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Abstract


This report, in the context of the DESY Summer Student Program 2017, presents a phenomeno-
logical study of the pp → A → Zh process (so called Higgs-strahlung) in the THDM. In this report,
we are giving a brief theoretical overview of the THDM. The parameter dependence of the THDM
relevant to the process is studied numerically (with help of SusHi and 2HDMC software). Also, we
have performed an analytical and numerical calculation of the cross section at leading order (LO)
and a numerical calculation at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO).


Group : DESY theory group
Supervisors : Stefan Liebler, Emanuele Bagnaschi, Georg Weiglein







Contents


1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1


2 Two Higgs Doublet Model (THDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1


3 Study of A decays in the THDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3


4 Analytical calculation of bb̄→ A→ Zh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5


5 Higher-order improved result based on a generalized narrow-width approximation . . 6


6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10


1 Introduction


Since the discovery of a Higgs boson in 2012 one of the most important task for particle physics is to
reveal its nature. This stands for studying Higgs production and decay modes in order to understand if the
particle we observe is the Standard Model (SM) Higgs boson or not.


However, what we know for sure today – the SM is an incomplete model. This conclusion follows first
of all from our observations. For example, there is no dark matter candidate in the SM, while according to
the nowadays data more than 20% of the Universe is dark matter. Other problems are the baryon asymmetry
which can not be fully explained by means of the SM and, for instance, gravity which is basically not present
in the current model of particle physics. Also, there are some pure theoretical issues such as the hierarchy
problem or strong CP problem.


That is why besides characterizing the known Higgs boson there is another interesting research avenue
– to study how other possible Higgs-states in different SM extensions could appear at the LHC. In this project
we focus on one of the simplest possible extensions of the SM – the Two-Higgs-Doublet-Model (THDM) and
particularly on the Higgsstrahlung process (the production of a Higgs together with a gauge boson). Despite
it is not the most dominant Higgs production mechanism it is of large relevance due to several aspects.
Firstly, because of the presence of the gauge boson, which can be tagged in the final state. Secondly, the
important decay of Higgs boson to bottom quarks is experimentally accessible in this channel. Moreover the
gluon-fusion component gg → Zh is very sensitive to new physics. Lastly, in extended Higgs sectors, both
the gluon-fusion component gg → Zh as well as the bb̄ → Zh contribution can be resonantly enhanced by
internal (pseudo)scalars. This latter process was only rudimentary studied in previous work [7] and therefore
deserves some more attention. Thus, it is the aim of this project to study the process bb̄→ A→ Zh beyond
its prediction at leading order (LO) in perturbation theory, as it is available in literature.


In this report, we are giving a brief overview of the THDM (see Section 2), performing a numerical
study of A–decays in the THDM (Section 3) and present an analytical calculation of pp → A → Zh cross
section at LO and a numerical calculation up to NNLO (Sections 4-5).


2 Two Higgs Doublet Model (THDM)


There are many motivations for THDMs. The best known motivation is supersymmetry which in its
minimal version requires two Higgs doublets. Another advantage of the THDM is the fact that this model
potentially can generate the necessary amount of CP violation which is observed in nature and also might
have some dark matter candidate [1].


In principle the Higgs sector in the THDM works exactly like in SM but instead of one Higgs doublet
now we have two of them. This of course leads to some complications. First of all we need to consider a
different potential. After the requirement of a few simplifications such as no CP-violation in the Higgs sector
and no flavour-changing neutral currents the potential involving two Higgs doublets Φ1 and Φ2 takes the
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form:


V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2


22Φ†2Φ2 −m2
12


(
Φ†1Φ2 + h.c


)
+
λ1


2


(
Φ†1Φ1


)2


+
λ2


2


(
Φ†2Φ2


)2


+λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5


2


[(
Φ†1Φ2


)2


+ h.c


]
.


