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Abstract

In this work, we present an optimisation workflow of Multivariable Analysis, specif-
ically Boosted Decision Trees, for the search of superpartner of 7 lepton at LHC. The
previous approach was based on rectangular cuts, but one yielded no enough sen-
sitivity in studied 7 masses region. By using more intelligent methods, that belong
to the family of supervised learning algorithms, there is a possibility to get much
more sensitivity. Boosted Decision Trees have a similar concept as the cut-based
approach: one divides phase space into hypercubes, labeled either as a signal or
as a background, but the advantage is that BDT applies cuts automatically. In the
results of the project, one increased the sensitivity to the future possible signal by
using MVA approach. The optimisation from this paper will be used in further anal-
ysis.
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1 Introduction

1.1 Supersymmetry

Supersymmetry is a proposed type of spacetime symmetry that relates two
basic classes of elementary particles: bosons, which have an integer-valued spin,
and fermions, which have a half-integer spin. Each particle from one group is
associated with a particle from the other, known as its superpartner, the spin of
which differs by a half-integer.

Standard particles SUSY particles

Higgsino

! Quarks o Leplons . Force parlicles Squarks »._) Sleptons 0 SUSY force
particles

Figure 1. SM particles and their superpartners.

There are several motivation points to introduce such an extension of SM:

1. The hierarchy problem
There is no scientific consensus on why, for example, the weak force is 10%4
times as strong as gravity. More technically, the question is why the Higgs
boson is so much lighter than the Planck mass. For such a little mass there
is a very fine-tuning cancellation between the quadratic radiative correc-
tions and the bare mass.

2. Gauge coupling unification

3. Dark Matter
The existence of dark matter would explain a number of otherwise puz-
zling astronomical observations. One of the candidates is Lightest Syper-
symmetrical Particle (neutralino — a mixture of neutral higgsinos, the bino
and the neutral winos).
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Figure 2. Cancellation of the Higgs boson quadratic mass renormalization

between fermionic top quark loop and scalar stop squark tadpole Feynman
diagrams in a supersymmetric extension of the Standard Model.
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Figure 3. Grand unification of the forces with Minimal Supersymmetric
Standard Model extension.

1.2 Analysis Motivation

In some SUSY models 7, superpartner of 7-lepton, is the second lightest SUSY

particle after neutralino and so it makes sense to look for 7 LHC. During LEP
experiment a region of masses of Y and 7 was excluded, as one can see on the
plot under the blue curve. At LHC people excluded one more 7 mass close to 100

GeVin 2008.
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Figure 4. 7 mass limits at LEP and LHC
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2 Analysis

2.1 Studied Process

During the summerproject, I was studying direct 7 pair production. In this
process each of 7-s decays to x and 7-lepton. There are four channels of two
7-leptons (Muon-hadron channel has been studied):

1. Electron-hadron (22.8%)
2. Muon-hadron (22.8%)
3. Electron-muon (12.3%)

4. Hadron-hadron(42.1%)

2.2 Cut-Based Approach

Previous approach in analysis was rectangular cut-based one, which means
applying physically appropriate cuts on chosen complex and simple variables
and dividing the phase space formed by these variables into regions. But before
applying cuts for the three selected physically appropriate variables, one need
to suppress the background and enhance the ratio of signal over background by
using event selection (x4 is lepton 1 and 7 in lepton 2):

¢ Baseline Cuts

1. Two leptons (u7) with with AR < 3.5 and special properties as given
in figure below;



Property u7, (MuHad) | e, (EleHad) T u (EleMu) \ e (EleMu)
pr > (GeV) 25 26 20 (Mu23 && ppr > 24 GeV && Elel2 && epr > 13 GeV)
OR (Mu8 && ppr > 10 GeV && Ele23 && epr > 24 GeV)

|dyy| < (cm) 0.045 0.045 - 0.045

|dz| < (cm) 0.2 0.2 0.2 0.2

7| < 24 2.1 2.3 24 2.5

Rellso < 0.15 0.1 - 0.15 0.1

Id medium non-trig. MVA | see [*] | medium non-trig. MVA

Pair OSwith0.3 < AR < 35 OSwith AR > 0.3

[*] T candidates byTightIsolationMVArun2vl1DBoldDMwLT & decayModeFinding0OldDMs &
againstElectronVLooseMVAG6 & againstMuonTight3

Matching to trig. sel. lepton has to match HLT object within AR < 0.5

Figure 5. Summary of the required pr properties.

