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"My work always tried to unite the truth with the beautiful, but when I had to choose one
or the other, I usually chose the beautiful."

-Hermann Weyl
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1 Introduction

Physicists have long been accustomed to the idea of the perturbative study of a quantum
field theory. The booming advancements in the field of holography, and more precisely
the gauge/gravity duality, have opened new paths to explore these theories. Recent work
has shown that through the study of symmetries and the use of modern and more elegant
formalism, some amplitudes can be calculated to all orders in perturbation theory.

In the present work, we expand on previous work ([1]) which was concerned with a
particular class of dual conformal invariant integrals that arise from a specific class of
scattering processes, in the context of the planar maximally supersymmetric Yang-Mills
(SYM) theory. The integrals we are concerned with correspond to Feynman diagrams
with a so-called double pentaladder topology; what this means is that they are essentially
ladder integrals which are closed on each end by a pentagon. Each pentagon has 3
incoming/outgoing massless particles. A representative example is shown in the figure
below:

Figure 1: A representative example of a (5-loop) pentaladder Feynman diagram

More specifically, the present work expands on the work done in [1] by focusing on the
strong coupling limit of these pentaladder integrals. The present report is structured as
follows: first, we will present some basic background. Then, we will give a very brief
review of what has been done in [1] in order to put our own work in a physical context
and, lastly, we will then proceed to our own work.

2 Basic background

In this section, we will present some of the background needed for understanding the
rest of the report. Unfortunately, in order to keep the size of the presentation relatively
small, we will not include introductions, or even brief reviews to some of the more vast
subjects, but we will touch upon the points that we need. The reader can read through
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the relevant chapters of [2], [3] and [4]. The latter is more useful for what is covered in
section 2.2.

2.1 Spinor-helicity formalism

We are now going to introduce a new notation, which will allow us to re-write null
4-vectors in terms of spinors. This is because the Lorentz group SO(3, 1) is locally
equivalent to SL(2,C) ⊗ SL(2,C), where SL(2,C) is a "complexified" version of our
more familiar SU(2). We do this by adopting the following convention for the (12 , 0) and
the (0, 12) representations, with respect to the spin labels of each of the SL(2,C) factors,
respectively:

χα for left-handed spinors (2.1)

η̄α̇ for right-handed spinors (2.2)

To lower and raise spinor indices, we use

χα = εαβχβ, χα = εαβχ
β, η̄α̇ = εα̇β̇ η̄β̇, η̄α̇ = εα̇β̇ η̄

β̇ (2.3)

with ε can be intuitively thought of as a kind of spinor metric; it raises and lowers
spinor indices in the same way that the spacetime metric raises and lowers spacetime
indices. That being said, this "metric" has some very different properties than those of
the spacetime metric. It is defined as

ε12 = −ε21 = −ε12 = ε21 = ε1̇2̇ = −ε2̇1̇ = −ε1̇2̇ = ε2̇1̇ = 1 (2.4)

This means that εαβεβγ = δγα, and analogously for the dotted indices. We also define the
following inner products:

ηχ ≡ ηαχα (2.5)

η̄χ̄ ≡ η̄α̇χ̄α̇ (2.6)

Since
(
1
2 ,

1
2

)
representations of the Lorentz group are vector quantities1, we must find

a way to go from a vector to its spinorial form. To do this, we introduce the following
matrices:

(σµ)αβ̇ = σµ
αβ̇

= (1, ~σ)αβ̇ (2.7)

(σ̄µ)β̇α = σ̄µβ̇α = (1,−~σ)β̇α (2.8)

1The reader can just perform a Lorentz transform and see that it does transform like a vector.
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The reason for this particular placement of the spinor indices comes from the fact that 0 σµ

σ̄µ 0

χα
η̄α̇


must give back something with the same spinor indices as the initial

(
χα η̄α̇

)T
. Before

moving on, we state some very useful identities.

