
Compensation of Thermal Lens Effect in Yb:YAG
Thin-Disk Amplifier by Simple Tunable-Focus

High-Reflector

Semyon Goncharov, NRNU MEPhI, Moscow, Russia

Supervisor: Dr. Luis Zapata, CFEL, DESY, Hamburg, Germany

September 13, 2017

1



Abstract

Thermal lens effect in high averaged power lasers is one of the actual problems
nowadays. In this report it is shown that a very simple tunable-focus high-reflector,
which consists of flat mirror laying on top of vacuum chamber, is able to compen-
sate thermal lens effect preventing decadence of laser beam properties. Depending
on pressure inside the vacuum chamber mirror acts like convex or concave mirror
with tunable focus. Numerical calculations we present are based on theory of small
deflections of thin plates. According to this theory, a sample mirror with the most
appropriate parameters was chosen. Radius of curvature of the sample mirror was
evaluated for different pressures using Michelson interferometer. Experimental
results are in good agreement with numerical predictions.
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1 Theory

1.1 Thermal lens effect

Yb:YAG crystals find application in various laser systems due to its large mechanical
strength and high optical quality. Yb:YAG thin-disk amplifier, which is in the lab of
Ultrafast Optics in the Centre of Free Electron Laser (CFEL), serves for multi-pass
amplifying of the laser beam (λ = 1030 nm) typically from 2-3 µJ to 100 mJ of energy.
The main problem of this optical scheme is the fact that the crystal heats up leading to
thermal lens effect which can be described with the following equation:

n(∆T ) = n0 +
dn

dT
∆T, (1)

where dn/dT is physical characteristic of medium, which is called thermal optical coef-
ficient. n0 is refractive index at point in the absence of laser beam. For Yb:YAG crystal
dn/dT = 7.3 · 10−6/◦K. Depending on mechanism of cooling of the crystal there are
two main cases. The first one is when dn/dT > 0, which is equal to convergence lens.
The second one refers to dn/dT < 0, which is similar to divergence lens. It should be
noted that at a first approximation one can neglect the absorption of generated radia-
tion, because the power of this radiation is 100 less than the power of the laser beam.
However, this effect should be taken into account in cases of non-linear crystals, where
parametric frequency conversion is studied.

Figure 1: Simplified illustration of tunable-focus high-reflector.

It appeared that direct cooling of the crystal is not easy for high averaged power lasers.
That is why, there is an idea of creating simple optical system, which is meant to
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compensate thermal lens effect and improve the quality of laser beam. This system
consists of flat mirror, which lays on the top of vacuum chamber (Fig. 1). The mirror is
coated with thin film of dielectric material with high reflectivity. Using vacuum pump it
is possible to control the pressure inside the chamber. Under some pressure the mirror
deflects and acts like a bi-concave or bi-convex mirror.

1.2 Thin plate theory

To describe the behavior of the mirror under some pressure it is necessary to resort to
the theory of circular thin plates. For the axially symmetrical bending the deflection
depends upon the radial position r only. The differential equation of the deflected surface
of the circular plate for this case [1]

54
rw = −D

(
d2

dr2
+

1

r

d

dr

)(
d2w

dr2
+

1

r

dw

dr

)
=

p

D
, (2)

where D is flexural rigidity

D =
Eh3

12(1− ν2)
. (3)

The solution is the sum of the complementary solution of the homogeneous differential
equation, wh, and particle solution wp

w = wh + wp. (4)

The complementary solution of the Eq. (2) is given by

wh = C1lnr + C2r
2lnr + C3r

2 + C4, (5)

where Ci can be evaluated from the boundary conditions. The particular solution can
be obtained from integration the Eq.(2)

wp =
∫ 1

r

∫
r
∫ 1

r

∫ rp(r)

D
drdrdrdr. (6)

If the plate is under a uniform loading p = p0 = const, the particular solution is

wp =
p0r

4

64D
(7)
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2 Results

2.1 Calculations

According to the thin plate theory, which was mentioned before, in real case parameters
of the deflective mirror can be calculated. We used a model of thin plate with simply
supported edge (Fig. 2), which lays on the elastic seal. Boundary conditions for this

Figure 2: Plate with simply supported edge under a uniform load p0.

case are
w|r=a = 0,Mr=a = 0, (8)

where Mr is radial bending moment

Mr = −D
[
−C1

1− ν
r2

+ 2C2(1 + ν)lnr + C2(3 + ν) + 2C3(1 + ν) +
p0r

2

64D

]
(9)

