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Abstract: 


To make predictions of the power spectrum to a higher precision, more accurate descriptions of 


the processes that define the power spectrum must be brought forth. Predictions of the power 


spectrum and unequal time correlators have been tested using several different approaches. In 


this research project, we use the eikonal approximation which resums the impact of soft long-


wavelength modes and generalize it to those of unequal times. As well, we perform 1-loop 


corrections on the eikonal expression and test its validity in limits of small and large k-values. 


We compare the results of our unequal time correlated functions with those of equal time 


correlated measurements.  
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1. INTRODUCTION 


In present models of how large-scale structure develops, cosmologists use a hydrodynamical 


approach to dark matter. With this approach, one can use standard perturbation theory as a 


solution to the hydrodynamical equations and find the equations of motion and thus, the 


evolution of the system. Starting with density contrast: 


𝛿 ≡
𝜌


𝜌
_ − 1     


   𝛿(𝑥) = ∫ 𝑑3𝑘 𝛿(𝑘) 𝑒𝑖𝑘·𝑥 


we can define the power spectrum P(k) as the Fourier transform of 𝜉(𝑟) where: 


𝜉(𝑟) = < 𝛿(𝑥) 𝛿(𝑥 + 𝑟) > 


Then the Fourier transform would be: 


∫
𝑑3𝑥


(2𝜋)3


𝑑3𝑟


(2𝜋)3
𝜉(𝑟)𝑒[−𝑖(𝑘+𝑘′)·𝑥−𝑖𝑘′·𝑟] 


=  𝛿𝐷(𝑘 + 𝑘′)∫
𝑑3𝑟


(2𝜋)3
𝜉(𝑟)𝑒ik·𝑟 


=< 𝛿(𝑘) 𝛿(𝑘′) >  


≡ 𝛿𝐷(𝑘 + 𝑘′)𝑃(𝑘) 


Given the equations of motion: 


𝜕𝛿
~


(𝑘, 𝜏)


𝜕𝜏
+ 𝜃


~
(𝑘, 𝜏) = −∫ 𝑑3𝑘1𝑑3𝑘2𝛿𝐷(𝑘 − 𝑘12)𝛼(𝑘1, 𝑘2)𝜃


~
(𝑘1, 𝜏)𝛿


~


(𝑘2, 𝜏); 


 


𝜕𝜃
~


(𝑘, 𝜏)


𝜕𝜏
+ 𝛨(𝜏)𝜃


~


(𝑘, 𝜏) +
3


2
𝛺𝑚𝛨2(𝜏)𝛿


~


(𝑘, 𝜏)


= −∫ 𝑑3𝑘1𝑑3𝑘2𝛿𝐷(𝑘 − 𝑘12)𝛽(𝑘1, 𝑘2)𝜃
~


(𝑘1, 𝜏)𝜃
~


(𝑘2, 𝜏) 


Where 


𝛼(𝑘1, 𝑘2) ≡
𝑘12 · 𝑘1


𝑘1
2 ;    𝛽(𝑘1, 𝑘2) ≡


𝑘12
2(𝑘1 · 𝑘2)


2𝑘1
2𝑘2


2  


One can formally solve these equations under the assumption of a Einstein De Sitter Universe 


using a perturbative expansion: 


𝛿
~


(𝑘, 𝜏) = ∑ 𝑎𝑛(𝜏)𝛿𝑛(𝑘)
∞


𝑛=1
;    𝜃


~


(𝑘, 𝜏) = −𝛨(𝜏) ∑ 𝑎𝑛(𝜏)𝜃𝑛(𝑘)
∞


𝑛=1
 







 


The equations of motions give: 


𝛿𝑛(𝑘) = ∫ 𝑑3𝑞1 … ∫ 𝑑3𝑞𝑛𝛿𝐷(𝑘 − 𝑞1..𝑛)𝐹𝑛(𝑞1, … , 𝑞𝑛)𝛿1(𝑞1) … 𝛿1(𝑞𝑛); 


𝜃𝑛(𝑘) = ∫ 𝑑3𝑞1. . . ∫ 𝑑3𝑞𝑛𝛿𝐷(𝑘 − 𝑞1..𝑛)𝐺𝑛(𝑞1, . . . , 𝑞𝑛)𝛿1(𝑞1). . . 𝛿1(𝑞𝑛) 


And the kernels Fn and Gn given as: 


𝐹𝑛(𝑞1, … , 𝑞𝑛) = ∑
𝑛−1


𝑚=1


𝐺𝑚(𝑞1. . . , 𝑞𝑚)