(σν)αβ̇(σ̄µ)β̇α = 2gµν (2.9)

(σµ)αα̇(σµ)ββ̇ = 2εαβεα̇β̇ (2.10)

(σ̄µ)α̇α(σ̄µ)β̇β = 2εαβεα̇β̇ (2.11)

We are now ready to write 4-vectors in a spinor form. For a 4-vector Aµ, we define

Aαβ̇ = Aµ(σµ)αβ̇ (2.12)

Combining (2.10) with (2.9) we get Aµ = 1
2Aαβ̇(σ̄µ)β̇α. Through (2.10), we can write

down the spinor form of the 4-momentum of a particle as

pαα̇ = pµ(σµ)αα̇ = (po1− piσi)αα̇ =

 po − p3 −(p1 − ip2)
−(p1 + ip2) po + p3


αα̇

(2.13)

Using (2.11), we can define the inner product between the 4-momentum pµ with the
4-momentum qµ as follows:

p · q = pµqµ =
1

2
εαβεα̇β̇pαβqα̇β̇ =

1

2
pαα̇q

αα̇ (2.14)

For massless particles, where we have light-like momenta, p · p = 0, or εαβεα̇β̇pαβpα̇β̇ =

det(p) = 0. This means that at least one of the eigenvalues of (2.13) is equal to zero.
We can thus write

pαα̇ = λαλ̄α̇ (light-like momenta) (2.15)

with pαα̇ having an eigenspinor that corresponds to a zero eigenvalue equal to some
spinor whose inner product with λ̄ is equal to zero.

Using the above result, we can write the following for light-like momenta pαα̇ = λαλ̄α̇

and qαα̇ = χαχ̄α̇:

p · q =
1

2
λαχα

(
−λ̄α̇χ̄α̇

)
=

1

2
〈λχ〉 [χλ] (2.16)

where we have defined

〈λχ〉 = λαχα (2.17)

[λχ] = −λ̄α̇χ̄α̇ = λ̄α̇χ̄α̇ (2.18)
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This definitions will prove themselves to be very useful in the next sections.

2.2 Dual coordinates and Dual Conformal Symmetry

For this section, we will introduce a simple motivating example for a specific set of
variables that will be of particular use to us later on. For this part of the report, the
references [4] and [1] are followed.

Let us examine the amplitude for the 2-loop pentaladder. We can convert our momenta
(internal and external) into other coordinates, called dual coordinates, by the transfor-
mation

pαα̇i = xαα̇i − xαα̇i+1, xαα̇N+1 ≡ xαα̇1 (2.19)

where i corresponds to the i−th scattering particle and N is the total number of external
particles. Given this identification, all scalar products that appear in the integrals can
be written in terms of the following squared differences:

x2ij ≡
(
xi − xj

)2 (2.20)

The 2-loop pentaladder integral is given to us by the Feynman rules for scalar particles
for the following scattering process: Note that xs and xr replace the internal momenta

Figure 2: Feynman diagram for 2-loop pentaladder process for scalar particles. The
momenta of the particles are shown in red lines. The propagators are represented by
scalar propagators in the dual space, which are shown in solid black lines. xs and xr
replace the internal momenta as integration variables. The dashed lines represent the

factors in the numerator of (2.21) which make it dual conformal invariant.
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as integration variables. Applying the Feynman rules, then converting to the dual coor-
dinates, and finally using (2.20), we find an integral

I(2) ∝
ˆ
d4xr
iπ2

d4xs
iπ2

x2Arx
2
Bs(

x21rx
2
2rx

2
3rx

2
4r

)
x2rs
(
x21sx

2
4sx

2
5sx

2
6s

) (2.21)

where we have introduced xαα̇A and xαα̇B in order to keep the integral finite. They satisfy
the null-separation conditions x2A1 = x2A2 = x2A3 = x2A4 = 0 and x2B1 = x2B2 = x2B3 =

x2B4 = 0.

