relic gravita-

tional waves from the very early universe. In this report we will take a brief look at

two of the possible sources, cosmological first-order phase transitions and cosmic strings.

Both sources lie in the detection sensibility range of LISA. We will also take a look at

backgrounds that can be modelled with a power-law and recreate power-law integrated

sensitivity curves for LISA and other ground-based detectors such as LIGO.
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1 Introduction

Gravitational waves (GWs) are perturbations in the curvature of space-time that are created

when objects accelerate. Gravitational waves were first directly detected in 2015 when LIGO

(The Laser Interferometer Gravitational-Wave Observatory) observed a signal from two black

holes merging [1]. GWs are predicted by Einstein’s theory of general relativity, but the

concept was first proposed by French physicist Henri Poincaré in 1905 [2].

However, LIGO is not the only detector for GW detection. The International Pulsar Timing

Array (IPTA) collaboration is currently looking at the other end of the GW frequency

spectrum (f ∼ 10−9 to 10−8 Hz) with widely distributed millisecond pulsars [3]. A sensitivity

for a detection is expected to be reached with the SKA (Square Kilometre Array) Telescope

that is currently moving towards its construction phase [4].

There are limitations with Earth-based detectors such as seismic noise that prohibits them

going to longer wavelengths. Therefore, we must consider also building space-based detectors

in addition to the emerging third generation of ground-based detectors, Cosmic Explorer (CE)

and Einstein Telescope (ET). This is where detectors such as LISA (Laser Interferometer

Space Antenna), BBO (Big Bang Observer) and DECIGO (Deci-Hertz Interferometer

Gravitational wave Observatory) step in, see Fig. 1.

In this report we will focus on the stochastic cosmological GW background and in its possible

sources. The stochastic background consists of multiple independent sources that when

combined form a background of gravitational waves from the early universe. The stochastic

background is therefore sought after for the information it could provide of the events from

the very early universe. Namely probe the cosmology before Big Bang nucleosynthesis, thus

offering a new source of information for high energy physics research [5].

2 The cosmological stochastic GW background

Like introduced in the previous section, the cosmological stochastic GW background consists

of relic GWs from the very early universe. These relic GWs originate from different

independent cosmological sources. The background is isotropic, stationary and unpolarized

leading to a conclusion that its main property is the frequency spectrum the GWs produce

[5]. In this section we will briefly go through how to characterise this stochastic background.

The fractional energy density of the GW with respect to the total energy density of the
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Figure 1: The sensitivity curves of current and future detectors. The highlighted areas are
regions where the different sources may produce GWs. Source: http://gwplotter.com/

universe today is

ΩGW (f) =
1

ρc

dρGW

d log f
, (1)

where ρGW is the energy density of stochastic background of cosmological origin and ρc is the

critical energy density of the universe defined as

ρc =
3H2

0

8πG
, (2)

where G is Newton’s constant and H0 is the Hubble constant. H0 = h0 × 100 km/(s×Mpc)

where the value h0 represents the experimental uncertainty. We have set h0 = 0.7. We also

express the intensity of the stochastic GW background as h2
0ΩGW in order to eliminate the

uncertainty that comes with using h0 [5].

We can also express quantity ΩGW with the help of characteristic amplitude of the stochastic

background hc(f) as

ΩGW =
2π

3H2
0

f 2hc(f)2. (3)
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The relationship between characteristic strain and the spectral density Sh(f) is known to be

[6]

hc(f) =
√
fSh(f). (4)

Thus, Eq. 1 can be also written as

ΩGW =
2π

3H2
0

f 3Sh(f). (5)

3 Power-law integrated sensitivity curves

In this report we will focus solely on stochastic backgrounds that can be modelled with a

power-law. Integrating over frequency, as well as time, increases the detection sensitivity of

the stochastic background. The method for creating these curves is introduced in Ref. [6]. We

call these curves that take into account the increased sensitivity of the detectors power-law

integrated curves. We now produce these sensitivity curves for different durations of LISA

mission as well as ground-based detectors CE and TE. We also construct the power-law

integrated curve for LIGO. Since LIGO consists of two detectors (Hanford and Livingston

sites) we need to take into account the overlap reduction function. We go briefly through the

method of creating these curves.

