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Abstract

In this work, we present the fast detector simulation SGV 3.0 and underline the
need to continually update fast detector simulations for physical analysis and hard-
ware R&D. Firstly, we explain the features of SGV, identify the program’s depen-
dence on legacy code (CERNLIB) and highlight the work done to remove these de-
pendencies. Secondly, we provide the results of a study, using SGV, to determine
the optimal cable configuration in the ILD’s Vertex Detector.
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1 Introduction

In HEP experiments, detector simulation is of fundamental importance for both physics
analysis and hardware-software development. Traditionally HEP simulations have been
either exclusively physics simulations, which do not include information about the de-
tector response, or complete detatiled simulations, which are very demanding in terms
of CPU-cycles and data storage [1]. Fast detector simulations, like SGV - La Simulation
à Grande Vitesse [2], have been developed since the early nineties to address the need
of software at an intermediate level of detail, which allows users to generate significant
amounts of simulated data on a limited number of CPUs.

Recently, the scope of fast simulation programs has shifted. As stated by M. Berggren,
when referring to current research in the e-e+ International Linear Collider (ILC) [3]:
”the latest years of development has brought forward very performant and complete
full simulation packages, both in SiD [Silicon Detector] and ILD [International Large
Detector]” [2]. Because of their speed and accuracy, efficient fast detector simulations
like SGV are paramount to accurately validate detector concepts and simulate a large
variety of processes predicted by SM, BSM and SUSY.

In accordance with the work conducted at DESY between mid-July and September 2017,
this report is structured in two sections: Developing SGV, in which we will present the
features of this fast detector simulation program and the recent work conducted to
remove dependencies on legacy code; and Very Forward Vertexing at the ILD, in which
we will present our findings regarding the optimisation of the cable configuration within
the ILD’s vertex detector to maximise the resolution of the impact parameter.
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2 Developing SGV

2.1 Overview

SGV [2], La Simulation à Grande Vitesse, is a fast detector simulation developed in the
early nineties to study the compatibility of the DELPHI detector in the upgrade of LEP
I to LEP II, at CERN. The latest release, SGV 3.0, dates back to 2012 and its main au-
thor is M. Berggren. The program is organised into a SVN-managed Fortran95 package
that developed out of the well-tested SGV 2.0 series, which was written in Fortran771.
SGV is supported by Linux and Unix distributions and the assumed Fortran95 compiler
is gfortran (GNU Fortran compiler).

SGV belongs to the class of sophisticated, fast and efficient detector simulations. Like all
efficient detector simulations, the detector simulation time is comparable to the time re-
quired to generate events with an efficient event generator, like PYTHIA [4] or Whizard
[5]. Unlike less sophisticated fast detector simulations - such as paramteric simula-
tions and those in which generated four-vectors are simply smeared with assumed global
properties - SGV calculates the total covariance matrix from the generated particles and
detector geometry. Please see Appendix A for more information regarding the program
structure of SGV.

2.1.1 Detector Description

In SGV, the detector geometry is described using cylinders, with a common axis paral-
lel to the magnetic (B-) field, and planes perpendicular to the aforementioned axis [1].
Whilst cylinders are described by their radius and minimum-maximum height, planes
are described by their position along the common axis and their minimum and maximum
radius (because of rotational symmetry around the common axis). The thickness of the
detector layers is given in terms of the radiation length and the precision of the detector
components can also be set.

As will be discussed in subsequent sections, SGV cannot handle cones; thus, if cones
need to be simulated, a combination of planes and cylinders covering the same angle
must be employed.

2.1.2 Tracking Detectors

In SGV, the helix of a particle in a magnetic field is tracked to determine the number
and type of detector layers intersected by the particle’s helical trajectory, until the in-
nermost surface of the outermost detector is reached. Depending on the geometry of the
layer, cylindrical or Cartesian coordinates are used (see Fig. 1).

1 This change resulted in a 15% increase in the program’s speed.
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The total covariance matrix at the perigee is then determined by using the Kalman fil-
ter method (written in elemental form), which is iterated from the last trajectory-layer
intersection to the first hit2.

The calculations are conducted in five-dimensional helix space using the following helix
parameters [6]:

• φ0, the azimuthal angle of the particle’s linear momentum at the point of neareast
approach (perigee);

• Ω, the curvature, where |Ω| = 1
R

, R is the curvature of the track and the magnitude
depends on the direction of motion relative to the B-field in the detector;

• d0, the impact parameter in the Rφ plane relative to a reference point (chosen to
be (0, 0, 0) in Cartesian coordinates);

• z0, the z position of the track at the perigee with respect to the chosen reference
point;

• tanλ = dz
ds

, where s is the path length of the helix in the Rφ plane.

