

Optimisation of MVA Approach
for τ̃ Search


Summerstudent: Natalia Lenshina
Lomonosov Moscow State University


Supervisors: Ilya Bobovnikov, Isabell Melzer-Pellmann
Deutsches Elektronen-Synchrotron, Hamburg


September 6, 2017


Abstract


In thiswork, wepresent anoptimisationworkflowofMultivariable Analysis, specif-
ically BoostedDecisionTrees, for the searchof superpartner of τ leptonat LHC.The
previous approach was based on rectangular cuts, but one yielded no enough sen-
sitivity in studied τ̃ masses region. By using more intelligent methods, that belong
to the family of supervised learning algorithms, there is a possibility to get much
more sensitivity. Boosted Decision Trees have a similar concept as the cut-based
approach: one divides phase space into hypercubes, labeled either as a signal or
as a background, but the advantage is that BDT applies cuts automatically. In the
results of the project, one increased the sensitivity to the future possible signal by
usingMVAapproach. Theoptimisation from this paperwill beused in further anal-
ysis.
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1 Introduction


1.1 Supersymmetry
Supersymmetry is a proposed type of spacetime symmetry that relates two


basic classesof elementaryparticles: bosons,whichhavean integer-valued spin,
and fermions, which have a half-integer spin. Each particle from one group is
associated with a particle from the other, known as its superpartner, the spin of
which differs by a half-integer.


Figure 1. SM particles and their superpartners.


There are several motivation points to introduce such an extension of SM:


1. The hierarchy problem
There is no scientific consensus onwhy, for example, theweak force is 1024
times as strong as gravity. More technically, the question is why the Higgs
boson is somuch lighter than the Planckmass. For such a little mass there
is a very fine-tuning cancellation between the quadratic radiative correc-
tions and the bare mass.


2. Gauge coupling unification


3. DarkMatter
The existence of dark matter would explain a number of otherwise puz-
zling astronomical observations. One of the candidates is Lightest Syper-
symmetrical Particle (neutralino – amixture of neutral higgsinos, the bino
and the neutral winos).
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Figure 2. Cancellation of the Higgs boson quadratic mass renormalization
between fermionic top quark loop and scalar stop squark tadpole Feynman


diagrams in a supersymmetric extension of the Standard Model.


Figure 3. Grand unification of the forces with Minimal Supersymmetric
Standard Model extension.


1.2 Analysis Motivation
In someSUSYmodels τ̃ , superpartner of τ-lepton, is the second lightest SUSY


particle after neutralino and so it makes sense to look for τ̃ LHC. During LEP
experiment a region of masses of χ̃ and τ̃ was excluded, as one can see on the
plot under the blue curve. At LHCpeople excluded onemore τ̃ mass close to 100
GeV in 2008.
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Figure 4. τ̃ mass limits at LEP and LHC


2 Analysis


2.1 Studied Process
During the summerproject, I was studying direct τ̃ pair production. In this


process each of τ̃-s decays to χ̃ and τ-lepton. There are four channels of two
τ-leptons (Muon-hadron channel has been studied):
1. Electron-hadron (22.8%)


2. Muon-hadron (22.8%)


3. Electron-muon (12.3%)


4. Hadron-hadron(42.1%)


2.2 Cut-Based Approach
Previous approach in analysis was rectangular cut-based one, which means


applying physically appropriate cuts on chosen complex and simple variables
and dividing the phase space formed by these variables into regions. But before
applying cuts for the three selected physically appropriate variables, one need
to suppress the background and enhance the ratio of signal over background by
using event selection (µ is lepton 1 and τ in lepton 2):


• Baseline Cuts


1. Two leptons (µτ ) with with ∆R < 3.5 and special properties as given
in figure below;
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Figure 5. Summary of the required µτ properties.


2. No additional leptons with such conditions;
3. njet 6 1, where jets are P jet


T > 20 GeV and |ηjet| < 2.4;
4. nb = 0, no b-tagged jets;
5. MT > 120 GeV to suppress W+jets background;
6. Ml1l2 < 30 GeV to suppress Drell-Yan process background;


• Signal Region Cuts
1. ∆|η|(P l1, P l2) < 2;
2. Ml1l2 > 20 GeV;
3. MTsum > 30 GeV;
4. ∆|η|(J0, l1) < 1.5 (1-jet category only);
5. ∆R(J0, τ) < 4 (1-jet category only);


• Stau Cuts
1. Iso(τ) > 0.85;
2. ∆|η|(l1, l2) < 1.5;
3. ∆Φ(l1, l2) > 1.5;
4. 2 < ∆R(l1, l2) < 3.2;
5. Ml1,l2 > 50 GeV;
6. MTsum > 50 GeV.


After applying event selection cuts, one can use three search variables, which
have a shape sensitive to differences between signal and background:
1.