No additional leptons with such conditions;
njet < 1, where jets are PI* > 20 GeV and || < 2.4;
n, = 0, no b-tagged jets;

AR

M7 > 120 GeV to suppress W+jets background;
6. M;,;, < 30 GeV to suppress Drell-Yan process background;

* Signal Region Cuts

1. Aln|(Ph, P2) < 2;

My, > 20 GeV;

My, > 30 GeV,;

Aln|(Jo, 1) < 1.5 (1-jet category only);

Al S

AR(Jy, T) < 4 (1-jet category only);
¢ Stau Cuts

Iso(1) > 0.85;
Aln|(li, o) < 1.5
AD(ly, 1) > 1.5

2 < AR(ly,15) < 3.2;
M, 1, > 50 GeV;

6. Mg, > 50 GeV.

ok Wb

After applying event selection cuts, one can use three search variables, which
have a shape sensitive to differences between signal and background:

1.

— 7 —miss. _ :
Mra(ms, S, my, t, D705 X1, X2) = o Iin
D@D+ q=pFs

{maX[MT(m87 §7 Xl)ﬁ); MT(mt7 t—: X2, @]} ) (21)
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where the transverse mass is given by:

M(m, 7, X, 5) = \/m? + x2 + 2y/m? 1 [TP/XE + [BE — 27

miss.

pT )

D¢ = PMiss. ¢ 0.85(Ph + P2) - C,

where ( is bisector between directions of the two leptons.

(2.2)

(2.3)

(2.4)

Further cuts for these three variables are based on their shapes after the event
selection. Bins with than 100 background events are taken as search regions.

Cuts for 53 SR bins are explained below.

P Mt D #5R 25-53 | Category
<150 25
10 >-150 & <-100 2
>-100 & <0 27
<40
pre My D¢ #SR 1-24 Category >0 28
~700 T =40 >-500 29
<100 30
<40 2 1025& <0 ; <40 =100 & <50 31
<40 40 5500 1 >0 3
o = >40& <80 [ <100 33
<40 SA00& <50 | 6 %0 ilgg gg
40 & <80 | >ng Z <40 <100 %
s &< >40 & <80 i:mﬂ 5 <7100 37
=5 500 10 280 & <120 | >40 & <80 iigg gg L-Jet events
40 <-100 11 =80 & <120 | >-500 30
; z:}gg % 0-Jets events >120 >-500 41
>80 & <120 | 40 & <80 <150 42
>-150 14 <40 >-150 & <-100 43
>80 >-500 15 ~-100 44
<40 <-100 16 <-150 45
>-100 17 120 & <250 | >40& <80 | >-150 <-100 16
<150 18 >-100 a7
>40 & <80 | >-150 <-100 19 <80 & <100 >-500 8
>120 & <250 ~-100 20 >100 & <120 >500 Iy
>80 & <100 >-500 21 >120 >-500 50
>100 & <120 >-500 22 >80 <100 >-500 51
>120 >-500 23 >250 >100 & <120 >-500 52
>250 =0 >-500 24 >120 >-500 53

Figure 6. Signal region cuts.

With this approach one yields no sensitivity on every signal point, the signif-
icance of the signal is less than 0.2, which will be not enough to recognize future

signals in real data.
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Figure 7. Example of insufficient signal over background ratio with cut-based
approach.

2.3 MVA Approach

All multivariate techniques belong to the family of "supervised learning" al-
gorithms. They make use of training events, for which the desired output is
known, to determine the mapping function that either describes a decision bound-
ary (classification) or an approximation of the underlying functional behavior
defining the target value (regression). The mapping function can contain var-
ious degrees of approximations and may be a single global function, or a set
of local models. Currently implemented classifiers and regression methods in
TMVA:



e Rectangular cut optimisation

* Projective and multidimensional likelihood estimator (incl. regression)
* k-Nearest Neighbor algorithm (incl. regression)

* Fisher and H-Matrix discriminants

e Function discriminant

* Artificial neural networks (3 multilayer perceptron implementations) (incl.
regression)

* Boosted/bagged decision trees (incl. regression)
 Rule Fitting

e Support Vector Machine (incl. regression)

2.4 Boosted Decision Trees

Pure Signal Nodes S/(S+B):O491 Decision Tree no.: 0

Pure Backgr. Nodes MTsum< 160

S/(S+B)=0.132
S/(S+B)=0.971
LeptV2Pt< 54.1
S/(S+B)=0.595
DiLM< 96.6

S/(S+B)=0.061

SI(S+B)=0.742 S/(S+B)=0.332

Figure 8. Example of insufficient signal over background ratio with cut-based
approach.