The perigee parameters are then smeared according to the calculated covariance matrix
by Cholesky-decomposition of the matrix, such that the lower-triangular matrix multi-
plied by a vector filled with uncorrelated random variables returns the correlations of
the calculated covariance matrix.

Figure 1: Cross-section of a detector with cylindrical geometry [2]. The trajectory of the
particle is projected in the Rφ plane. The intersections between the helical
trajectory and the detector layers are shown as white crosses. Please note
that the arrow shows the direction of the tracking method employed by the
program.

2 At each intersection, the surface measurement contributions to the covariance matrix are added in
quadrature. The effects of multiple scattering at the surface are added in quadrature to the relevant
elements of the inverted (weight) matrix, the matrix is inverted and tranlsated along the helix to
the subsequent intersection, where the calculations are repeated. [2]
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2.1.3 Calorimeters

In the calorimeter simulation, independently of the chosen process, the program ex-
trapolates the charged or neutral particles from the intersection with the calorimeters.
The parameters of the calorimeters - i.e. precision, particle-type to detect, shower type
(hadronic, electromagnetic or none) - can be chosen by the user. The detector response
is then simulated from the values contained in the geometry description input file. Since
the code simulating the tracks, which lies at the core of SGV, is separate from the code
simulating the calorimeter response, user routines can be used instead. Please note,
however, that these must be substituted at compile-time.

SGV also allows for the simulation of electromagnetic interactions, such as pair-creation
and bremsstrahlung, in the detector material, tracking efficiencies and scintillators or
taggers. By default, the random error associated with the detected energy, shape and
position of showers is included. However, association errors, due to the incorrect assign-
ment of clusters to tracks, or the splitting or merging of clusters, are not considered.
These can lead to errors in the total reconstructed energy.

2.2 CERNLIB Dependencies

As clearly stated in [2], although most previous CERNLIB dependencies have been re-
moved from SGV 2.0, a number of dependencies remains in SGV 3.0. In effect, as of
July 2017, FFREAD [7], HBOOK and a number of general purpose routines [8] were still
used despite interrupted development and support of the CERNLIB package. In line with
previous work, we proceeded to further reducing SGV’s dependence on CERNLIB. Please
note that HBOOK outputs data (tuples, plots, etc.) on all graphic devices. Despite being
called in SGV, it is not a core feature of this fast detector simulation.

2.2.1 FFREAD

FFREAD is a set of Fortran-77 subroutines that allows format-free input processing. The
correct usage of FFREAD is as follows:

1. The variables or arrays to set-up are stored in a Fortran COMMON block, which
defines a block of main memory storage that allows different program units to
share the same data [9].

2. After calling the initialisation subroutine FFINIT(NW), previously defined keys are
erased and the integer argument NW specifies the number of words the user has
allocated to the COMMON block. Optional values (input logical unit to given value,
output logical unit to given value and significant size of keys) can be set by calling
FFSET.

3. The keys are defined by a call to FFKEY, which gives the location, type and length
(only for arrays) of the key.
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4. A call to the main subroutine of FFREAD, FFGO, reads in the data cards and modifies
the variables in memory accordingly.3

In SGV, the subroutines of FFREAD are called in a number of user and non-user routines4

[1]. The data cards are read from steering files containing information about the event-
type, centre-of-mass energy, number of events to simulate, etc. If no variables are given
in the steering files, or if all variables are commented out, then the values of the defined
keys are not modified in memory (default values). See Appendix A to understand, with
an example, how FFREAD is called in SGV.

2.3 General Purpose Routines

2.3.1 SORTZV & INTSOR

SORTZV and INTSOR [8] are sorting algorithms extensively used in SGV. While SORTZV

(A,INDEX,N) sorts the first N elements of a one-dimensional array A containing charac-
ters, integers or real data and outputs an integer array INDEX containing the ordered
indices indicating the order of the original array, INTSOR (A, N) sorts the first N ele-
ments of a one-dimensional array A and returns the sorted array. These routines are
particularly efficient because they are based on the QuickerSort algorithm.

2.3.2 CROSS & CLTOU

As suggested by the name, CROSS(a,b,c) computes the vector (cross) product c of two
three-vectors a and b. Letting c = (c1, c2, c3), we obtain the following relations:

c1 = a2b3 − a3b2
c2 = a3b1 − a1b3
c3 = a1b2 − a2b1

The CLTOU subroutine converts lower case letters in a character string to upper case.

2.4 Proposed & Implemented Changes

2.4.1 Namelists

As clearly stated in [7], Fortran namelists [9] allow input of unformatted variables, much
like FFREAD. We therefore decided to explore the possibilty of substituting the FFREAD

routines with Fortran namelists.