MT2(ms, ~s,mt,~t, ~p
miss
T ;χ1, χ2) = min


~p,~q;~p+~q=~pmiss
T{


max[MT(ms, ~s, χ1, ~p),MT(mt,~t, χ2, ~q)]
}
, (2.1)
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where the transverse mass is given by:


MT(m,~v, χ, ~p) =


√
m2 + χ2 + 2


√
m2 + |~v|2


√
χ2 + |~p|2 − 2~v · ~p; (2.2)


2.
pmiss
T ; (2.3)


3.
Dζ = ~Pmiss · ~ζ − 0.85(~P l1 + ~P l2) · ~ζ, (2.4)


where ~ζ is bisector between directions of the two leptons.


Further cuts for these three variables are based on their shapes after the event
selection. Bins with than 100 background events are taken as search regions.
Cuts for 53 SR bins are explained below.


Figure 6. Signal region cuts.


With this approach one yields no sensitivity on every signal point, the signif-
icance of the signal is less than 0.2, which will be not enough to recognize future
signals in real data.
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Figure 7. Example of insufficient signal over background ratio with cut-based
approach.


2.3 MVA Approach
All multivariate techniques belong to the family of "supervised learning" al-


gorithms. They make use of training events, for which the desired output is
known, todetermine themapping function that eitherdescribes adecisionbound-
ary (classification) or an approximation of the underlying functional behavior
defining the target value (regression). The mapping function can contain var-
ious degrees of approximations and may be a single global function, or a set
of local models. Currently implemented classifiers and regression methods in
TMVA:
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• Rectangular cut optimisation


• Projective andmultidimensional likelihood estimator (incl. regression)


• k-Nearest Neighbor algorithm (incl. regression)


• Fisher and H-Matrix discriminants


• Function discriminant


• Artificial neural networks (3multilayer perceptron implementations) (incl.
regression)


• Boosted/bagged decision trees (incl. regression)


• Rule Fitting


• Support Vector Machine (incl. regression)


2.4 Boosted Decision Trees


S/(S+B)=0.971


S/(S+B)=0.742 S/(S+B)=0.332


S/(S+B)=0.595


DiLM< 96.6
S/(S+B)=0.061


S/(S+B)=0.132


LeptV2Pt< 54.1


S/(S+B)=0.491


MTsum<  160


Decision Tree no.: 0Pure Signal Nodes


Pure Backgr. Nodes


Figure 8. Example of insufficient signal over background ratio with cut-based
approach.


A decision tree is a binary classifier, which starts from the root node. On each
node, BDT chooses a variable for the list and a cut on this variable that divides