Let us now inspect how the integral (2.21) transforms under conformal transformation
of the dual coordinates, xαα̇i . We perform a dual conformal inversion to get

xαα̇i →
xαα̇i
x2i

, x2ij →
x2ij
x2ix

2
j

, d4xr/s →
d4xr/s

x2r/s
(2.22)

Under this transformation, the extra x2s and x2s factors in (2.21) cancel each other out.
On the other hand, the extra x2i that correspond to the external momenta, as well as the
extra x2A and x2B, do not. This way, (2.21) transforms as

I(2) → x41x
2
2x

2
3x

4
4x

2
5x

2
6

x2Ax
2
B

I(2) (2.23)

As the extra factor in front of the transformed I(2) is just a number that depends on the
external momenta, we see that the amplitude is conformally invariant, i.e. invariant up
to an overall factor2.

From the way that the integral (2.21) transforms under (2.22), we are motivated to define

Ω(2) =
x226x

2
35x

2
14

x2AB
I(2) (2.24)

It is evident that Ω(2) is invariant under the conformal transformation 2.22. This appro-
priately normalized integral is the main object that we examine3.

Since we have symmetries and conditions to be satisfied by the momenta of the problem,
we have a smaller number of independent variables than the initial 24 which correspond to
the components of the external momenta. Let us be more precise. For each momentum,
we have the restriction p2i = 0 because it is associated with a massless particle. This
gives 6 conditions. Moreover, since we have (dual) conformal symmetry, we must also
subtract from the initial degrees of freedom the 15 generators of the conformal group.
This means that we are left with just 3 independent variables. There is a systematic way
to find these and one can read the relevant sections of [5] to learn more about them, but

2For the reader who finds the above incomprehensible, there is a much easier example with 1-loop
integral in [4]

3To be more precise, it is its L-loop generalization that is of interest to us.
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we will not present them here. They are given by

u =
x213x

2
46

x214x
2
36

, v =
x224x

2
51

x225x
2
41

, w =
x235x

2
62

x236x
2
52

(2.25)

Notice that under the transformation (2.22), these coordinates are invariant, which,in a
certain sense, showcases that they are the variables to work with. Using these variables
will prove to be indispensable for the solution of the all-loop problem.

3 Lightning fast review of previous results

Let us denote by Ω(L) the integral associated with the scattering process of an L-loop
double pentaladder scattering process; it is obviously a generalization of (2.24) to L-
loops. Such process is illustrated in fig.3.

Figure 3: The L-loop double pentaladder scattering process.

The main quantity that we want to calculate is

Ω =
∑
L

(
−g2

)L
Ω(L) (3.1)

Luckily and amazingly, there is a property that connects adjacent integrals; there exists a
differential operator, which we denote by D, which acts as some kind of lowering operator
in sense that DΩ(L) = Ω(L−1). Obviously, D−1 acts as a raising operator, in the same
sense, although we will not need the inverse differential operator here. The good news
is that people have already found out what this differential operator is! In particular, in
[6], they have found the following

w∂w
[
−u(1− u)∂u − v(1− v)∂v + (1− u− v)(1− w)∂w

]
Ω(L) = Ω(L−1) (3.2)

By exploiting the symmetries of the problem, the authors of [1] have motivated the use of
a new set of variables, which also turned out to give a much more simplified version of the
final differential equation that must be solved in order to get (3.1). Without repeating
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their arguments, we simply state the transformation from the set of variables (u, v, w)

to the new set of variables (x, y, z):

x = 1 +
1− u− v − w +

√
∆

2uv
, y = 1 +

1− u− v − w −
√

∆

2uv
z =

u(1− v)

v(1− u)
(3.3)

with4 ∆ = (1− u− v − w)2 − 4uvw. One can find the details of this conversion in the
original reference.