3 In FFREAD, the term data card refers to a variable with an associated value. This nomenclature is a
relic of the punch-card era, when programs and numbers were called cards and data, respectively.

4 The SGV routines which call FFREAD routines are: zxini, zxgord, zaord, zegord and zdord.
For more information about their usage, see Appendix B and [1].

7



In Fortran, NAMELIST is declared as a non-executable statement in the main program
and the values in it are listed. Differently from FFREAD, the input file of a namelist
must begin with an ampersand followed by the name of the namelist and ends with a
forward-slash. FFREAD and Fortran namelists also differ in that the latter uses equal
signs between the name of a variable and its associated.

After extensive testing using example steering files, we determined that the optimal
code structure when using NAMELIST largely maintains the ordering of calls in the SGV
initialisation routine (zxini). Whilst the order of calls to zxgord, zegord and zaord

is unchanged, the number of calls is halved. Since keys are no longer declared when
using namelists, default values can be set in the variable declaration section of the afore-
mentioned subroutines. Therefore, by reading the namelists relevant to each subroutine
(zxgord, zegord and zaord) in each subroutine, the variables are modified in memory
accordingly, without needing to read the variable values twice (mode = 0 and mode =

1). Please see Appendices B and C for an example of how namelists have replaced
FFREAD. Because of such changes, the steering file is no longer explicitly opened or read
in zxini; rather, the steering file is divided into a number of namelists which are read
in the respective subroutines.

2.4.2 General Purpose Routines

The subroutines CLTOU and CROSS were easily rewritten in Fortran95 and placed in the
src/sgvlib directory. To rewrite SORTZV and INTSOR, we used a Fortran95 QuickerSort
algorithm (qsor) [10] which took the following arguments: an array of real numbers
and, optionally, an empty array, of equal length. If no optional argument was stated,
the algorithm returns the sorted array; else, the algorithm returns both the sorted array
and the array of ordered indices indicating the order of the original array. This routine
is particularly compatible with SGV because SORTZ is called exclusively to sort arrays
containing integers or reals numbers. To avoid compilation errors due to ambiguous
variable declarations, we created two routines: SORTZV, to sort arrays of real numbers,
and SORTZVN, to sort arrays of integers. To allow each subroutine to use the sorting
algorithm, we placed qsor in a Fortran module.

2.5 Conclusions & Outlook

In conclusion, we successfully implemented Fortran namelists and completely removed
FFREAD. This implementation, however, impedes backward compatibility on non-geometry
steering files. Consequently, the rewriting of test- and sample-steering files is planned for
future releases. Additionally, we also found solutions to the usage of general purpose and
mathematical routines from the CERNLIB package (CROSS, SORTZV, INTSOR and CLTOU),
by rewriting these in Fortran95.

Currently, work is being conducted to substitute more elaborate routines, like TRCHLU

and EISRS2 [8], with ones contained in LAPACK 3.2 (Linear Algebra PACKage) [11].
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Finally, future work will also necessarily have to concern the removal of the dependence
on HBOOK, in order to fully achieve the task of removing SGV’s dependence on the
CERNLIB package.

3 Very Forward Vertexing at the ILD

3.1 Overview

3.1.1 The ILC and ILD

The International Large Detector (ILD) is a concept for one of the two planned detec-
tors of the future International Linear Collider (ILC), which will collide electron-positron
pairs at an initial centre-of-mass energy (CM) of 250 GeV [3].

By requiring that all particles in an event, charged and neutral, are individually re-
constructed (particle flow), the ILD design stresses the importance of topological event
reconstruction. This is particularly relevant when considering the objectives of the ILC
physics programme: investigating the mechanisms of electroweak symmetry breaking
conducting parameter scans of BSM and SUSY theories.

3.1.2 The Vertex Detector

The Vertex Detector (VTX) [3], see Fig. 2, is key to achieving very high performance
flavour tagging by reconstructing displaced vertices. To guarantee the identification
of heavy quarks and tau leptons, which are short-lived particles, the VTX of the ILD
should be light and precise. It is also important in the reconstruction of low momentum
particles which barely penetrate the detector, due to the strength of the magnetic field in
the detector or the small production (polar) angle θ. We therefore assess the performance
of a VTX by studying the resolution of the impact parameter (IP) of charged particles.

