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Abstract

This report sums up my work as a participant at the DESY Summer School 2017.
The project has been executed at the Belle II group and involved the analysis of
Monte Carlo data of the Belle I experiment. The focus was placed on the rare
decay B → K(∗)µ+µ−. The classification of signal and background events has
been performed using machine learning methods. Different methods have been
compared and evaluated. Concluding, the branching ratio for the B → K(∗)J/ψ
channel has been calculated.
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1 Introduction

The search for new physics beyond the standard model is an essential part of modern
physics. Although the standard model is a well-established theory, there are some issues
which cannot be solved by it alone. One of those is the so-called baryon asymmetry that
describes the imbalance in baryonic and antibaryonic matter which we observe in the
universe.
The Belle experiment at KEK in Tsukuba in Japan searches for signs of new physics
by colliding electrons and positrons at energies near the Υ(4S) resonance which leads
to the pairwise production of B mesons. In order to find hints on new physics the
analysis of rare decays is essential because in this case new physics can occur in the
same order of magnitude as standard model processes. The asymmetric collider KEKB
has a circumference of 3 km. The data was taken between 1999 and 2010. In order to
reach a higher luminosity Belle is currently upgraded to Belle II which is expected to
start first physical runs in 2018. [1]
Within the scope of this Summer School project simulated Monte Carlo events were
used to analyse the rare decay B → K(∗)µ+µ−.

2 Analysis

The analysis of the simulated data is performed in Python using Jupyter Notebook. To
obtain a high signal yield and an effective background supression the package scikitlearn
is used. It provides a selection of various classifiers for machine learning.

2.1 Signal Cuts

The applied cuts are adapted from [1]. They are necessary to suppress background
events originating from charmonium decays like B → K(∗)J/ψ and B → K(∗)ψ(2S),
where the cc̄ state decays into two leptons [1]. Within the scope of this project only the
muon final states are considered. The following cuts are applied:

−0.15
GeV

c2
< Mµµ −MJ/ψ < 0.08

GeV

c2
, (1)

−0.10
GeV

c2
< Mµµ −Mψ(2S) < 0.08

GeV

c2
. (2)

2.2 Background Sources

For the analysis of B → K(∗)µ+µ− several background sources have to be considered [1]:

• Continuum: Events arising from this background source originate from e+e− an-
nihilation. The generated particles are the light quark pairs uū, dd̄, ss̄ and cc̄.
In this analysis several training variables are used to suppress those background
events.

3



• Combinatorial: These background events originate from wrong combinations of
tracks in B decays and are the dominant source of background.

• Peaking: Processes imitating the signal shape in Mbc are called peaking back-
ground processes. Among them are the channels for the irreducible background
sources B → K(∗)J/ψ and B → K(∗)ψ(2S) that have been described in section
2.1. Moreover, pions from the decay B → K(∗)ππ can be mistakenly treatened as
muons.

• Cross-feed: The reason for this source are candidates that have been assigned to
the wrong decay channel due to missing decay products or misreconstruction of
one of their children.

Further background events arise from random combinations in the charged (B+B−) and
mixed (B0B̄0) generic Monte Carlo. Figure 1 shows the distribution of the so called Q
value which describes the energy difference between the mother and decay particles.
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Figure 1: Distribution of signal and background events for the Q value
from the channels charged, mixed, charm and uds. The
charged and mixed channels contain events arising from
random combinations of B+B− and B0B̄0 decays in the
generic Monte Carlo. The other two describe the continuum
background events e+e− → cc̄ and e+e− → uū, dd̄, ss̄.
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2.3 Selection of Variables

In order to find variables suitable for the separation of signal and background, both
distributions are plotted in the same histogram for every variable. Figure 2 shows the
distribution for the variable ∆E = EB−EBeam, which is useful for discriminating signal
against background.
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Figure 2: Comparison between signal and background events for the
variable ∆E. It describes the difference between the energy
of the B mesons and the energy of the beam [1].

In addition, correlation matrices are created to check if the selected variables are corre-
lated to the beam contrained mass

Mbc =
√
E2
Beam − |~pB|2, (3)

where ~pB is the momentum of the reconstructed candidate. Mbc features a signal distri-
bution suitable to discriminate against background. Therefore, the correlation between
Mbc and the selected variables should be as small as possible. [1]
In order to find a good variable set different combinations of variables are tested. Table
2 in the appendix gives an overview of the training variables.