With these coordinates on hand, we can turn (3.2) into the simpler

y − 1

y

[(
y∂y
)2 − (z∂z)

2
]

Ω(L) = Ω(L−1) (3.4)

Using (3.1), we obtain

1− y
y

[(
y∂y
)2 − (z∂z)

2 − g2
]

Ω(x, y, z, g2) = 0 (3.5)

Using the fact that x and y are related by a parity transformation and that Ω(x, y, z, g2)

is even under that transformation, we also obtain

1− x
x

[
(x∂x)2 − (z∂z)

2 − g2
]

Ω(x, y, z, g2) = 0 (3.6)

We thus expect Ω(x, y, z, g2) to have the same behaviour for x and y. The reader should
observe the usefulness of using the (x, y, z) variables: equations (3.5) and (3.6) imply
that Ω(x, y, z, g2) can be separated into functions of (y, z) and (x, z) respectively, which
makes things tremendously easier to deal with. This originates from the exploitation of
the underlying symmetries of the problem that we mentioned earlier. We will shortly
see that in these variables, the differential equations that we have to solve have known
functions as solutions.

All that is left now is to solve (3.4) and (3.5). We begin by using the ansatz

z
iν
2 fν(x, y) (3.7)

which turns (3.5) and (3.6) into[
(1− y)

(
y∂y
)2

+
1

4
(1− y)ν2 − yg2

]
fν(x, y) = 0 (3.8)[

(1− x) (x∂x)2 +
1

4
(1− x)ν2 − xg2

]
fν(x, y) = 0 (3.9)

4The sign on front of
√
∆ is arbitrarily chosen because parity changes its sign and also interchanges

x with y.
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respectively. As expected, we can use separation of variables to get four independent
solutions for (3.8) and (3.9); these are given by

F
j(ν)
±ν (x)F

j(ν)
±ν (y), with j(ν) ≡

√
ν2 + (2g)2 (3.10)

F j(ν)ν (x) ≡
Γ(1 + iν+j

2 )Γ(1 + iν−j
2 )

Γ(1 + iν)
x
iν
2

2F 1

(
iν + j

2
,
iν − j

2
, 1 + iν, x

)
(3.11)

where fν(x, y) is some linear combination of the functions (3.10). Here, 2F 1 is a hyper-
geometric function. Obviously, since 2F 1 is a hypergeometric function, F jν (x) is also one.
Furthermore, the Γ−factors in front of (3.11) were chosen so that F jν (x) is normalized
according to F jν (1) = 1.

The full solution for Ω(x, y, z, g2) is given by some linear combination of (3.10). We
will only briefly explain here what the authors in [1] did5 in order to find a meaning-
ful combination, since this is not the main subject of this report. The authors of [1],
then, first require that Ω(x, y, z, g2) be smooth in the octant u, v, w > 0 and by exam-
ining the neighborhood of (u, v, w) = (1, 1, 1), they conclude that only combinations of
F
j(ν)
+ν (x)F

j(ν)
+ν (y) and F j(ν)−ν (x)F

j(ν)
−ν (y) satisfy this condition. For the same condition, by

examining the sign flips of x and y in the positive (u, v, w) octant and relating them
to the singularities of the logarithms found in the hypergeometric functions, they where
able to pinpoint the exact and unique linear combination for Ω(x, y, z, g2) but only up
to some factor. To find the specific factor, they study the boundary condition of large
ν. The final result is given by

Ω(x, y, z, g2) =

ˆ +∞

−∞

dν

2i
z
iν
2
F
j(ν)
+ν (x)F

j(ν)
+ν (y)− F j(ν)−ν (x)F

j(ν)
−ν (y)

sinhπν
(3.12)

This is also the point where our own study begins.

4 Double Pentaladder integral in the strong coupling limit

Our interest lies in the study of (3.12) in the strong coupling limit where

g � |ν|, g →∞ (4.1)

To do this, we perform an asymptotic expansion of the hypergeometric function 2F 1.
The expansion for the case 0 < x < 1 which we will focus on, is given in theorem 3.2 of
[7]. To use it, we perform the replacement

a =
iν

2
, λ =

j

2
, c = 1 + iν, z = 1− 2x, ξ(x) = −iφ(x) (4.2)

5The details of what I am going to describe can be found in the original reference.
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where ξ(z) = ln
(
−z − i

√
1− z2

)
. We choose a branch so that φ(x = o+) = π and

φ(x = 1−) = 0. Combining this with the fact that at strong coupling we have j ≈ 2ig,
we can write their expansion as