(1)


After electroweak symmetry breaking the neutral components of the two Higgs doublets develop vacuum
expectation values as follows:


〈Φ1〉0 =
1√
2


(
0
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)
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(2)


Expanding the two Higgs doublets around these vacuum expectation values yields four real fields for each of
the Higgs doublet:


Φa =


(
φ+
a


(va + ρa + iηa) /
√


2


)
, a = 1, 2 (3)


In the neutral sector this includes the CP-even component ρa and the CP-odd component ηa. Three of eight
fields give mass to Z0 and W± gauge bosons, while the remaining five are physical Higgs states. Finally in
this model there are two charged scalars, two neutral scalars and one pseudoscalar.


Substituting the doublets (3) in the potential (1) we get mass terms Eqs. (4) - (6). For charged scalars:
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The mass terms for the pseudoscalars:
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Finally, the mass terms for the neutral scalars:


Lmass
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In order to move to the physical basis, the scalar mass-squared matrix should be diagonalized, thus we
introduce a new model parameter - rotation angle α. The mass eigenstates of the CP-even sector are called
h and H and their masses Mh and MH respectively. Another important parameter of the THDM is


tanβ =
v2


v1
. (7)


The angle β is the rotation angle which diagonalizes the mass-squared matrices of charged scalars and of
pseudoscalars.


Rather than employing the λi basis we use the physical basis:


Mh,MH ,MA,MH± , tanβ, sin (α− β) ,m2
12. (8)


Its input is based on the masses of all five Higgs bosons, the ratio (7), the CP-even mixing angle α in the
form sin(α− β) and m2


12.
In this project the subject of our study is the THDM process with joint production of a light Higgs


h and Z boson and particularly the diagram in Fig. 3. In the physical basis the relevant couplings for the
process bb̄→ A→ Zh depend on the mixing angles α and β. We normalize all couplings to the SM strength
and just write relative couplings g. We refer to [7] for the notation.


gAd̄d = tanβ, gAūu =
1


tanβ


gAZh ∼ cos (α− β)


gAW±H∓ = 1


(9)


The last coupling gAW±H∓ does not occur in the process directly, but will indirectly enter our analysis
through the decay width of the pseudoscalar A.
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The essential requirement for any beyond the SM theory is its consistency with the current experimental
situation. For example in the THDM e−e+ → Z → Zh cross section is given by:


σTHDM = sin2 (α− β)σSM. (10)


Consequently for the light Higgs h to have SM properties the coupling sin(α− β) has to be close to 1.
Accordingly cos(α− β) remains close to 0. [9]


3 Study of A decays in the THDM


In this section, we perform a numerical study of A decays to see clearly model’s dependence on the
parameter choice. To conduct this numerical study we used SusHi and 2HDMC codes. For more details on the
numerical calculation see Section 5.


For our research we have chosen three pseudoscalar masses 250, 400 and 1000 GeV. The values of the
other parameters can be found in Table 1.


MA, GeV Mb, GeV Mh, GeV m12, GeV MH± , GeV MH , GeV tanβ sin(α− β)
250 2.883118
400 2.798037 125 100 271.512 316.465 0.5 .. 60 -1 .. 1
1000 2.651288


Table 1: THDM parameter values for numerical study


Here Mb is the bottom mass for the Yukawa coupling in the MS renormalization scheme chosen at the
pseudoscalar scale MA. One can feel free choosing a heavy Higgs mass MH and charged Higgs mass M±H ,
since our analysis is essentially insensitive to those paremeters as long as these decays do not affect the A
decay width.


Fig. 1 represent our results. The first observation one can do is that the decay width increases with
MA. This is expected since the higher the particle mass the more decay channels open. Another noticeable
thing about our results is different decay width patterns for MA = 250 GeV and higher masses. The pattern
for decay width at 250 GeV can be explained by two factors. Firstly, since gAbb̄ ∼ tanβ we see the increase of
the total decay width and BR(A→ bb̄) with tanβ. Secondly gAZh ∼ cos(α−β), which explains the curvature
of the A decay width. At cos(α− β) = 0 the branching ratio of A→ Zh vanishes.