(2𝑛 + 3)(𝑛 − 1)
[(2𝑛 + 1)𝛼(𝑘1, 𝑘2)𝐹𝑛−𝑚(𝑞𝑚+1, . . . , 𝑞𝑛)


+ 2𝛽(𝑘1, 𝑘2)𝐺𝑛−𝑚(𝑞𝑚+1, . . . , 𝑞𝑛)] 


𝐺𝑛(𝑞1, . . . , 𝑞𝑛) = ∑
𝑛−1


𝑚=1


𝐺𝑚(𝑞1, … , 𝑞𝑚)


(2𝑛 + 3)(𝑛 − 1)
[3 𝛼(𝑘1, 𝑘2)𝐹𝑛−𝑚(𝑞𝑚+1, . . . , 𝑞𝑛)


+ 2𝑛𝛽(𝑘1, 𝑘2)𝐺𝑛−𝑚(𝑞𝑚+1, . . . , 𝑞𝑛)] 


Then the symmetrized kernels can be shown to be:  


𝐹𝑛
𝑠(𝑞1, . . . , 𝑞𝑛) =


1


𝑛!
∑ 𝐹𝑛(𝑞𝜋(1), . . . , 𝑞𝜋(𝑛))


𝜋
 


𝐺𝑛
𝑠(𝑞1, . . . , 𝑞𝑛) =


1


𝑛!
∑ 𝐺𝑛(𝑞𝜋(1), . . . , 𝑞𝜋(𝑛))


𝜋
 


One can now define the power spectrum as up to loop corrections:  


𝑃(𝑘, 𝜂) = 𝑃(0)(𝑘, 𝜂) + 𝑃(1)(𝑘, 𝜂) + ⋯ 


Where the tree level power spectrum is given by the linear solution to the equations of motion: 


𝑃(0)(𝑘) = [D(+)]2𝑃𝐿(𝑘) 


Where D(+) = 𝑒η−η0  is the time dependence of the growing mode of the fluid system in a 


matter dominated universe. The symmetrized kernels are then used to compute the 1 loop 


power spectrum characterized as:  


𝑃(1)(𝑘, 𝜂) = D(+)4
(𝜂)(𝑃13(𝑘) + 𝑃22(𝑘)) 


Where:  


𝑃13(𝑘) = 6 ∫ 𝑑3𝑞 𝑃𝐿(𝑞)𝑃𝐿(𝑘) 𝐹3
𝑠(𝑘, 𝑞, −𝑞)  


𝑃22(𝑘) = 2 ∫ 𝑑3𝑞 𝑃𝐿(|k − q|)𝑃𝐿(𝑞) [𝐹2
𝑠 (𝑘 − 𝑞, 𝑞)]2 


 


 


 







 


 


2. CURRENT RESEARCH 


When evaluated numerically, we find that the linear and 1 loop power spectrum were both 


modelled correctly in accordance to [1] . As well, figure 1 shows the linear and 1 loop power 


spectrums which reproduce the plots in [1] 


 


Figure 1: The linear power spectrum plotted with the 1-loop power spectrum as a function of the 


momenta k 


We then create and check an unequal time correlated power spectrum model and make sure 


that it matches supporting data. We used plots given [2] to cross check our code and power 


spectrum models. The unequal time correlated power spectrum can be described using SPT as:  


𝑃UETC(𝑘, 𝜂1, 𝜂2) =  𝑒η1+η2 [𝑃𝐿(𝑘) + 𝑒η1+η2𝑃22(𝑘) +
[𝑒2η1 + 𝑒2η2]


2
𝑃13(𝑘)] 


And the equal time correlated power spectrum as: 


𝑃ETC(𝑘, 𝜂) = 𝑃UETC(𝑘, 𝜂, 𝜂) =  𝑒2η[𝑃𝐿(𝑘) + 𝑒2η[𝑃13(𝑘) + 𝑃22(𝑘)]] 


Using a geometric mean interpretation of the equal time correlators, we can represent unequal 


time correlators such that: 


𝑃GUETC = (𝑃ETC(𝑘, 𝜂1)𝑃ETC(𝑘, 𝜂2))1/2 







 


Figure 2: Geometric mean generated power spectra compared with geometric mean linear 


power spectra as functions of z (left) and k-modes (right) 


 


Figure 3: The unequal time correlator power spectra (SPT) compared with the geometric mean 


generated power spectra as functions of z (left) and k-modes(right) 


 


 


 







The Eikonal Approximation: 


In the eikonal method, we sum over soft contributions of the Fourier modes to allow for a 


better prediction of the power spectrum. The density contrast is given a new definition where:  


𝛿eik(𝑘) ≡ 𝛾(𝑘, 𝜂)𝛿(𝑘) 