The terms involving the logarithms in Eq. 5 yield an infinite displacement and bending
moment, and the shear force for all values of C1 and C2, except zero; therefore, C1 =
C2 = 0. Substituting for wp from Eq. 7 into Eq. 5, we obtain the equation for the
deflected surface:

w = c3r
2 + c4 +

p0r
4

64D
, (10)

and the expression for Mr may be obtained from Eq. (4.22) in case of C1 = C2 = 0:

Mr = −D
[
2C3(1 + ν) +

p0r
2

64D
(3 + ν)

]
(11)

Solving Eq. 2 with the boundary conditions Eq. 8 yields

C3 = −p0a
2(3 + ν)

32D(1 + ν)
, C4 =

p0a
4(5 + ν)

64D(1 + ν)
(12)
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Substituting the above into Eq. 10 gives the plate deflection in the form

w =
p0(a

2 − r2)
64D

(
5 + ν

1 + ν
a2 − r2

)
(13)

The maximum deflection, which occurs at r = 0, is

wmax =
p0a

4

64D

(
5 + ν

1 + ν

)
(14)

The solution (Eq. 13) of the problem with parameters from table 1 is presented in
Fig. 4. The parabolic fitting was calculated within 1 Joule laser aperture (16-mm di-
ameter). The optical quality of such mirror depends on spherical aberrations, which are
shown in Fig. 5. These aberrations were calculated and for different pressures in range
from 0 to 2.5 atm. One can see that the less pressure inside the chamber, the more
parabolic shape the mirror has. In the same way spherical aberrations are calculated
with varying thickness of the mirror. In this case the opposite situation occurs. With
increasing thickness, aberrations become less. Moreover, such ranges of pressures and
thicknesses were chosen according to our experimental and manufacturing facilities.

The final cause of this work is the possibility to tune focus of the mirror with varying
pressure inside the vacuum chamber. Expression which describes curvature of the mirror
can be calculated using illustration in Fig. 3:

R =
h2 + a2

2h
≈ a2

2h
(15)

On the basis of the theory of thin plates deflections, the dependence between focus
length and applied pressure was calculated (Fig. 4b). It should be noted that at point
of 2 atm the focus length is in range from 1 m to almost 5 m for different thicknesses.
At the same time, the bigger thickness, the less spherical aberrations the mirror has.
Therefore, the most appropriate parameters of our system exist.

Figure 3: Schematic illustration of deflected mirror with radius a, depth (deflection) h
and radius of curvature R.
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Figure 4: (a) Calculated deflection of the thin mirror under uniform load P0. (b) Cal-
culated dependence between focus length and applied pressure for different
thicknesses. Calculation parameters for (a) and (b) of the thin mirror are
presented in the table 1.

Figure 5: Calculated spherical aberrations for different pressures (a) and different thick-
nesses (b) within 1 Joule laser aperture (16-mm diameter) for the mirror with
parameters presented in table 1.

2.2 Experimental set-up

For experimental work the sample (Fig. 7) was chosen with the following parameters:
diameter is 51 mm, thickness is 3 mm. The mirror has gold 150-nm film to increase the
reflectivity of the surface. The system of gold-coated mirror laying on the top of the
vacuum chamber was installed into position of one of two mirrors which form arms of
the interferometer. The experimental set-up is shown in Fig. 6. The beam propagates
through the system of two lenses forming a telescope. The beam broadens up to 3.5 mm
in diameter, and then it is split by a beamsplitter into two arms. Each of those light
beams is reflected back toward the beamsplitter which then combines their amplitudes
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Table 1: Parameters of the mirror

Diameter 2a 51 mm

Young’s modulus E 73 · 109 Pa

Thickness h 3 mm

Pressure P0 2 · 105 Pa

Poisson’s rate ν 0.17

Figure 6: Experimental set-up: the Michelson Interferometer. A source of light is
Nd:YAG laser (λ = 1064 nm)

Figure 7: The sample: gold-coated mirror (diameter is 51 mm, thickness is 3 mm, thick-
ness of gold film is 150 nm)

using the superposition principle. Finally, the beam comes to Spiricon CCD camera.
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2.3 Measurements

It is possible to see how the interference fringes curve by varying pressure inside the
vacuum chamber. In Fig. 8 an interference pattern in case of gold-coated mirror under 1
atm is shown. Fringes are slightly curved. It corresponds to the deflection of the mirror.

Figure 8: An interference pattern in case of gold-coated mirror under uniform load of 1
atm.