A decision tree is a binary classifier, which starts from the root node. On each
node, BDT chooses a variable for the list and a cut on this variable that divides

9



Figure 9. Forest of trees

phase space into 2 regions in the best way. After BDT classifier repeats the pro-
cedure more times till one of stop criteria is fulfilled. The result of one tree —
several regions in phase space labeled according to the significance of the node
(purity of the node is represented by color on the example above).

The problem is that using one tree for analysis one clashes instability with re-
spect to statistical fluctuations in the training sample from which the tree struc-
ture is derived. This problem is overcome by constructing a forest of decision
trees and classifying an event on a majority vote of the classifications done by
each tree in the forest. All trees in the forest are derived from the same training
sample by boosting procedure. After building one tree BDT adjusts weights to
events, that have been classified correctly, and grow another tree from the re-
weighted sample. Boosting increases the statistical stability of the classifier and
is able to drastically improve the separation performance compared to a single
decision tree.

3 BDT Workflow

3.1 Variables

The input of BDT analysis is a list of variables of test samples. The most im-
portant property of chosen variables is different shapes of the background and
known signal. In this case, it will be more efficient to apply cuts on them.

From about 40 variables I have ended up only 13 of them. After training BDT
for the first time in the log file one yields BDT ranking list, which based on an
information how many times each of variables has been chosen to apply cut.

10



In the optimisation of the list, I've noticed that after adding unimportant ones
result does not change.

MVA_BDTmutau_13_variables_S MVA_BDTmutau_27_variables_S
2 e FOM g e FOM
214 e sisqr(s+h) 214 e sisqr(s+h)
backgr rejection backgr rejection
12} ___ signal efficiency 12| ____ signal efficiency N

-

08 08

0.6 06

04 04

0.2 02

o
@ T T

@ede00p090®® ' | K A |, .10
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

@eev00ee0®®9" " | |, ., |, ., ,,1.,.> |
-0.3 0.2 -0.1 0 0.1 0.2 0.3

Figure 10. No increasing sensitivity after adding more than 13 variables, e.g. 27.

Descriptions of all variables in the final list (in BDT ranking order, p is lepton
1 and 7 in lepton 2 still):

1.
MTsum - MT + MTt -
— /2P PIIS(1 — cos(AD(Ph, Pmiss)))+

- \/QPZZ?PZ@SS(l — cos(AP( Pz, pmiss))). (3.1)

2,
AR = \[(AB(PY, PR))2 + (An(P', Pl))2 (3.2)

3.
Pl (3.3)

4,
M., = P%l + qu?; (3.4)

5.
Mcta = \/ 2P P2 (1 4 cos(AD(Ph, Pk))); (3.5)

6.

=  pmiss, _
MT?(m&Samt:ta T 7X17X2) —

q##min ~ {maX[MT(msv S, Xbm? MT(mt7 t_; X2, ‘D]} ; (3.6)
D,q5p+q=p7"*°
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D¢

= Pmiss. —0.85(P"

Pl‘nlSS

ext ]et l
HS = Pt 4 ph.

+ Py ¢

(3.7)

(3.8)

(3.9)

where 5 is bisector between directions of the two leptons;

10.

11.

12.

My = \/ 2 P} PSS (1

13.
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Figure 11. First 6 input variables.
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3.2 Pre-Selection Cuts

After optimising the list of variables I applied pre-selection cuts form cut-
based approach. All Baseline Cuts were applied, but not all of Signal Region Cuts
and Stau Cuts are used, for example, only one cut can make a situation even

worse.

MVA_BDTmutau_NoCuts0_S

Events
-
i
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e FOM
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Figure 12. Cut which decreases the significance.
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Optimised pre-selection cuts, that will be used in further steps are Baseline
Cuts and Iso(7) > 0.85. We do need not only an increased peak of the signif-
icance but more stable to statistical fluctuations, represented by red dots and
black ones. Red ones are the significance and black ones are a figure of merit,
which formula includes statistical uncertainties and approximately equal to sig-
nificance.
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Figure 13. Cut on 7 isolation which increases and stabilises the significance.

