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Abstract


In this work we study double parton distributions (DPDs) in hadron-hadron colli-
sions, focussing on the properties that arise due to colour. In particular, we check
whether the DPDs stay positive semidefinite under the scale evolution given by the
DGLAP equations. A similar analysis on single parton distributions (J. C. Collins
et al, C. Bourrely et al) and colour-singlet DPDs (M. Diehl and T. Kasemets)
found that positivity is preserved, as naively expected given the probabilistic in-
terpretation of such functions. Nevertheless we find that including the full colour
structure, positivity does not have to be preserved for a general DPD, and we
provide examples where it is violated.
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1 Introduction


1.1 Parton distribution functions


In current particle physics experiments, hadron-hadron collisions are often investigated.
In such cases, the interactions will occur between the fundamental constituents of the
hadrons: quarks and gluons, known as partons.
In computing cross-sections we are interested in the so-called hard processes, interactions
between partons with high energy and transverse momentum, which will produce high
energy final states (for instance leptons) that can be observed in the detectors. The
most common scenario in a hadron-hadron collision is that of a single hard process, plus
other low energy interactions, and we will initially focus on this.
An important result is the factorisation theorem, which roughly states that the proba-
bility of a certain final state is given by the product between the hard subprocess cross
section and functions encoding the information about the initial distribution of partons
inside the hadron. Such functions are known as parton distribution functions (PDF) or
parton densities, and they give the probability of a certain parton having some fraction
x of the hadron momentum at time of collision.
In QCD, the PDFs additionally depend on the scale of the hard process. Indeed, there
are contributions which introduce collinear and UV divergences (see Fig.1) and the
PDF must be renormalised to account for these. In particular, in Fig.1(left) collinear
divergences from low pT contributions (compared to the scale of the hard process) are
absorbed into the PDF, whereas the high pT contributions are included in the hard
process. UV divergences from Fig.3(right) also have to be subtracted. This introduces
a scale dependence which obeys the DGLAP evolution equations [1].


Figure 1: Example of diagrams contributing to the overall amplitude which play a role
in the PDF renormalisation.


It is natural to wonder whether the scale dependence affects the positivity of the PDFs
and hence their interpretation as probability densities. This topic has been widely
studied and it was shown that positivity is preserved by the scale evolution (see for
instance [2, 3]), assuming leading order splitting kernels (see later).
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1.2 Double parton distributions


When two hadrons collide at very high energies, it is possible that two or more hard
processes will occur between the partons. Such multiparton interactions have been
studied since a long time ago [4, 5] and they have been experimentally observed at
Tevatron and at the LHC (see for instance [6–10]).
Substantial work has been done to extend the PDF formalism to the case of two hard
processes, known as double parton scattering (DPS). In this case, the total cross-section
will depend on the initial distribution of dipartonic states in each hadron. This can
be encoded in double parton distributions (DPDs) which—extending factorisation to
DPS—can be combined with the cross-sections for the two hard processes to obtain the
total cross-section for the interaction.
Examples of early work on DPDs are [11–13]. In later years more systematic descriptions
of multiparton interactions have been produced, including [14–17], and our understand-
ing of DPDs has been consolidated.
Figure 2 illustrates how DPDs are implemented, assuming factorisation. The cut di-
agram is a standard notation in high energy physics: it separates the amplitude of a
process from its conjugate amplitude and it is a way of computing the probability of said
process summed over all possible final states. The green blobs hide the inner workings of
the colliding hadrons and their contribution to the cross-section is given by the DPDs.
The grey circles represent the hard scattering between the partons (in this case, a quark,
an antiquark and two gluons) and are computed independently of the hadron’s initial
conditions.


Figure 2: Example of double hard scattering in hadron-hadron collisions. The green
blobs represent the hadrons and the grey circles are the vertices of the hard
processes.


The scale evolution of DPDs can be expressed by the DGLAP equations as in the single
parton case. The difference is that, since there are two hard processes, there will be two
separate scales. In other words, for each of the two partons the contributions shown
in Fig.1 must be absorbed in the DPD, and how many contributions will be absorbed
depends on the scale of the single hard process of the parton considered.
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As outlined in [13], DPDs depend not only on the fractional momenta of the two partons,
but also on their relative transverse distance and on the colour and spin state of the
diparton system. It was shown that, considering colour-singlet distributions (or ignoring
the colour structure of DPDs), positivity is preserved under scale evolution just like in the
case of PDFs [18]. The present work considered the full colour structure of unpolarised
distributions, to see if the same result could be obtained in this case.