9







S/(S+B)=0.996 S/(S+B)=0.987


S/(S+B)=0.991


METPt<  185


S/(S+B)=0.959


S/(S+B)=0.982


RHT>0.521
S/(S+B)=0.898


S/(S+B)=0.960
MTsum<  322


S/(S+B)=0.781


S/(S+B)=0.919
MTsum<  268


S/(S+B)=0.737


S/(S+B)=0.583 S/(S+B)=0.416


S/(S+B)=0.549


Mcta< 9.13


S/(S+B)=0.586


LeptV2Pt< 91.1


S/(S+B)=0.546 S/(S+B)=0.308


S/(S+B)=0.467


HTOsqrtMET>  6.5


S/(S+B)=0.274 S/(S+B)=0.082


S/(S+B)=0.222


LeptV2Pt< 43.8


S/(S+B)=0.359


Mcta<   11


S/(S+B)=0.492
MTsum<  111


S/(S+B)=0.427


S/(S+B)=0.334 S/(S+B)=0.185


S/(S+B)=0.253


METPt< 40.7


S/(S+B)=0.310


Mcta< 29.5


S/(S+B)=0.254


S/(S+B)=0.129 S/(S+B)=0.031


S/(S+B)=0.057


Mcta<  7.2


S/(S+B)=0.078


HText< 57.9


S/(S+B)=0.152
MT2as< 12.9


S/(S+B)=0.348
LeptV2Pt< 41.2


S/(S+B)=0.508
MTsum<  212


Decision Tree no.: 1Pure Signal Nodes


Pure Backgr. Nodes


S/(S+B)=0.999 S/(S+B)=0.996


S/(S+B)=0.998


RHT>0.521


S/(S+B)=0.987


S/(S+B)=0.995


MTsum<  319
S/(S+B)=0.966


S/(S+B)=0.990
MTsum<  265


S/(S+B)=0.920 S/(S+B)=0.784


S/(S+B)=0.873
LeptV2Pt< 73.2


S/(S+B)=0.969
MTsum<  209


S/(S+B)=0.702 S/(S+B)=0.322


S/(S+B)=0.556
LeptV2Pt<   58


S/(S+B)=0.396 S/(S+B)=0.125


S/(S+B)=0.268


Mcta< 16.9


S/(S+B)=0.202 S/(S+B)=0.071


S/(S+B)=0.130


LeptV2Pt< 39.4


S/(S+B)=0.072 S/(S+B)=0.014


S/(S+B)=0.020


LeptV2Pt< 46.5


S/(S+B)=0.032


MT2as< 17.8


S/(S+B)=0.058
MTsum<  114


S/(S+B)=0.116
DiLM< 95.6


S/(S+B)=0.500
MTsum<  152


Decision Tree no.: 0Pure Signal Nodes


Pure Backgr. Nodes


S/(S+B)=0.744 S/(S+B)=0.583


S/(S+B)=0.681
Dzeta>  -95


S/(S+B)=0.723 S/(S+B)=0.531


S/(S+B)=0.548


MT< 59.5


S/(S+B)=0.467


S/(S+B)=0.531


Dr> 3.12


S/(S+B)=0.525 S/(S+B)=0.334


S/(S+B)=0.444


RHT<0.336


S/(S+B)=0.520


HTOsqrtMET> 8.67


S/(S+B)=0.606


S/(S+B)=0.614 S/(S+B)=0.384


S/(S+B)=0.505


HText> 36.2


S/(S+B)=0.452 S/(S+B)=0.334


S/(S+B)=0.423


Mcta< 5.56


S/(S+B)=0.449


LeptV2Pt< 43.1


S/(S+B)=0.460
HText< 82.6


S/(S+B)=0.492
LeptV2Pt< 49.7


S/(S+B)=0.502
MTsum<  334


Decision Tree no.: 25Pure Signal Nodes


Pure Backgr. Nodes


S/(S+B)=0.774 S/(S+B)=0.581


S/(S+B)=0.661
RHT>0.0782


S/(S+B)=0.638 S/(S+B)=0.497


S/(S+B)=0.581


Mcta> 49.4


S/(S+B)=0.520 S/(S+B)=0.467


S/(S+B)=0.502


Dr> 2.87


S/(S+B)=0.383


S/(S+B)=0.497


HTOsqrtMET> 11.4


S/(S+B)=0.510
LeptV2Pt< 92.8


S/(S+B)=0.574


S/(S+B)=0.487 S/(S+B)=0.401


S/(S+B)=0.427


METPt> 26.8


S/(S+B)=0.475


Dr> 3.09


S/(S+B)=0.557 S/(S+B)=0.305


S/(S+B)=0.441


Dzeta< 5.39


S/(S+B)=0.242


S/(S+B)=0.368


Dr< 3.11


S/(S+B)=0.435
LeptV2Pt< 41.9


S/(S+B)=0.493
Mcta< 7.21


S/(S+B)=0.502
LeptV2Pt<  151


Decision Tree no.: 29Pure Signal Nodes


Pure Backgr. Nodes


Figure 9. Forest of trees


phase space into 2 regions in the best way. After BDT classifier repeats the pro-
cedure more times till one of stop criteria is fulfilled. The result of one tree –
several regions in phase space labeled according to the significance of the node
(purity of the node is represented by color on the example above).


The problem is that using one tree for analysis one clashes instabilitywith re-
spect to statistical fluctuations in the training sample fromwhich the tree struc-
ture is derived. This problem is overcome by constructing a forest of decision
trees and classifying an event on a majority vote of the classifications done by
each tree in the forest. All trees in the forest are derived from the same training
sample by boosting procedure. After building one tree BDT adjusts weights to
events, that have been classified correctly, and grow another tree from the re-
weighted sample. Boosting increases the statistical stability of the classifier and
is able to drastically improve the separation performance compared to a single
decision tree.


3 BDTWorkflow


3.1 Variables
The input of BDT analysis is a list of variables of test samples. The most im-


portant property of chosen variables is different shapes of the background and
known signal. In this case, it will be more efficient to apply cuts on them.


From about 40 variables I have ended up only 13 of them. After training BDT
for the first time in the log file one yields BDT ranking list, which based on an
information how many times each of variables has been chosen to apply cut.


10







In the optimisation of the list, I’ve noticed that after adding unimportant ones
result does not change.
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Figure 10. No increasing sensitivity after adding more than 13 variables, e.g. 27.


Descriptions of all variables in the final list (in BDT ranking order, µ is lepton
1 and τ in lepton 2 still):


1.


MTsum
= MT +MTt


=


=


√
2P l1


T P
miss
T (1− cos(∆Φ(P l1, Pmiss)))+


+


√
2P l2


T P
miss
T (1− cos(∆Φ(P l2, Pmiss))); (3.1)


2.
dR =


√
(∆Φ(P l1, P l2))2 + (∆η(P l1, P l2))2; (3.2)


3.
P l2
T ; (3.3)


4.
Ml1l2 = P l1


T + P l2
T ; (3.4)


5.
Mcta =


√
2P l1


T P
l2
T (1 + cos(∆Φ(P l1, P l2))); (3.5)


6.