Figure 9: Corresponding deflection of the gold-coated mirror under uniform load of 1 atm
(blue curve represents experimental data, the green one is fitting). Aperture
is 3.5 mm
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The curvature of the deflected mirror was calculated by using mathematical methods
based on double Fourier transform of the intensity distribution of the pattern (Fig. 9).
The depth (deflection) of the mirror equals 0.11 µm. Theoretical prediction is 0.10
µm. Measurements were carried out only for 1.0, 0.5 and ≈ 0.2 atm due to difficulty of
varying pressure inside the vacuum chamber to a high accuracy. Nevertheless, numerical
calculations are in good agreement with the experiment. This suggests that it is possible
to use this simple system in future experiments with Yb:YAG thin-disk amplifier to
compensate thermal lens effect by directly varying pressure inside the vacuum chamber.

Figure 10: Dependence between focus and applied pressure. Green line represents nu-
merical calculations, blue dots are experimental data

11



3 Conclusion

In summary, it was demonstrated how the problem of crystal heating in multi-passing
Yb:YAG thin-disk amplifier can be solved. A simple system was proposed for this
purpose. It consists of the flat mirror (HR) lying on the top of the vacuum chamber
(Fig. 1). Varying pressure inside the chamber one can tune focus length of the mirror.
Therefore, this focus length can be adjusted to the thermal lens curvature. Mirror such
as this could produce a 4-meter focal length (under P0 = 2 atm) with no more than 20
nm of peak-to-valley spherical aberration (1/50 of a wave). In the nearest future this
simple system is meant to compensate thermal lens effect and improve the quality of the
1 Joule laser beam (16-mm diameter).
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5 Supplementary material

5.1 Variable thickness

In our project we used a mirror with constant thickness (3 mm). However, there is
another way to solve the problem of thermal lens effect. If one knows the curvature of
thermal lens in crystal and it is a constant, it is easy to solve Eq. 2 for flexural rigidity
D(r) and then obtain an expression for thickness distribution h(r). Implementation of
this method is described in detail in [2].

Figure 11: Thickness distribution of the mirror in case deflection w is a 4-order
polynomial.

Assuming the deflection of thermal lens can be described with a 4-order polynomial

w = a0 + a1x+ a2x
2 + a3x

3 + a4x
4, (16)

but usually odd coefficients a1 and a3 equals zero, because cross section of the beam is
almost circular, therefore, Eq. 16 is represented, as follows

w = a0 + a2x
2 + a4x

4. (17)

Then, substituting above in Eq. 2 and solve it for D(r), one obtains

D(r) = const

[
a2(1 + ν)

2a4(3 + ν)
+ r2

] −4
3+ν

, (18)
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where const can be evaluated from the boundary condition for flexural rigidity. Further-
more, using Eq. 3, we obtain expression for thickness distribution

h(r) =

[12(1− ν2)
E

]const [ a2(1 + ν)

2a4(3 + ν)
+ r2

] −4
3+ν


1
3

(19)

Assuming a = 25.5 mm, ν = 0.17, P0 = 0, E = 70 · 109 Pa, and const = 1, one can see
that the bigger a4, the sharper distribution we have (Fig. 11).

This method seems to be relatively simple, however, in practice it is not flexible and it
is quite expensive to fabricate a mirror with the defined thickness distribution.

5.2 Elastic foundation

There is one more way to simulate deflection of the mirror. We consider circular plates
loaded symmetrically with respect to their center and resting on a elastic foundation, so
called Wynkler-type. Taking into account the foundation reaction q(r) = k · w(r), gov-
erning differential equation of bending of circular plates resting on a elastic foundation:

54
rw = −D

(
d2

dr2
+

1

r

d

dr

)(
d2w

dr2
+

1

r

dw

dr

)
=
p− kw(r)

D
(20)

Denoting

l =
(
D

k

) 1
4

, (21)

and then introducing the dimensionless coordinate ζ = r/l, one can write Eq. 20 in the
form (

d2

dζ2
+

1

ζ

d

dζ

)2

w + w =
pl4

D
(22)

or in the form

54
rw + w =

pl4

D
(23)

For p = 0, the homogeneous equation (Eq. 23) is reduced to a system of the following
two second-order differential equations:

d2w

dζ2
+

1

ζ

dw

dζ
± iw = 0. (24)

The solution of this system of differential equations is given by

w = C1J0(ζ
√
i) + C2J0(ζ

√
−i) + C3H

1
0 (ζ
√
i) + C4H

1
0 (ζ
√
−i), (25)

where J0(ζ
√
±i) is the Bessel function of the first kind of the zero order and H1

0 (ζ
√
±i)

is the Hankel function of the first kind of zero order. The particular solution also can
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be found [1].

Mathematical approach described above is quite applicable to implementation. However,
this theory looks a little more complicated in comparison with the case of mirror lying on
elastic seal. Solution does not look like a simple polynomial with even indexes in power
in its terms. Thus, spherical aberrations might be much bigger than in our approach.
This issue requires a more detailed study.
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