2 Theory


The aim of this section is to show that PDFs and DPDs can be expressed as density
matrices in colour space, and discuss two different bases for such matrices. In one such
basis the coefficients will correspond to probabilities (at least before renormalisation),
and hence their behaviour under evolution will be investigated. The second basis will
instead be useful in writing down the evolution equations. For simplicity we will assume
that the colliding hadrons are protons, but the analysis applies to other cases too.


2.1 Parton distributions as density matrices


2.1.1 Single parton distributions


The local gauge symmetry of QCD is given by the group SU(3), associated to the colour
charge. Each object within the theory—such as a quark state or a gluon field—will
transform under a certain representation of SU(3). For instance, quark states can be
written as a complex 3-vector transforming under the fundamental representation, with
respect to which SU(3) is just the group of 3× 3 unitary matrices.
Parton distribution functions give the probability of finding a parton state ψ within a
proton. For any given parton, such a probability can be written as


P (ψ) =
∑
X


A(p→ ψ +X)A∗(p→ ψ +X) (1)


where A(p→ ψ+X) is the amplitude for a proton giving the single parton state ψ and
a final state X of the other partons. The total probability is found summing over all
possible X, and it is represented via the usual cut-diagram in Fig.3. Since the state ψ
is a linear combination of color basis states {i} and since the amplitude is linear with
respect to the colour state, we can rewrite this as


P (ψ) = (ψi)∗ψi
′
f ii


′
(2)


where


f ii
′
=
∑
X


A(p→ i+X)A∗(p→ i′ +X). (3)
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Figure 3: The top diagram represents the probability to find the state ψ inside the


proton. The bottom diagram corresponds to f ii
′
.


The tensor f ii
′


is by definition a density matrix. It has two colour indices, the non-
primed one belonging to the amplitude and the primed one to the conjugate amplitude.
Such indices must transform in the opposite way to the ones they are contracted with,
since the probability must be gauge invariant. Hence, if the state ψ belongs to some
representation R, f ii


′
must be a member of the product space R ⊗ R, since the two


indices transform like ψ and ψ∗ respectively.
In addition, it can be shown that since the hadron is a colour singlet and the probability
is summed over all possible final states, f ii


′
must be a colour singlet. In the case of


single parton scattering the only option is


f ii
′
=


f1


dim(R)
δii


′
(4)


where f1 is in general a complex number. By taking the trace (i.e. summing over all
colour base states) we can see that f1 is the total probability of finding the parton
considered in the hadron.


2.1.2 Double parton distributions


The same arguments outlined above apply in the case of DPS, although in this case the
number of indices will double. We can denote with Ψ the diparton state we wish to
compute the probability of. This will have two colour indices (in component notation,
Ψ`1`2), each being associated to a quark, an antiquark or a gluon and transforming
accordingly.
Eq.1 is still valid, and exploiting the linearity of the amplitude we can rewrite it as:


P (Ψ) = (Ψ`1`2)∗Ψ`′1`
′
2F `1`2`′1`


′
2 . (5)
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Here F `1`2`′1`
′
2 belongs to a more complicated product space, formed by the representa-


tions associated to each index. Again, the non-primed indices belong to the amplitude
and the primed ones to the conjugate amplitude. Our goal is to expand the density
matrix in terms of a basis for the product space, using the fact that it must be a colour
singlet. To show an example of how this can be done, we will consider a diparton system
formed by two quarks. We can relabel the indices as F iji′j′ to highlight that they are
(anti)quark indices. Although the following arguments can be extended to any diparton
system, a more detailed and general analysis is given in [13].
Each quark belongs to the fundamental representation of SU(3), which we will denote
as ‘3’ (from its dimensionality). To obey the right transformation laws, F iji′j′ (shown by
Fig.4) must have two quark-like indices and to anti-quark like indices 1. In other words,
it must belong to the space 3⊗3⊗ 3̄⊗ 3̄, where ‘3̄’ denotes the conjugate representation.