The situation is different for higher masses MA = 400 GeV and MA = 1000 GeV. In these cases also
the decay A → tt̄ is kinematically open and thus also influences the behavior of all other branching ratios.
As we mentioned before gAtt̄ ∼ (tanβ)−1. That is why we observe high values of the total decay width at
small tanβ. The simultaneous participation of three factors we discussed is finally giving us this onion-like
structure.


For MA = 1000 GeV our parameter choice with a low (compared to MA) charged Higgs mass allows
for the decay A → W±H∓ to be kinematically open. Its branching ratio is shown in Fig. 2. But since the
coupling for this decay has no β or α dependence this process does not influence the pattern we see. It just
contributes to the total decay width (as one can see from Fig. 1 at 1000 GeV the pseudoscalar has a very
large total decay width).
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Figure 2: Branching ratio of A→W±H∓ decay at MA = 1000 GeV
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A decay width, Γtot, GeV
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Figure 1: Numerical study of A decays in THDM


In sections 4 and 5 we perform a cross section calculation for the studied process. To do so for each
mass we have chosen a point in the (cos(α− β), tanβ) plane. Our choice is represented in Table 2.
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MA, GeV 250 400 1000
tanβ 2 6 5


sin(α− β) 0.6 0.8 0.9


Table 2: Points in parameter space used in the cross section calculation


4 Analytical calculation of bb̄→ A→ Zh


In this section we are going to provide an analytical calculation of the cross section for bb̄→ A→ Zh
process at tree level. The Feynman graph corresponding to the process is shown in Fig. 3.


A
b


b


h


Z


Figure 3: Feynman diagram for the bb̄→ A→ Zh process


We used FeynArts to choose our Feynman graph topology and generate the amplitude (11) of the
process:


M = δrs


3∑
r=1


3∑
s=1


v̄rb̄ (p2)
−eMbY3


4MW cos θW sin2 θW
γ5u


s
b(p1)


e cos(α− β)


(k1 + k2)2 −M2
A − iMAΓA


(−k1 − 2k2)µeµZ(k1). (11)


In (11): p1, p2 — quarks momenta; k1 — Z–boson momentum; k2 — Higgs momentum; s = (p1 + p2)2 =
(k1 + k2)2 — quark center of mass energy squared; r, s — color indexes; v, u — quark spinors; eµ —
polarization vector of Z–boson; e — electron charge; Y3 = tanβ — normalized bottom Yukawa coupling; MA


— pseudoscalar mass; ΓA — pseudoscalar decay width; MW — W–boson mass; θW — electroweak mixing
angle; Mb — bottom mass in MS scheme at the scale of MA. Throughout this report we assumed initial
state quarks to be massless. The bottom–quark mass is only taken into account in the bottom–quark Yukawa
coupling.


In order to get the matrix element which we initially need to derive the cross section we used FormCalc
to square the amplitude (11) and perform the sum over final state polarization, color and helicity averaging.
As a result we got the following expression for the matrix element squared:


|M |2 =
3π2α2


fine str cos(β − α)2M2
b
Y 2
3


M2
Z
s
(
−2M2


h


(
s+M2


Z


)
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(
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9× 2 cos2 θWM2


W sin4 θW


(
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A)
2


+M2
AΓ2


A


) . (12)


The expression for the cross section is given by (13) (see, for example, [8]). We took into account the
fact that in our case there is no angular dependence and expressed the outgoing particle momenta in terms
of Mandelstam variable s and masses.