2F 1

(
iν

2
+ ig,

iν

2
− ig, 1 + iν, x

)
≈

Γ(1 + iν)Γ(ig − iν
2 )

iπΓ(ig + iν
2 )

×((eπ(g−
iν
2
)K0(gφ) + e−π(g−

iν
2
)K0(−gφ)

)∑
j=1

dj
(ig)j

−iφ
2

(
eπ(g−

iν
2
)K1(gφ) + e−π(g−

iν
2
)K1(−gφ)

)∑
j=1

cj
(ig)j


(4.3)

where K0 and K1 are modified Bessel functions of the second kind. We also emphasize
that φ can be written as φ(x) = arccos(2x− 1), as we will use it later on. Now, to go to
F jν (x), we use (4.3) along with the identities Γ(1 ± z) = ±zΓ(±z) and Γ(1 − z)Γ(z) =

π
sin(πz) ; doing this, we obtain

F jν (x) ≈
xi

ν
2 (g + ν

2 )

i sinh
(
πg − πν

2

)
((eπ(g−

iν
2
)K0(gφ) + e−π(g−

iν
2
)K0(−gφ)

)∑
j=1

dj
(ig)j

−iφ
2

(
eπ(g−

iν
2
)K1(gφ) + e−π(g−

iν
2
)K1(−gφ)

)∑
j=1

cj
(ig)j

 (4.4)

The leading order coefficients c0 and d0 are also given in [7]. We present them here:

c0 = −
√

2

φ

(
1

x
− 1

) 1
4

x−i
ν
2 , d0 = 0 (4.5)

These were used in [1] to get the leading order expansion of F jν (x) (i.e. of order O(1g ) ),
which we state here for completeness purposes.

F jν (x) ≈ √πg
(

1

x
− 1

) 1
4

e−gφ(x) (4.6)

We have successfully expanded the work in [7] to include the next to leading order
expansion. Before proceeding to our findings, we want to further simplify (4.4) and
write it in a form that is easier to manipulate. We start by writing

1

sinh
(
πg − πν

2

) ≈ 2e−πg
∞∑
n=0

(
e−2πg+πν

)n
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This way, we can write (4.4) in the following form

F jν (x) ≈ A+(x, ν, g2) +
[
A+(x, ν, g2) +A−(x, ν, g2)

] ∞∑
n=1

(
e−2πg+πν

)n
(4.7)

where

A±(x, ν, g2) = −x
iν
2 (2g + ν)

∑
j=1

1

(ig)j

[
φ(x)

2
K1(±gφ(x))cj + iKo(±gφ(x))dj

]
(4.8)

In order to perform the next to leading order expansion, we have to keep in mind that

K0(±gφ) ≈
√

π

±2gφ

(
1∓ 1

8gφ

)
e∓gφ, K1(±gφ) ≈

√
π

±2gφ

(
1± 3

8gφ

)
e∓gφ (4.9)

Since φ(x) ∈ (0, π) and we work in the limit (4.1), we find that K1/2(gφ)� K1/2(−gφ),
but we cannot neglect the latter for reasons that we will shortly explain. In order to go
further, we will state the coefficients c1 and d1 which we have calculated through the
procedure proposed in [7]6. The calculation of these coefficients, as well as the subsequent
simplifications of the central results presented here, where the main goal of the project
for which this report is written. The coefficients are then given by:

c1 =
x−i

ν
2

8φ2
(
Φ(z, φ(z), ν) + Φ(z,−φ(z), ν)

)
(4.10)

d1 = −iφ
2

[
x−i

ν
2

8φ2
(
Φ(z, φ(z), ν)− Φ(z,−φ(z), ν)

)]
(4.11)

with z as given in (4.2) and with

Φ(z, φ(z), ν) =
3(1 + ze−iφ) + iφ

(
(z − 2)e−iφ − 4iν(1 + ze−iφ)− 2ν2(1 + z)e−iφ

)
(1 + e−iφ)