Figure 4: Diagrammatic representation of the matrix element F iji′j′ . It is evident that
the indices i and j are quark indices whereas the others are anti-quark indices.


To find a convenient basis for such a space, we first consider the product spaces 3 ⊗ 3
and 3̄⊗ 3̄ separately. Via a standard group-theoretical analysis, we can decompose such
spaces into irreducible representations, finding that 3 ⊗ 3 = 3̄ ⊕ 6 and by conjugation
3̄⊗ 3̄ = 3⊕ 6̄. Note that since 3⊗3 is the space of double quark states Ψ, we can conclude
that Ψ must be an anti-triplet or a sextet (or linear combinations) under SU(3).
Therefore, we can write 3⊗ 3⊗ 3̄⊗ 3̄ = (3̄⊕ 6)⊗ (3⊕ 6̄) = (3̄⊗ 3)⊕ (3̄⊗ 6̄)⊕ (6⊗ 3)⊕
(6⊗ 6̄). It can be then be shown that only two (basis) singlets can be obtained from this
decomposition, one from 3̄⊗ 3 and another from 6 ⊗ 6̄. A general colour singlet in the
space can be expressed in terms of these, and hence we can rewrite the density matrix
as:


F iji′j′ =
1


6
F3̄(δii


′
δjj


′ − δij′δji′) +
1


12
F6(δii


′
δjj


′
+ δij


′
δji


′
) (6)


where the matrix elements for the basis singlets (known as projection operators) and
the normalisations have been taken from [13, Eq.7-12]. It can also be shown (see again
[13]) that the coefficients FR correspond to the probability of finding two quarks in the
representation R (3̄ or 6), in a similar way to what we outlined for single parton densities.
This interpretation is not limited to the double quark densities but generalises to any


1Recall that an object in the fundamental representation, when complex-conjugated, will give an object
in the conjugate representation (see Eq.5).
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DPD. Hence, these coefficients are naively expected to be positive definite functions of
the fractional momenta x1 and x2 of the two partons, and to preserve their positivity
under evolution.
When decomposing the space 3⊗3⊗ 3̄⊗ 3̄, we could have taken a different approach. We
could first write 3⊗ 3̄ = 1⊕8 and then 3⊗3⊗ 3̄⊗ 3̄ = (3⊗ 3̄)⊗(3⊗ 3̄) = (1⊕8)⊗(1⊕8) =
(1⊗ 1)⊕ (8⊗ 1)⊕ (1⊗ 8)⊕ (8⊗ 8). In this case it is straightforward to see that 1⊗ 1
corresponds to a unique singlet state and that 1⊗ 8 = 8⊗ 1 = 8 will only contain octet
states. It can be shown that another singlet can come from the 8 ⊗ 8 space. Hence we
can express F iji′j′ in terms of this alternative basis:


F iji′j′ =
1


9
(1Fδii


′
δjj


′
+


3√
2


8Ftii
′


a t
jj′


a ) (7)


where the new projection operators and their normalisation were taken from [19]. By
contracting this expression with the previous projection operators, it is possible obtain a
change of basis matrix C that relates the coefficients RF and FR. Denoting ~F a column
vector with a set of coefficients, we can write:


~FR = C R ~F . (8)


This will turn out be be quite useful, as it will allow the evolution of ~FR to be expressed
via the (simpler) evolution of R ~F . More details will be given in the next subsection.


2.2 Scale evolution


As mentioned in the introduction, parton distributions must be renormalised to avoid
divergences such as those in Fig.1, represented via the usual cut-diagram in Fig.5. This
implies reabsorbing into them all diagram contributions with transverse momentum
significantly lower than the scale of the hard scattering, plus diverging virtual graphs,
rather than computing them as part of the hard scattering amplitude. In Fig.5 this is
represented as the extension of the green oval to include such diverging processes (see
green dotted line).
Mathematically, the evolution is given by the DGLAP equations. For single parton
densities we write


∂f(x, τ)


∂τ
=


∫ 1


x


dy


y
P (
x


y
)f(y, τ) (9)


where f(x, τ) corresponds to f1 in Eq.4. The evolution parameter τ is given by:


τ =


∫ µ2


C2


dµ′2


µ′2
αS(µ′)