2.4 Comparison of Classifiers

Scikitlearn offers a wide range of different classifiers for machine learning. In the de-
scribed project they are used to distinguish signal from background. To avoid biasing,
the data set on which the classifier is trained on should always differ from the one that
is supposed to be classified. At first, different classifiers are chosen and compared:
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Figure 3: Correlation matrix of the signal. The plot shows the correlation be-
tween the different variables from an example training set. The legend
shows the degree of correlation. For our analysis a correlation between
the beam contrained mass Mbc and the other variables used for the
training should be avoided.

• Boosted Decision Tree Classifier (bdt)

• Neural Network Classifier (mlp)

• Nearest Neighbours Classifier (nn)

• Random Forest Classifier (rf)

• Ada Boost Classifier (ab)

• Gaussian Naive Bayes Classifier (gnb)

• Quadratic Discriminant Analysis Classifier (qda)

For every classifier the Receiver Operating Characteristics (=ROC) Curve is created.
It is a helpful tool to evaluate the effectiveness of a classifier and shows the correlation
between the True Positive Rate and the False Positive Rate. Table 1 describes the
different terms.
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Figure 4: Correlation matrix of the background for the same set of variables as
figure 3.

Classification Result
Actual Class True False

True True Positive False Negative
False False Positive True Negative

Table 1: Different terms necessary to evaluate a classifier. The column ”Actual
Class” describes the real class of an object whereas the column ”Classi-
fication Result” describes the output of the classification process. The
table is derived from [2].

The True Positive Rate describes the amount of correctly classified signal events com-
pared to all positively classified objects [2]:

TPR =
#TruePositive

#TruePositive+ #False Positive
. (4)

The False Positive Rate is defined accordingly to that. Figure 5 shows the ROC curve
of the Boosted Decision Tree classifier whereas Figure 6 displays the ROC curves of all
classifiers named above.
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Figure 5: Receiver Operating Characteristics plot for the Boosted De-
cision Tree Classifier. The essential value in this figure is the
area under curve (=AUC).
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Receiver Operating Characteristic: Classifier Comparison

bdt: AUC = 0.91
mlp: AUC = 0.78
nn: AUC = 0.73
rf: AUC = 0.91
ab: AUC = 0.91
gnb: AUC = 0.62
qda: AUC = 0.93

Figure 6: Receiver Operating Characteristics plot for all classifiers de-
scribed above. One can see that the Boosted Decision Tree
and the Random Forest Classifier give a better value than,
for example, the Nearest Neighbours Classifier.
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Due to their high values for the area under the ROC curve (=AUC) one can conclude
that the Boosted Decision Tree and the Random Forest Method give the best results.
Therefore they are chosen as the preferred classifiers for the subsequent analysis.
The next step is to compare different cuts on the classifier prediction which tells us the
probability of the prediction to be true.
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Figure 7: Classifier comparison for the background events. The histograms
show the number of events remaining after a cut on the classifier
prediction.
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Figure 8: Classifier comparison for the signal events. The histograms show the
number of events remaining after a cut on the classifier prediction.

Figures 7 and 8 show the corresponding plots. One can see the amount of remaining
events after the cut. The aim is to obtain a small number of background events compared
to the number of signal events received using the same cut.
Moreover, the Figure of Merit (=FOM) is computed and plotted. It helps to find the
best cut on the predicted probability for each classifier and is defined as:

FOM =
nsig√

nsig + nbkg
, (5)

where nsig and nbkg are the expected numbers of signal and background events in the
region Mbc > 5.27 GeV

c2
. By extracting the maximum value of the Figure of Merit one
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obtains the optimal cut that returns the highest statistical sensitivity for signal over
background. Figure 9 shows the Figure of Merit as a function of the classifier prediction
for the Boosted Decision Tree and the Random Forest Classifier.
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Figure 9: Figure of Merit as a function of the predicted probability for
the Boosted Decision Tree and the Random Forest Classifier.
The values for the optimal cuts are: cbdt = 0.86, crf = 0.80.