MT2(ms, ~s,mt,~t, ~P
miss
T ;χ1, χ2) =


min
~p,~q;~p+~q=~pmiss


T


{
max[MT(ms, ~s, χ1, ~p),MT(mt,~t, χ2, ~q)]


}
; (3.6)
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7.
Pmiss
T ; (3.7)


8.
Hext


T = P
jet
T + P l1


T ; (3.8)


9.
Dζ = ~Pmiss · ~ζ − 0.85(~P l1 + ~P l2) · ~ζ, (3.9)


where ~ζ is bisector between directions of the two leptons;


10.
RHT =


P l1
T


P
jet
T


; (3.10)


11.
HTOsqrMET =


P
jet
T


Pmiss
T


; (3.11)


12.
MT =


√
2P l1


T P
miss
T (1− cos(∆Φ(P l1, Pmiss))); (3.12)


13.
P l1
T . (3.13)
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Figure 11. First 6 input variables.
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3.2 Pre-Selection Cuts
After optimising the list of variables I applied pre-selection cuts form cut-


based approach. All Baseline Cutswere applied, but not all of Signal RegionCuts
and Stau Cuts are used, for example, only one cut can make a situation even
worse.
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Figure 12. Cut which decreases the significance.


Optimised pre-selection cuts, that will be used in further steps are Baseline
Cuts and Iso(τ) > 0.85. We do need not only an increased peak of the signif-
icance but more stable to statistical fluctuations, represented by red dots and
black ones. Red ones are the significance and black ones are a figure of merit,
which formula includes statistical uncertainties and approximately equal to sig-
nificance.
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Figure 13. Cut on τ isolation which increases and stabilises the significance.


3.3 BDTOptions
Themost interesting, complicated and very promising part of optimisation –


BDT options. On this step, I generated and compared about 2000 plots to study
the influence of different BDT options values and their interference with each
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other. The most important options and several values (italic for default, red for
optimised):


• NTrees
Number of trees in the forest
600, 800, 1000, 1200, 1400, 1600


• MaxDepth
Max depth of the decision tree allowed
3, 5, 7, 9


• MinNodeSize
Minimum percentage of training events required in a leaf node
2%, 3%,5%


• nCuts
Number of grid points in variable rangeused infindingoptimal cut innode
splitting
20, 25, 30, 35, 40, 50


• BoostType
Boosting type for the trees in the forest
AdaBoost, RealAdaBoost


• NegWeightTreatment
How to treat events with negative weights in the BDT training (particular
the boosting)
Pray, PairNegWeightsGlobal, InverseBoostNegWeights


One of themain options is BoostType. Themost popular boosting algorithm
is the so-calledAdaBoost (adaptiveboost). Startingwith theoriginal eventweights
when training the first decision tree, the subsequent tree is trained using amod-
ified event sample where the weights of previouslymisclassified events aremul-
tiplied by a common boost weight α:


α =
1− err
err . (3.14)


We define the result of an individual classifier as h(x), with (x being the tuple of
input variables) encoded for signal and background as h(x) = +1 and –1 (in Re-
alAdaBoost this value is real [0, 1]), respectively. The boosted event classification
yBoost(x) is then given by (err – misclassification rate):


yBoost(x) =
1


Ncollection


Ncollection∑
i


ln(αi)hi(x), (3.15)


14







where the sum is over all classifiers in the collection. Small (large) values indi-
cate a background-like (signal-like) event. The equation above represents the
standard boosting algorithm.


Examples of BDT options packs that decrease and increasemaximum signif-
icance comparing with pre-selected cut result are below.
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Figure 14. BDT options which decrease the significance.
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Figure 15. Optimised BDT options which increase the significance.
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4 Results
During the summer I learned a lot about instruments that are used particle


physics analysis such as ROOT, TMVA, Shell environment, that I’ve never seen
before and a workflow in a SUSY DESY group. I founded DESY is the best place
for particle physics work and hope to work inside these walls soon. Great ac-
knowledgments to Ilya an Isabell from SUSY group for helping me all the sum-
mer, to Olaf for organising not only work for students but incredible parties too,
to all my new friends from all over the world, to staff in the canteen, hostels,
secretariat, etc., which were invisible for us, but still very important.


As a result of the project, I would like to accentuate these points of the opti-
misation:


• List of variables, cuts and BDT options have been optimized.


• Significance has been increased. Here in the table are results for 4 gener-
ated stau points.


Cuts BDT


stau100 0.22 1.05
stau150 0.4 0.9
stau200 0.41 0.56
stau300 0.21 0.3


• This research will be used in further analysis for τ̃ search.
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Figure 16. Comparison of the optimised BDT approach and previous cut-based
one.
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