The detectability of a GW signal can be estimated with a signal-to-noise ratio

SNR =

√
t

∫ fmax

fmin

df

[
h2ΩGW(f)

h2Ωsens

]2

, (6)

where t is the duration of the mission, Ωsens is the sensitivity of the detector [7].

We will assume that the stochastic gravitational wave background can be modelled with a

power-law,

ΩGW = Ωβ

(
f

fref

)β
, (7)

where β is the spectral index and fref is the reference frequency that depends on the detector

in question. However, the value is arbitrary and does not affect the computation.

For a fixed value of SNR and t we now have the following equation
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Ωβ =
SNR√

t

[∫ fmax

fmin

df
(f/fref)

2β

Ω2
sens(f)

]−1/2

, (8)

where the integration limits ranging from fmin to fmax determine the bandwith of the detector.

It is now straightforward to compute Ωβ for a given value of SNR, where β is a set of 50

values in the range β = {−8, .., 8}. We now get an envelope of curves using Eq. 7, see Fig. 2

for reference. The final curve is composed of the maximum values of each curve, or more

formally by [6]

ΩPL(f) = max
β

[
Ωβ

(
f

fref

)β]
. (9)

Figure 2: The power-law integrated curves are in light blue and the known LISA power-law
curve is in black. The SNR = 20 and duration of the mission t = 5 years.

3.1 LISA

The LISA mission is currently expected to launch in 2034 and it will be the very first

gravitational wave detector in space. LISA will be a triangular configuration consisting of

three spacecraft with an arm-length of 2.5 million km and it will follow Earth from a distance

of 50 million km [8].
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We have performed an analysis of the sensitivity that can be acquired varying the duration of

the mission and the value of SNR, see Fig. 3. As can be clearly seen, all of the power-law

curves vary only slightly in their detection sensitivity.

Figure 3: The produced sensitivity curves for LISA using the power-law integrated method.
We vary the values of SNR and t in years.

3.2 Ground-based detectors

Utilizing the same method from previous section for ground-based detectors, such as CE and

ET, we can now produce the power-law integrated sensitivity curves. The process does not

differ for CE and ET, but for detectors that consist of more than one detector one needs to

determine overlap reduction function that is specific for the detector in question.

To determine the power-law integrated sensitivity curves for LIGO (Fig. 5), we have take into

account the fact that there are two detectors. In this case we have to include the overlap

reduction function for LIGO in Eq. 6 [5]. Thus Eq. 8 becomes

Ωβ =
SNR√

t

[∫ fmax

fmin

df

(
γF12(f/fref)

β

Ωsens

)2
]−1/2

, (10)
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where F12 = 2
5

in the case of two detectors and γ is given as a function of frequency in Fig. 4

[5, 6].

Figure 4: The normalised overlap reduction function for LIGO.

Figure 5: Powe-law integrated sensitivity curve for LIGO, SNR = 10 and t = 4 years.

4 GWs from phase transitions

One source of a cosmological stochastic GW background are the first order cosmological phase

transitions (PTs) that are predicted by many beyond the Standard Model (SM) theories.

These PTs occur when there coexist two local minima, one is in the false vacuum state and

the other in the true vacuum. The field is initially in the false vacuum, and bubbles of the

true vacuum state then nucleate. These bubbles expand and collide which results in

gravitational waves, see Fig. 6 [6].
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One of the most attractive scenarios for cosmological PTs to occur is the electroweak

symmetry breaking. However, in the SM the transition is a crossover instead of a first-order

transition [9]. Nonetheless, in the extensions of SM a electroweak first-order PT still remains

as a possibility and models where the cosmological PT is not tied to the electroweak scale

exist. The background from a first order electroweak PT might the detectable for LISA and

the next generation of ground-based detectors [7, 10]. For a more detailed review of the GWs

from cosmological PTs see Ref. [11].