σ(bb̄→ A→ Zh) =
|M |2


8πs
√
s
×
√


(M2
Z −M2


h + s)2


4s
−M2


Z (13)


However expression (13) is still not the answer we are interested in. The point is that real physical
event is not the quark collision but a collisions of hadrons, for example, proton-proton collisions. Quarks
in the proton are characterized by Parton Distribution Functions (PDFs). Therefore we have to convolve
our partonic cross section bb̄ → A → Zh with the PDFs in order to obtain the hadronic cross section
pp → A → Zh. This involves two integrations over the momentum fractions of the b-quarks in the proton,
named x1 and x2:


σ (pp→ A→ Zh) = 2


∫ 1


0


dx1dx2 θ
(
ŝx1x2 − (Mh +MZ)


2
)
fb (x1, Q) fb̄ (x2, Q) σ


(
bb̄→ Zh


)
(ŝx1x2) (14)


Here fb and fb̄ are parton distribution functions for quark and antiquark respectively. Also we used the fact
that s = ŝx1x2 (neglecting the bottom mass), where s - quark center of mass energy and ŝ - hadronic center
of mass energy. Theta function in Eq. (14) represent the condition for the process to be kinematically open.
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For our future studies we are also interested in obtaining the analytical expression for dσ
d
√
s
. To do this


we are performing the following variable transformation:
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(15)


Which leads us to the expression (16) for the cross section derivative:


dσ(pp→ Zh)(s)


d
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s
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4
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s


ŝ
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5 Higher-order improved result based on a generalized narrow-
width approximation


In this section we want to compare our analytical result of Sect. 4 with a generalized narrow-width
approximation using numerical codes for the production pp → A and the decay A → Zh. The employed
software packages are:


1. SusHi - program which allows to calculate the bb̄→ A cross section up to NNLO. All model parameters
such as Higgs mass Mh, pseudoscalar mass MA, tanβ and sin (α− β) are input for the program [5] [6].


2. 2HDMC - allows to calculate decay width and branching ratios for different A decay channels. [4]


In Table 3 we show the result of our analytical calculation for the three benchmark points. For this
purpose we used the standard Mathematica routine NIntegrate to perform the integral in Eq. (14) and the
package ManeParse [3] to extract the PDF4LHC15 nlo mc PDF set from LHAPDF [2]. We also called SusHi


and 2HDMC through the call of a SusHi input file, that at the same time generates the cross section through
bottom-quark annihilation pp→ A as well as a 2HDMC output file, which contains the relevant branching ratio
A→ Zh as well as the employed total decay width.


Here we would like to highlight that in order to obtain the analytical result, which can be compared
correctly with the numerical result based on the narrow width approximation, one should be very careful
with the input parameters. In particular the choice of the renormalization scheme for the bottom-quark mass
entering the Yukawa coupling is very important. In order to minimize the size of higher-order corrections
we follow the strategy employed in bottom-quark annihilation and choose the MS bottom-quark mass at the
scale of MA. For electroweak parameters we substituted their values at MZ . Influence of the scale choice
is shown on Fig. 4. To create this graph we run SusHi and 2HDMC for different renormalization scales (from
1
2MA to 2MA) and factorization scales (from 1


8MA to 1
2MA). As one can see at higher order in perturbation


theory the scale dependence is less pronounced, which indicates the convergence of the perturbative series.
To get the numerical cross section based on the narrow width approximation we just multiplied SusHi


and 2HDMC outputs as shown below:


σSusHi + 2HDMC = σ(bb̄→ A)SusHi(MA)× BR(A→ Zh)2HDMC(MA). (17)


MA, GeV ΓA, GeV σanalytical, pb σSusHi + 2HDMC Ratio
250 0.425013 0.167540 0.167587 0.999718
400 8.188970 0.135506 0.138187 0.980601
1000 756.506014 0.000114 0.000175 0.649590


Table 3: Comparison of analytical and numerical solutions in LO


Table 3 shows the comparison of our analytical calculation with the application of the narrow width
approximation using the cross section and branching ratio from SusHi and 2HDMC respectively. The ratios
for MA = 250 GeV and MA = 400 GeV are close to unity. The slight deviation most probably caused
by the choice of electroweak parameters in the expression for the matrix element squared (12). The ratio
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Figure 4: Scale dependence for LO, NLO and NNLO calculations


for MA = 1000 GeV noticeably differs from unity because of the large decay width, when narrow width
approximation can not be used anymore.