𝛾(𝑘, 𝜂) ≡ 𝑒∫ 𝛤(𝜂′)dη′
𝜂


0  


𝛤(𝑘, 𝜂) ≡ ∫ 𝑑3𝑞
𝑘 · 𝑞


𝑞2
𝜃(𝑞, 𝜂)


𝑆


 


Then the eikonal power spectrum can be defined as: 


< 𝛿eik(𝑘, 𝑒𝑡)𝛿eik(𝑘′, 𝑒𝑡′) >= 𝛿𝐷(𝑘 + 𝑘′)𝑃(0)(𝑘) < 𝛾(𝑘, 𝜂) 𝛾(−𝑘, 𝜂′) > 


The last correlator can be evaluated using the cumulants of the linear fields: 


< 𝛾(𝑘, 𝜂)𝛾(−𝑘, 𝜂′) >   =   < 𝑒∫ 𝛤(𝜂′)dη′
𝜂


0 𝑒∫ 𝛤(𝜂'')dη''
𝜂′


0 >  =    𝑒−𝑘2𝜎2(𝑒𝜂−𝑒𝜂′)2
 


The eikonal expression is then given as 


𝑃eik(𝑘, 𝜂1, 𝜂2) = 𝑒𝜂1+𝜂2−(𝑒𝜂1−𝑒𝜂2)2𝑘2𝜎2
𝑃(0)(𝑘) 


As well, the 1 loop correction to the eikonal expression can be made to match the 1 loop from 


SPT and can be defined as: 


𝑃eik1loop(𝑘, 𝜂1, 𝜂2) = 𝑒−(𝑒𝜂1−𝑒𝜂2)2𝑘2𝜎2
[𝑒𝜂1+𝜂2  𝑃(0)(𝑘) + 𝛥(𝑘, 𝜂1, 𝜂2)] 


Where: 


𝛥(𝑘, 𝜂1, 𝜂2) =  𝑃UETC(𝑘, 𝜂1, 𝜂2) − 𝑒𝜂1+𝜂2  𝑃0(𝑘)[1 − [𝑒𝜂1 − 𝑒𝜂2]2𝑘2𝜎2] 


These equations have not yet been produced in previous literature. We examine the effects of 


these methods in the figures below.  







 


Figure 4: The eikonal expression compared with the linear power spectrum as functions of z(left) 


and k-modes(right) 


 


Figure 5: Eikonal expression with 1-loop correction compared with the equal time correlated 


power spectrum as functions of z (left) and k-modes(right) 


 


 


 


 







3. CONCLUSIONS: 


The power spectra of the eikonal expressions both do well at producing power spectra. Since 


the soft long-wavelength Fourier modes are summed over, the power spectra are 


characteristic. It allows for a more realistic interpretation of the power spectra over the range 


of momenta (k) and time-scales (z). 


As well, the power spectra are all positive and restricted to a range that are all less than 1. The 


domain of momenta space and time space all represent natural power spectra that would not 


enter negative values or values of those that are greater than 1. This shows that the eikonal 


approximation does a much better job at representing the power spectra than those of SPT.  


 


 


4. FUTURE RESEARCH 


Bessel/Lomel Effects:  


We can also try to develop spherical Bessel function representations of the power spectrum in 


unequal times. The power spectrums of unequal time and equal time can be respectively 


described by projected power spectra which can be measured experimentally. We can explore 


these functions:  


𝐶𝑙
δδ(𝑟1, 𝑟2) = ∫


2dk𝑘2


𝜋
P(𝑘; 𝑟1, 𝑟2)𝑗𝑙(𝑘𝑟1)𝑗𝑙(𝑘𝑟2) 


Where jl are spherical Bessel functions of the second kind. The projected power spectra would 


be the integrals of these functions with their projection kernels:  


𝐶𝑙
AB(𝑟, 𝑟′) = ∫ dr1 ∫ dr2 𝐹𝐴(𝑟, 𝑟1) 𝐹𝐵(𝑟′, 𝑟2) 𝐶𝑙


δδ(𝑟1, 𝑟2)
𝑟′


0


𝑟


0


 


These functions seemed to have behaved wildly and were too oscillatory for our computations 


to work effectively. The projected power spectrum could not be computed due to time restraint 


and thus was left for a future project. 


Lagrangian (Zel’dovich) Perturbation Theory 


Another method to sum soft effects would be to use Lagrangian perturbation theory. It would 


be interesting to test the effects of these theories on the power spectra and compare them 


with our eikonal results. Further research is needed to continue exploring new methods of 


producing viable power spectra. 
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