After finding the values for the optimal cuts they can be used to discriminate signal
against background and obtain the signal yields. Figure 10 shows the correspondent
distribution for both of the classifiers.
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Figure 10: Signal yields for Mbc obtained with cuts on the classifier pre-
dictions for both the Boosted Decision Tree and the Ran-
dom Forest Classifier. The signal is scaled down by the ratio
of the expected number of signal events and the length of
the whole signal data set. The cut values derived from the
Figure of Merit are: cbdt = 0.86, crf = 0.80.
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2.5 Calculation of the Branching Ratio

For the previous analysis areas were excluded due to a high number of background
events which are described in section 2.1. In order to find the number of signal events
in the veto area given by equation (1), the cut 9GeV 2/c4 < q2 < 10GeV 2/c4 is applied.
Because of its high efficiency the Boosted Decision Tree Classifier is used and applied to
the signal and background data set. The cut on the classifier prediction is derived from
the Figure of Merit (figure 9) which delivers the value cbdt = 0.86. Dividing the number
of signal events by the number of generated events returns the reconstruction efficiency
εs. The result for the muon channel is 0.20496 and therefore slightly higher than the
retrieved efficiency in [1]. To obtain the branching ratio the following formula is used
[1]:

B(B → K∗J/ψ) =
Nobs

εs · fµµ ·NBB̄

. (6)

Nobs is the extracted signal yield and NBB̄ is the number of recorded B meson pairs at
Belle which amounts to 770 million. fµµ describes the fraction of the J/ψ state that
decays into muon pairs and is 5,961%.
At first, the length of the background sample is used as the value of Nobs. Thereby, a
branching ratio of B = 0.00194 ± 0.000034 is obtained. The corresponding value in [1]
amounts to 0.00124 ± 0.00003.
To obtain better results different fit methods are applied. The signal component of Mbc

is fitted with the Crystal Ball function [1]:

PCB(Mbc,m0, σ, α, n) =

{
e−

(Mbc−m0)

2σ2 ifMbc > m0 − ασ
(n
α

)ne−
α2

2 (m0−Mbc

σ
+ n

α
− α)−n ifMbc ≤ m0 − ασ

, (7)

where m0 and σ are the mean and width of the distribution. The function describes a
Gaussian that shows a power-law tail below a threshold which is defined by the para-
meters α and n [1]. The background distribution can be approximated by the so-called
ARGUS shape [1]:

PARGUS(Mbc,m0, α) = Mbc

√
1− (

Mbc

m0

)2e
−α(1−(

Mbc
m0

)2)
. (8)

α describes the slope and m0 is the cutoff value of the distribution [1]. Moreover, an
unbinned maximum likelihood fit is applied to extract the yields [1]. After that, the
result can be optimized to 0.001592 ± 0.000016. Figure 11 shows the distribution of
signal and background after the fit has been applied.
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Figure 11: Distribution of signal and background for Mbc in the cut
region 9GeV 2/c4 < q2 < 10GeV 2/c4 after the fits 7 and 8
have been applied. The obtained result for the branching
ratio is B = 0.001592± 0.000016.

3 Summary

For this Summer School project simulated Monte Carlo data has been used. Different
machine learning classifiers have been tested and evaluated. Finally, the branching ratio
for the decay B → K(∗)J/ψ has been calculated.
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A Overview of Training Variables

Variable Definition Used in final training set?
mass particle mass no
ptot total momentum of the candidate no
∆E ∆E = EB − EBeam yes

Q Value energy difference betw. mother and decay particles no

Mbc Mbc =
√
E2
Beam − |~pB|2 no

e energy no
Ch0 m K∗ mass yes
cosΘB cosine of angle betw. B candidate and beam direction yes
χ2 χ2 value of the vertex fit of the daughters yes

∆zll distance betw. the two leptons in z direction yes
qrNN result of neural network flavor algorithm yes
qrLR result of multidimensional likelihood ratio flavor tagger yes
Mmiss missing mass of event yes
Evis visible energy of the event yes

mom dir dev momentum direction deviation yes
dIP distance to interaction point yes

Ch0 pt ptot of child 0 yes
cs [...] multiple variables used for continuum suppression yes

Table 2: Overview of different variables used for the machine learning training.
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