Using the results of both SusHi and 2HDMC, and applying the approximation formula (18) or its im-
proved variant (19) one can also calculate dσ


d
√
s
:


dσ(bb̄→ Zh)


d
√
s


= σ(bb̄→ A)(mA)
2
√
s


(s−m2
A)2 +m2


AΓ2
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mAΓ(A→ Zh)(mA)


π
(18)
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2
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s


(s−m2
A)2 +m2


AΓ2
A


√
sΓ(A→ Zh)(s)


π
, (19)


where Γ(A→ Zh) = ΓA ×BR(A→ Zh). The only difference between those two formulas is that in Eq. (18)
we are choosing σ(bb̄ → A) cross section and Γ(A → Zh) to be on shell. The s - dependence is only in the
propagator-squared-like part. On the other hand in Eq. (19) both cross section and A → Zh decay width
depend on the center of mass energy.


The results of applying approximation formulas Eqs. (18) and (19) at LO are shown in Figures 5 - 7.
For masses MA = 250 GeV and 400 GeV both formulas are in a good agreement, while for 1000 GeV there
is a shift of approximately 100 GeV.
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Figure 5: MA = 250 GeV, tanβ = 2, sin (α− β) = 0.6
solid blue line corresponds to the formula (18), dotted line - to the formula (19)


To check how well those approximations work we also compared Eqs. (18) and (19) results with the
analytical answer. According to our calculations both formulas are doing an equally good job for the pseu-
doscalar masses 250 GeV and 400 GeV (relatively small decay widths). On the other hand only formula (19)
agrees with the analytical result for 1000 GeV. However such an observation is not surprising at all since when
we are dealing with narrow peaks we can neglect the s–dependence of σ(bb̄→ A) and Γ(A→ Zh). As a con-
sequence both formulas give very close results. For huge widths one should take into account s–dependence
and use the improved approximation in Eq. (19).
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solid blue line corresponds to the formula (18), dotted line - to the formula (19)
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Figure 8: Comparison between the LO, NLO and NNLO calculations with formula (18) for two benchmark
points


Since we have found that our approximation formulas are in a good agreement with analytical calcu-
lation, we used Eqs. (18), (19) and SusHi to obtain cross sections σ (pp→ A) up to NNLO. Fig. 8 shows our
results for dσ


d
√
s


(250 and 400 GeV). Here Eq. (18) was used. Fig. 9 shows the result for 1000 GeV based on


the approximation formula Eq. (19).1


1At LO the improved formula is exactly identical to our analytical calculation. However, since formula (19) is taking into
account only production and decay corrections, if there are diagrams connecting initial and final state those are all neglected.
In our case of the bb̄ → A → Zh process there are no such diagrams at NLO, since QCD corrections can only occur only in
production. Beyond NLO some diagrams are neglected in our calculation.
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Figure 9: Comparison between the LO, NLO and NNLO calculations with formula (19) for the benchmark
point with MA = 1000 GeV


6 Conclusion


This work contains a study of the bb̄ → A → Zh process in hadron collisions. We have given a brief
overview of the THDM and illustrated the model dependence on the input parameters such as pseudoscalar
mass MA and mixing angles β and α in form of tanβ and cos(α− β). Also we have performed an analytical
calculation of the cross section σ


(
bb̄→ A→ Zh


)
at LO, that we evaluated numerically for three points in


parameter space shown in Table 2. We have proven that the approximation formulas given with Eq. (18)
and Eq. (19) are working well. Those formulas are based on splitting the process to A–production (can be
numerically calculated with SusHi) and the subsequent A–decay (can be calculated with 2HDMC). Finally, we
have applied the approximations Eqs. (18) and (19) to perform a calculation of the studied process up to
NNLO.


Future steps of this work could contain the analytical calculation of the whole process bb̄→ Zh. This
process apart from bb̄ → A → ZH also contains diagrams with internal Z–boson and internal b–quarks in
the t– and u–channel.
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