Figure 6: Bubbles nucleating from the false vacuum into the true vacuum state. Source:
http://www.ctc.cam.ac.uk/

The GW background from PTs has three main processes that produce GWs, the importance

of a contribution from a certain process depends on the model in question. The contributions

are from bubble wall collisions, sound waves in the plasma and magnetohydrodynamic (MHD)

turbulence. Combining these contributions we get

h2ΩGW = h2ΩΦ + h2Ωsw + h2Ωturb (11)

We will now take a closer look at one of the widely studied cases, non-runaway bubbles. In

this case Eq. 11 becomes

h2ΩGW ' h2Ωsw + h2Ωturb. (12)

The velocity of the bubble walls is relativistic and thus the contribution from collisions i.e.

the scalar field is negligible [7].
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4.1 Sound waves

The bubble wall proceeds to move in the plasma creating sound waves. This contribution can

be modelled as

h2Ωsw(f) = 2.65× 10−6

(
H∗

β

)(
κvα

1 + α

)2(
100

g∗

)1/3

vwSsw(f), (13)

where T∗ is the temperature at time t∗ when the GWs are produced, β is the inverse time

duration of the PT, H∗ is the Hubble parameter at T∗, vw is the bubble wall velocity, g∗ is the

number of degrees of freedom and α is defined as the ratio of vacuum energy density to the

radiation bath.

In the case of non-runaway bubbles, the fraction of latent heat converted into bulk motion is

κv ' α(0.73 + 0.083
√
α + α)−1 vw ∼ 1. (14)

The spectral shape Ssw(f) is defined as

Ssw(f) =

(
f

fsw

)3(
7

4 + 3(f/fsw)2

)7/2

(15)

where fsw is the peak frequency that is defined as

fsw = 1.9× 10−5 Hz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6

. (16)

4.2 Magnetohydrodynamic turbulence

In addition to creating sound waves, percolation can also create MHD turbulence in the fully

ionised plasma. The MHD contribution in the GW background can be expressed as follows

h2Ωturb(f) = 3.35× 10−4

(
H∗

β

)(
κturbα

1 + α

)3/2(
100

g∗

)1/3

vwSturb(f). (17)

The fraction of latent heat converted to MHD turbulence is

κturb = εκv, (18)
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where ε is the fraction that is turbulent. This determines how big of a contribution MHD

turbulence has on the GW background. For the sake of being consistent with Ref. [7] we have

set ε = 0.05.

The spectral shape has an analytical solution of the form

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]11/3 (1 + 8πf/h∗)
, (19)

where the equation depends on the Hubble rate h∗ and fturb is the peak frequency,

h∗ = 16.5× 10−6 Hz

(
T∗

100 GeV

)( g∗
100

)1/6

, (20)

fturb = 2.7× 10−5 Hz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6

. (21)

4.3 GW spectra

Now using Eqs. 12, 13 and 17 we can write down the theoretical prediction for GWs from

cosmological PTs and compare it to the LISA power-law sensitivity curve, see Fig. 7. We can

clearly see that the larger the ratio β/H∗ becomes the weaker the occurring phase transition

becomes and thus results in a weaker signal. However, all the considered scenarios fall to the

sensitivity range of LISA.

5 GWs from cosmic strings

Cosmic strings are thin and line-like objects that may have formed in the early universe

during phase transitions, see Fig. 8. They remain a viable prediction in many of the beyond

the standard model theories [12]. Cosmic strings can be thought of as infinitely long objects

that cross the horizon but they can also form smaller loops [13]. Cosmic strings emit

gravitational radiation and their emissions would be distinguishable in the stochastic

gravitational wave background [14]. Both LISA and the IPTA collaboration may be able to

probe the frequency spectrum where cosmic strings may produce GWs [15]. However, in this

report we will only focus on GWs from cosmic string loops since their contribution is

dominant. Let it also be stated that the model question is the Nambu-Goto model and for a

review of field theory strings we refer the interested reader to Ref. [12].
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Figure 7: Non-runaway bubbles with different values of β/H∗ while T∗ = 100 GeV, α = 0.5,
g∗ = 106.75 and vw = 0.95. The green line is the contribution from sounds waves, red from
MHD turbulence and envelope is blue. The LISA data and detecting sensitivity region is
highlighted in red, we have assumed SNR = 20 and t = 5.

Cosmic strings, if they exist, are not a dominant contribution in the CMB measurements and

thus the network has to exhibit scaling behaviour as the universe expands [12] [16].

Intercommuting and intersecting are important processes in achieving this scaling behaviour

of the network, see Fig. 9. These processes create loops that oscillate, radiate and decay. The

GW emission from loops can give rise to notable GW signal in the stochastic GW background.

We will use the GW spectrum model reviewed in Refs. [17, 18] for the analysis of the GW

background cosmic strings may produce. We assume that majority of the produced GWs are

from the large loops, that while being less abundant in the network compared to smaller

loops, are dominant. Smaller loops lose their energy due redshifting [18].