2π
(10)


where µ is the scale of the hard process and C is an arbitrary constant. The function
P (x/y) is known as splitting kernel and it can be interpreted as proportional to the
probability that a parton with fractional momentum y loses energy (e.g. emits a gluon)
and is left with fractional momentum x. Therefore, Eq.9 roughly states that the change
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Figure 5: Some leading order diagrams contributing to the overall cross section which
are accounted for in the parton distribution.


in the density of partons with fractional momentum x at a certain scale µ depends on
how likely it is for partons with higher momentum to radiate away some of their energy
at that scale (i.e. within the diagrams absorbed into the PDF).
In Fig.5, the added contribution to the quark density comes from a higher energy quark
radiating a gluon. However, another contribution to the quark density could be given
by a gluon turning into a quark-antiquark pair. It is clear that Eq.9 must be rewritten
to include such cases. First, we can define a shorthand notation for the convolution in
Eq.9:


Pab ⊗ fb(x, τ) ≡
∫ 1


x


dy


y
Pab(


x


y
)fb(y, τ). (11)


The indices have been added to highlight that we are considering a density for partons
of type b (e.g. fq for quarks) and a splitting function giving the probability that partons
of type b evolve into partons of type a. Using this notation, we can generalise Eq.9 as
follows:


∂fa(x, τ)


∂τ
=
∑
b


Pab ⊗ fb(x, τ). (12)


We now wish to extend this analysis to DPDs. A DPD is a function of the form
Fa1a2(x1, x2, τ1, τ2), describing two partons of type a1 and a2 having momenta x1 and
x2 at scales τ1 and τ2. It can be shown that such functions obey an evolution equation
of the same form as Eq.9 with respect to each of the scales τi [14, sect 5.3.2]. However,
there are additional complications. Let’s take for instance the formulation of the density
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matrix given by Eq.6. As mentioned, the (non-renormalised) coefficients are probabili-
ties to find two partons in the representation R. If one of the partons radiates a gluon
as in Fig.5, the representation of the diparton state could change in order to conserve
colour. This implies that the scale evolution of a single FR can also depend on the other
coefficients. Combinining this to the possibility of different parton types, as given in
Eq.12, we obtain fairly complicated evolution equations.
Let’s consider Eq.7 instead. In this case, we have coupled each parton with its con-
jugate partner, and found a basis associated to the representations for this coupling.
Any radiation process like the one in Fig.5 will be (mathematically) internal to the
parton-antiparton pair, and hence colour conservation forbids it to change the pair’s
representation. In other words, the evolution of RF can only depend on coefficients as-
sociated to the representation R. Hence, we can write the equivalent of Eq.12 for DPDs
in this basis:


∂RFa1a2
∂τ1


=
∑
b


RPa1b ⊗1
RFba2 , (13)


∂RFa1a2
∂τ2


=
∑
b


RPa2b ⊗2
RFa1b. (14)


The subscripts on the convolution symbols indicate which variable among x1 and x2


should be considered for the convolution, which is still of the form given in Eq.11. In
the rest of this work we will focus on Eq.13, since every argument also applies to the
second case. To this purpose, we will use τ ≡ τ1 and x ≡ x1.
The single parton kernels of Eq.12 correspond to 1Pab, since in that case the only possible
parton-antiparton representation is a singlet. In addition, it can be shown that:


RPab = Cab(R)1P real
ab + 1P virt


ab , (15)


where 1P real
ab and 1P virt


ab are the contributions to 1Pab from real and virtual diagrams
respectively (see Fig.5). The coefficients Cab(R) are numbers and can be found in [17, sect
7.3.5] for a range of cases. Trivially, Cab(1) = 1.
The virtual contributions only occur when initial and final partons are the same, and
they leave the fractional momentum of the parton unaffected. In other words, we can
write:


1P virt
ab (z) = Pδ δab δ(1− z) (16)


where Pδ ∈ R. By performing the convolution as given in Eq.11, we find that:∑
b


1P virt
a1b
⊗ RFba2 = Pδ


RFa1a2 . (17)


Therefore we can rewrite Eq.13 as:


∂RFa1a2
∂τ


= (
∑
b


Ca1b(R)1P real
a1b
⊗ RFba2) + Pδ


RFa1a2 . (18)
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In our analysis we will only consider distributions (or linear combinations of them) for
which the sum over parton types b does not apply, since their evolution does not depend
on other distributions. In this case, we can drop the indices and rewrite the above in a
simpler form:


∂RF


∂τ
= (C(R)1Preal ⊗ RF ) + Pδ


RF , (19)


or, by defining D = diag(C(R1), ... , C(Rn)), we can express it in matrix form:


∂R~F


∂τ
= D (1Preal ⊗ R ~F ) + Pδ


R ~F . (20)


Finally, we can combine Eq.8 and Eq.20 and obtain the evolution equations for the
coefficients FR:


∂ ~FR
∂τ


= C D C−1 (1Preal ⊗ ~FR) + Pδ ~FR. (21)


We have now everything we need to investigate the positivity of the coefficients FR. If
we suppose that they are positive semidefinite functions of x1 and x2 at some τ = τ0, we
will deduce whether the scale evolution in Eq.21 must always preserve positivity or not.
Note that we only consider an increase in τ , since going to too low scales would imply
that the leading-order approximation to the splitting kernels is no longer accurate, hence
there is no reason to expect conservation of positivity.


3 Results


Positivity is violated if it is possible that—if FR(x1, x2, τ0) = 0 for some (x1, x2) and
R—the τ -derivative of such a function at the same point is negative. Hence, we can see
that the Pδ term in Eq.21 can be ignored, since if any of the FR is zero, its contribution
to the derivative will also be zero.
In our work we considered two cases: the flavour non-singlet distribution for two quarks
and the double gluon distribution in a theory with no quarks. The details of each
will be explored below. In both cases, it was found that the matrix C D C−1 contained
only positive entries, hence the only possible source of positivity violation was the sign
of 1Preal ⊗ FR. We will show that 1Preal ⊗ FR can be negative for a general positive
semidefinite FR, and we will provide examples of initial conditions which lead to violation
of positivity. In addition, we will show how these results can be extended to the full
analysis of quark and gluons in QCD, by a suitable choice of initial conditions.


3.1 Double quark flavour non-singlet distribution


The flavour non-singlet distribution for two quarks can be defined as:


Fvq ≡ Fuq − Fdq, (22)
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where the second quark q could be any of the light quarks. At leading order, the following
relations are valid for the splitting kernels:


Puu = Pdd ,


Pug = Pdg ,


Pud = Pus = Pds = Pqq̄ = 0 .


(23)


Hence, we can deduce the following:


∂RFvq
∂τ


= RPuu ⊗ RFvq. (24)


Hence, the evolution equations will be of the form given in Eq.21, since there is no
contribution from other densities. For simplicity, we will use F ≡ Fvq and P ≡ Puu. The
change of basis matrix C was calculated assuming the normalisations of Eq.6 and Eq.7:


C =
1


3


(
1 −


√
2


2
√


2


)
. (25)


From [17, sect 7.3.5] we also found D = diag(1, − 1/8). Together this yielded:


C D C−1 =
1


8


(
2 3
6 5


)
. (26)


As anticipated, all entries of the matrix are positive and hence positivity violation cannot
arise due to this alone. Then, we computed 1Preal ⊗ F for two test functions:


F (x) =
v − x
x
≡ f(x), (27)


F (x) =
v − x
x


cos2 πx ≡ g(x). (28)


As before, the variable x corresponds to x1 in our analysis. Both functions are positive
semidefinite and they satisfy the expected properties of a parton distribution: they
diverge for x = 0 and they are zero for x = v, where v = 1 − x2 is the maximum
momentum available for the first parton. In addition g(0.5) = 0, which will be useful to
test positivity. The convolution 1Preal ⊗ F (x, τ) is given in [18, Appendix B]:


lim
ε→0


(∫ v


x+ε


du


[
Ps(x/u)


u− x
+
Pr(x/u)


u


]
F (u, τ) +


∫ x−ε


0


du
Ps(1)


u− x
F (x, τ)


)
(29)