√
1 + ze−iφ

iφ

(4.12)
We now use the fact that z = − cosφ to write the above only in terms of φ and ν:

Φ(φ(x), ν) =
3i sinφe−iφ + iφ

(
−(2 + cosφ)e−iφ + 4ν sinφ e−iφ − 2ν2(1− cosφ)e−iφ

)
2 cos

(
φ
2

)√sinφ

φ
e−iφ

=
i
√
φ

2 cos
(
φ
2

)√
sinφ

[
3 sinφ− φ

(
2ν2(1− cosφ)− 4ν sinφ+ (2 + cosφ)

)]

=
i
√
φ

2 cos
(
φ
2

)√
sinφ

[
3 sinφ− φ

(
2
(
ν
√

1− cosφ−
√

1 + cosφ
)2
− cosφ

)]
(4.13)

6with some tricks added in the mix
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What we can immediately see is that Φ(φ(x), ν) is an imaginary quantity. By sending
φ→ −φ in the second line of (4.13), we find that it is too an imaginary quantity, and it
is given by

Φ(−φ(x), ν) = − i
√
φ

2 cos
(
φ
2

)√
sinφ

[
3 sinφ+ φ

(
2
(
ν
√

1− cosφ+
√

1 + cosφ
)2
− cosφ

)]
(4.14)

One thing that the reader might have noticed is the fact that c0, c1 and d1 all have a
factor of x−i

ν
2 in front of them, while A± has a factor of xi

ν
2 We make the following

re-definition of these coefficients to make them real:

c̃0 = −xi
ν
2
φ

2
c0 (4.15)

c̃1 = −xi
ν
2
φ

2i
c1 (4.16)

d̃1 = −xi
ν
2 d1 (4.17)

This turns (4.8) into

A±(x, ν, g2) ≈ (2g + ν)

[
K1(±gφ(x))

(
c̃o +

c̃1
g

)
+K0(±gφ(x))

d̃1
g

]
(4.18)

which is a much nicer form than (4.8) with real coefficients.

Now, from the exact function F jν (x), we know from numerical calculations that it satisfies
the property F j−ν(x) =

(
F jν (x)

)∗
. Hence, F jν (x)F jν (y)−F j−ν(x)F j−ν(y) ∝ Im

(
F jν (x)F jν (y)

)
.

This means that the only way to get Ω(x, y, z, g2) to be non-zero with our approximate
F jν (x) is if we approximate it up to the point that it gains an imaginary part. The same
is true for either or both of A±. Through (4.18), it is clear that the only way for (4.18)
to have an imaginary part is through the Bessel functions. A look at (4.9) reveals that
it is K0(−gφ) and K1(−gφ) that will contribute to this due to being imaginary.

We can now write:

F jν (x)F jν (y) ≈A+(x)A+(y)+∑
n=1

(
e−2πg+πν

)n (
A+(x)A−(y) +A+(y)A−(x) + 2A+(x)A+(y)

)

≈A+(x)A+(y)︸ ︷︷ ︸
real

+

A+(x)A−(y) +A+(y)A−(x)︸ ︷︷ ︸
imaginary

 e−2πg+πν

(4.19)

This is the point at which our project has come to an end. What is left now is to do a
systematic expansion in exponentials in g and their polynomial corrections in order to
obtain a non-zero Ω(x, y, z, g2). The coefficients c̃1 and d̃1 provide more accuracy to the
approximation.
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5 Conclusions and outlook

We have made an asymptotic expansion of the hypergeometric function 2F 1 to obtain
the coefficients c̃1 and d̃1. We have also made significant simplifications of their forms,
as seen from (4.10), (4.11), (4.15), (4.16) and (4.17). These, in turn, allowed us to make
important statements about the imaginary part of our approximation of F jν (x), which in
turn allowed us to figure out the order of approximation that is needed for a non-zero
Ω(x, y, z, g2). In the next stage, we will focus on the systematic expansion of (4.19) in
terms of powers of e−πg and their subsequent polynomial corrections.
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