The length of the larger loops can be modelled with,

li = αti, (22)
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Figure 8: The Higgs field falls into its vacuum expectation value. The different colours represent
the different orientations the Higgs field can fall into. In the core of the string the potential
must have its peak value in order for the field to be continuous [13].

Figure 9: a) Two strings connecting and creating a loop and b) a string intercommuting with
itself

where ti is the time when the loop formed and the constant loop size parameter is set to

α = 0.1. It now follows that as the loop emits energy at constant rate the length of the loop

as a function of time becomes

l(t) = αti − ΓGµ(t− ti), (23)

where Γ = 50 is a dimensionless constant and µ is the string tension of the cosmic string i.e.

the energy stored per unit length. The most stringent limits for µ come from the IPTA

collaboration.

The frequency of the emitted GW for a mode k is

femit =
2k

l
where k = 1, 2, 3... (24)

The frequency now redshifts as a(t)−1 and thus we acquire the frequency as a function of
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emission time t̃

f =
a(t̃)

a(t0)

2k

αti − ΓGµ(t̃− ti)
, (25)

where t0 is the current time, t̃ is the time when the GW signal was emitted and a(t) is the

cosmological scale factor.

By inverting Eq. 25 we acquire the function for the loop formation time

tki (t̃, f) =
1

α + ΓGµ

[
2k

f

a(t̃)

a(t0)
+ ΓGµt̃

]
(26)

The GW contribution from cosmic strings thus takes the form of

ΩGW =
∑
k

Ω
(k)
GW (f) (27)

Ω
(k)
GW (f) =

1

ρc

2k

f

(0.1)ΓkGµ
2

α(α + ΓGµ)

∫ t0

tF

dt̃
Ceff (ti)

t4i

[
a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3

Θ(tki − tF )

=
1

ρc

2k

f

(0.1)ΓkGµ
2

α(α + ΓGµ)
I(t̃, f),

(28)

where tF is the network formation time, Γk = Γ/3.60k4/3 and Ceff is the loop emission factor

that depends on the redshift factor n. We have set Ceff,radiation = 5.4 and Ceff,matter = 0.39 [18].

The mode k = 1 is dominant and thus we only sum over the first ten values of k and conclude

that this approximation is accurate. The integration limits go from radiation domination to

matter era thus we have to split the integral into parts. We consider the cases when both ti

and t̃ are in radiation domination, ti is in radiation but t̃ in matter and the both in matter

domination. Thus we arrive in the following equation for the integral,

I(t̃, f) =

∫ tEq

tF

dt̃ Fradiation(t̃, f) +

∫ t0

tEq

dt̃ Fmatter(t̃, f), (29)

where F (t̃, f) is the integrand when t̃ is in radiation and matter era respectively. One must be

careful with the scale factor ratios and note that ti depends on the emission time.

Now it becomes evident, that using the model in question the GW contributuion from cosmic

strings in detectable in the freaquency range of LISA as well as the upcoming ground-based
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Figure 10: The black curve illustrates both radiation and matter contribution. We have set
Tmax = 100 GeV, Gµ = 10−11. The LISA power-law curve corresponds to SNR = 20 and t = 5
years.

Figure 11: We set tF → 0 and vary the value of Gµ. All the detectors have SNR = 20 and
t = 5 years.

detectors CE and ET, see Figs. 12 and 11. Note that the turn-over at larger frequencies seen

in Fig. 12 depends on the network formation temperature at time tF . The smaller the

temperature the earlier we can see this turn-over in the behaviour.
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6 Conclusions

The cosmological stochastic GW backgrounds presented in this report can be modelled with a

power-law. We have shown that the detection sensitivity increases when we take into account

integrating over frequency in addition to time.

We have taken a closer look into two sources of relic GWs that may contribute to the

stochastic background, cosmological first-order phase transitions and cosmic strings. The

models considered in this report clearly show that LISA is sensitive to both of these sources,

see Figs. 7 and 11 and may thus probe the cosmology of the very early universe. In addition,

both CE and ET are sensitive to a background from cosmic strings. However, this heavily

depends on the string tension of the cosmic strings. Currently the strongest bounds come

from PTA data and in the future we will be able to set even more stringent limits.
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A Appendix

Figure 12: CE with SNR = 10 and t = 4 years.

Figure 13: ET with SNR=10 and t = 4 years.
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