In this case Ps(z) = CF (1 + z2) and Pr(z) = 0 [18, Appendix A]. Fig.6 shows the results
for the two test functions of Eq.27 and Eq.28, using v = 0.7.
It is evident that 1Preal⊗F (x, τ) can indeed be negative. Let’s now check if this can affect


the positivity of the FR coefficients. In the double quark case we have ~FR = (F3̄, F6)T , as
shown in Eq.6. We can take F3̄(x) = g(x) and F6(x) = f(x) at τ = τ0. Hence, at x = 0.5,
F3̄(x) is initially zero. We have 1Preal⊗f(0.5) ' −2.39443 and 1Preal⊗g(0.5) ' 0.0486625.
We can compute the τ -derivative via Eq.21 using the matrix in Eq.26, and we find:
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Figure 6: Plot of 1Preal ⊗ F (x) for the test functions f(x) (top) and g(x) (bottom),
obtained using Wolfram Mathematica, in the case of double quark flavour non-
singlet densities. To save calculations, only a few values have been computed.


∂F3̄


∂τ
(0.5, τ0) ' −0.885747 . (30)


This result was computed numerically using Mathematica with ε = 10−7. The same
computation was performed for smaller ε, up to 10−11, and the result did not change
to the precision quoted. Hence, we can conclude that there are cases where initially
positive semidefinite functions will become negative under scale evolution.


3.2 Double gluon distribution


The second case considered was that of a double gluon distribution in a quark-free theory.
Since there are no other partons except for gluons, Eq.13 reduces to


∂RFgg
∂τ


= RPgg ⊗ RFgg. (31)


The gg subscripts can be dropped since there is no ambiguity. Gluons belong to the
adjoint representation of SU(3), denoted ‘8’. Since 8 = 8̄, the space for the density
matrix (see Eq.5) will be 8 ⊗ 8 ⊗ 8 ⊗ 8. We have 8 ⊗ 8 = 1 ⊕ 8s ⊕ 8a ⊕ 10 ⊕ 10 ⊕ 27
yielding the allowed values of R. Since in both bases discussed earlier the decomposition
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is of type (8 ⊗ 8) ⊗ (8 ⊗ 8), the same values will apply to both RF anf FR. This is
also true of the projection operators: the two bases are mathematically equivalent, and
hence the operators will be the same up to normalisation—with the indices rearranged
so that they belong to the right gluon.
It can be shown (see [19], Appendix A) that 10F = 10F and F10 = F10, thus reducing by
one the number of degrees of freedom for the density matrix. Defining FD ≡ F10 + F10,
DF ≡ (10F + 10F )/


√
2, S ≡ 8s and A ≡ 8a, we can write R ~F = (1F , SF , AF ,DF , 27F )T


and ~FR = (F1, FS, FA, FD, F27)T . The normalisation we used for FR is from [13, Eq.7],
whereas the one for RF is from [19, Eq.23]. In the former, the projection operator for FD
is the sum of the ones for F10 and F10, and the normalisation in Eq.7 will read FD/20.
In the latter, DF is denoted (10+10)F .
Under such conditions, the change of basis matrix was computed:


C =
1


64





1 2
√


2 −2
√


2 2
√


5 3
√


3


8 −24
√


2
5


−8
√


2 − 32√
5


24
√


3
5


8 8
√


2 −8
√


2 0 −8
√


3


20 −16
√


2 0 8
√


5 −4
√


3


27 54
√


2
5


18
√


2 − 18√
5


21
√


3
5



. (32)


This differs from the change of basis found in [19] since the normalisation of FR there is
different, namely that of [13, Eq.6b]. The C(R) coefficients were obtained from [17, sect
7.3.5], yielding D = diag(1, 1/2, 1/2, 0, − 1/3). Therefore we found:


C D C−1 =





0 0 1
8


0 0


0 1
4


1
4


1
5


0


1 1
4


1
4


0 1
9


0 1
2


0 1
2


2
9


0 0 3
8


3
10


2
3


 . (33)


As before, the matrix C D C−1 cannot be the only source of positivity violation since all
entries are positive. Therefore, we calculated 1Preal⊗F (x) for the test functions in Eq.27
and Eq.28. The convolution was still in the form of Eq.29, but this time Ps(z) = 6z and
Pr(z) = 6(1 − z)(1 + z2)/z [18, Appendix A]. The results were similar to the double
quark case and are shown in Fig.7.
We proceeded to find an example where positivity is violated. The evolution of FR can
be found by substituting Eq.33 into Eq.21. If at τ = τ0 we take FR(x) = f(x) for R 6= 1,
and F1(x) = g(x), we obtain