3.3 BDT Options

The most interesting, complicated and very promising part of optimisation —
BDT options. On this step, I generated and compared about 2000 plots to study
the influence of different BDT options values and their interference with each
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other. The most important options and several values (italic for default, red for
optimised):

e NTrees
Number of trees in the forest
600, 800, 1000, 1200, 1400, 1600

e MaxDepth
Max depth of the decision tree allowed
3,579

* MinNodeSize
Minimum percentage of training events required in a leaf node
2%, 3%,5%

* nCuts
Number of grid points in variable range used in finding optimal cut in node
splitting
20, 25, 30, 35, 40, 50

* BoostType
Boosting type for the trees in the forest
AdaBoost, RealAdaBoost

* NegWeightTreatment
How to treat events with negative weights in the BDT training (particular
the boosting)
Pray, PairNegWeightsGlobal, InverseBoostNegWeights

One of the main options is BoostType. The most popular boosting algorithm
is the so-called AdaBoost (adaptive boost). Starting with the original event weights
when training the first decision tree, the subsequent tree is trained using a mod-
ified event sample where the weights of previously misclassified events are mul-
tiplied by a common boost weight «:

1 —err
err

o= (3.14)
We define the result of an individual classifier as i (z), with (z being the tuple of
input variables) encoded for signal and background as h(x) = +1 and -1 (in Re-
alAdaBoost this value is real [0, 1]), respectively. The boosted event classification
YBoost () is then given by (err — misclassification rate):

1 N, collection

yBoost(x) = 1H(O{i)hi(£€), (3.15)

N, collection
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where the sum is over all classifiers in the collection. Small (large) values indi-
cate a background-like (signal-like) event. The equation above represents the
standard boosting algorithm.

Examples of BDT options packs that decrease and increase maximum signif-
icance comparing with pre-selected cut result are below.

MVA_BDTmutau_StauCut2_S T 0 A e . . : st
£ * FOM §14 o Cmew
Q [} rt(s+l
21 e sisqri(s+h) i backgr rejection
backgr rejection signal efficiency
12 ) - 12 1 signal
signal efficiency 3 signal
1 1
o8- 08—
06— 06—
C C i
0.4; 0.4; I L
E C gbs e,
02~ oo 02f o0t ¢ °
r seee? L oos® \\J;
JBoéscepeeeeeee®®® | N oBesesceesccseceeee®®t” || | N °°
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 -0.1 0 0.1 0.2
BDT Response BDT Response
Figure 14. BDT options which decrease the significance.
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06— 0.6
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r . C .
02 L 02 o
L ooo..oc"'.. r ..00.-0". \\;
Boeceeseqe®®PY " |, .., \ (decsecescepee®®8”” |, |, |, [}
03 2 01 0 01 0.4 0.45 05 0.55

0.2 0.3 0.6
BDT Response BDT Response

Figure 15. Optimised BDT options which increase the significance.

15



4 Results

During the summer I learned a lot about instruments that are used particle
physics analysis such as ROOT, TMVA, Shell environment, that I've never seen
before and a workflow in a SUSY DESY group. I founded DESY is the best place
for particle physics work and hope to work inside these walls soon. Great ac-
knowledgments to Ilya an Isabell from SUSY group for helping me all the sum-
mer, to Olaf for organising not only work for students but incredible parties too,
to all my new friends from all over the world, to staff in the canteen, hostels,
secretariat, etc., which were invisible for us, but still very important.

As a result of the project, I would like to accentuate these points of the opti-
misation:

e List of variables, cuts and BDT options have been optimized.

* Significance has been increased. Here in the table are results for 4 gener-
ated stau points.

Cuts BDT

staul00 | 0.22 1.05
staul50 | 0.4 0.9
stau200 | 0.41 0.56
stau300 | 0.21 0.3

* This research will be used in further analysis for 7 search.

MVA_BDTmutau_stau-staul00_LSP1_B Signal_background_stau_stau_left_100_LSP1

MVA_S
B VVA B

10°

0.6 0.65 5 10 15 20 25 30 35 40 45
BDT Response Nbin

Figure 16. Comparison of the optimised BDT approach and previous cut-based
one.
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