∂F1


∂τ
(0.5, τ0) ' −0.666097 , (34)


but since F1(0.5, τ0) = g(0.5) = 0, F1(0.5) will become negative. As before, we have
shown that starting with a set of positive semidefinite functions that satisfy the typical
properties of a parton distribution is not enough to guarantee that positivity will be
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Figure 7: Plot of 1Preal ⊗ F (x) for the test functions f(x) (top) and g(x) (bottom),
obtained using Wolfram Mathematica, in the case of double gluon densities.
To save calculations, only a few values have been computed.


preserved at higher scales. The result of Eq.34 was also obtained numerically using
Mathematica, for ε = 10−7. As before, repeating the calculation for values of ε down to
10−11 did not change the result to the precision quoted.


3.3 General DPDs in QCD


We will now show how the results given above can be extended to any double parton
distribution in QCD. As before, the aim is to prove that starting with a set of positive
semidefinite DPDs does not guarantee positivity will be preserved at higher scales.
The general evolution equation for the RF coefficients is given in Eq.13. We can define
the column vector R ~Ftot ≡ (R ~Fqa2 ,


R ~Fq̄a2 ,
R ~Fga2)


T containing all the relevant DPDs. Then
Eq.13 can be written in matrix form:


∂


∂τ
(R ~Ftot) = P R ~Ftot (35)


where P is a matrix containing the appropriate splitting kernels. Contrary to the previ-
ous cases P is not a diagonal matrix, as for instance RFga2 will contribute to the evolution
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of RFqa2 via RPqg for any given R. Nonetheless, the full change of basis matrix C can be
exploited to give


∂


∂τ
(~F tot


R ) = C P C−1 ~F tot
R , (36)


where ~F tot
R is defined just like R ~Ftot but with respect to the FR coefficients. Now suppose


we have a2 = g. If we take as initial conditions FR
a1g


(x, τ0) ∝ δa1g (here FR ≡ FR) we
recover the same equations that we had for the gluon-gluon distributions in a quark-free
theory (indeed here we are setting any (anti)quark-related distribution to zero, which
is equivalent to saying that there are no (anti)quarks). Since F (x) = 0 is positive
semidefinite, this implies that even Eq.36 does not preserve positivity for some set of
initially positive semidefinite functions.
A similar argument applies to the case a2 = q, since by setting FR


a1q
(x, τ0) ∝ δa1q we


obtain the same equations as in the case of double quark flavour non-singlet densities.
Finally, the case a2 = q̄ is mathematically identical to a2 = q, with the exception that
quark and antiquark indices will be inverted. Therefore, the same arguments apply.


4 Conclusion


We have shown that, considering the full colour structure of unpolarised DPDs, there
exist initially positive semidefinite distributions that will become negative under scale
evolution. This was first proven for double quark flavour non-singlet distributions and
gluon distributions in a quark-free theory, and then it was shown how the result can be
generalised to any general DPD in QCD.
Such findings are fairly surprising, after previous results obtained for both single parton
PDFs and DPDs [2, 3, 18]. A violation of positivity is however not sufficient to expect
non-physical results in cross-section calculations. Indeed, in pp collisions the DPDs
from both colliding protons will be present in the calculations. This implies summing
quadratic terms such as F


(1)
R F


(2)
R (the superscripts referring to the two protons) where


even two negative parton distributions could give a positive contribution to the cross-
section. On the other hand, the positivity of cross-sections is also not guaranteed, as
for instance two parton distributions may be negative for non-matching values of x and
hence yield a negative contribution at some x.
Besides, this work considered any set of positive semidefinite functions as possible initial
conditions. Further work is needed to check in what cases a violation of positivity
can arise and whether such cases can correspond to physical parton densities. To this
purpose, the properties of 1Preal⊗F could be studied for a wider range of test functions
F , to understand what conditions can lead to a negative result. A more complete analysis
of the general case of DPDs in QCD, exploring the properties of Eq.36, may also provide
interesting insight.
In summary, we found that the probabilistic interpretation of the FR coefficients may
not always be valid when considering the full colour structure of renormalised DPDs,
but further work is required to test this hypothesis and understand its implications.
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