3.1.3 The Forward Region

The forward and very forward regions in the ILD refer to the polar angular θ range from
approximately 5◦ to 30◦ , or equivalently 0.87 < cos θ< 0.996. As will be shown later,
the region of interest is 6◦<θ<16◦, which we define as the very forward region of the
vertex detecor. While angles less than 5◦ are still of much importance for achieving high
statistics in a variety of SM processes, such as e+e- → Z/γ∗ → µ+µ- and the higgs’
various decay modes, accurate detection in this region is limited by the large densities of
charged particle incident on the pixel strips; effectively, precision tracking is impossible
in this region [12]. It is well known that the uncertainty on the IP, σD0, increases by one
order of magnitude for θ<6◦: from sub 40µm at θ = 20◦ to 500µm at θ = 4◦.
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Figure 2: Cross-section of the ILD’s vertex detector as seen in the Rz plane, where R is
along the vertical direction and z is along the horizontal direction (along the
B-field). This diagram shows the beryllium mechanical support structure of
the detector (blue), the pixel disks (red), the readout components (green), the
cryostat (light grey) and the cables (orange). Please note that the diagram
shows a quarter of the detector’s cross-section because the detector exhibits
cylindrical, or barrel, symmetry along the axis parallel to the B-field, and
reflective symmetry in the Rφ plane - i.e. the forward and backward regions
are identical.

3.1.4 Motivation

Following previous unpublished studies conducted by M. Berggren using SGV, we set
out to investigate the minimisation of σD0 in the very forward region by simulating
the detector response for different cable configurations within the VTX’s structure. M.
Berggren has previously shown that the resolution of the IP can be improved by re-
routing the cables outwards from the VTX, towards the inner Silicon Tracker (SiT)
layer, past the first two disks and down to the beam-pipe. Also, preliminary investigation
were conducted to determine the possibility of using thin, instead of thick cables, thus
reducing the thickness of the copper cables, in units of radiation lengths X0, from 5%X0

to 0.3%X0.

3.2 Method

To simulate the detector reponse we used SGV 3.0 in scan mode to calculate the covari-
ance matrix at a constant momentum of 2.5 GeV for 0◦<θ<40◦. In scan mode, single
particles are shot through the detector at given polar angles and momenta and the de-
tector response is subsequently simulated. In this study, we used electrons (JETSET
code 11) and set the IP at the origin.

The geometry of the detector was modelled using the parameters defined in the De-
tailed Baseline Design (DBD) [12] and the cable thickness estimates were determined
from previous work by M. Berggren. Importantly, since SGV cannot handle cones -
such as parts of the beam-pipe, beryllium support shell and cables - we approximated
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the material distribution using planes perpendicular to the detector’s axis. Using basic
trigonometry, we determined that the effective radiation length X0’ could be estimated
as X0| cot(θ− θcone)|, where θcone is the angle between the z-axis and the lateral area of
the cone (see Fig. 3). For shallow angles, this correction led to an 25-fold increase in
the radiation length, as seen by the particles travelling through the detector layers.

Differently from previous studies, we increased the accuracy of the simulation by dividing
the disks into rings, each ring accounting for a different effective material thickness.

θ − θcone

θ

θcone

Figure 3: Schematic diagram showing the intersection between a particle trajectory (dot-
ted line) and a detector layer (delimited by the two parallel red lines). The
direction of the magnetic field, parallel to the z-direction, is shown using two
parallel arrows. The length of the dotted line within the material is clearly
given by the quotient of the detector thickness and sin(θ − θcone), where θ is
the polar angle describing the particle trajectory and θcone is the angle describ-
ing the lateral surface of the cone. When using discs to approximate cones,
the distance travelled by a particle inside the perpendicular disk is equal to
the thickness of the disk multiplied by a factor of 1

cos θ′
, where θ′ = θ − θcone.

Therefore, to correctly account for the thickness of the conical surface, as seen
by the particle, the thickness of the disk is given by the product of the conical
thickness and cos θ′

sin θ′
= cot θ′.

3.2.1 Cable Configurations

As shown in Fig. 4, the angular region of interests is between 9◦ to 15◦, which corresponds
to the Forward Tracking Detector (FTD-1) hit with smallest θ and the first VXT layer
hit with smallest θ. To minimise the total radiation length in this region, we developed
three possible cable configurations (see Fig.5):

• the cables run along the beryllium (Be) shell or support structure and are routed
upwards;

• the cables run along the beryllium shell but are tunneled through the component
parallel to the beampipe at Z = 14.6 cm and R = 3.0 cm (Be-cut);
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Figure 4: Cross-section of the ILD’s vertex detector as seen in the Rz plane, showing the
trajectories of the particle at the limits of the region of interest. Please note
that the green dots indicate the intersections between the shown trajectories
(black dotted lines starting from the origin) and the VTX layers.

• the cables from layer 1 are routed along the beam pipe and exit through the
cryostat layer at Z = 16.46 cm and R = 3.0 cm and cables from layer 2 and 3 are
routed upwards along the Be shell (split).

• the cables ables from layer 1 are routed inside the beryllium shell, which acts as
a Faraday cage, at an angle of approximately 14.6◦ (F-cage). This configuration
minimises the amount of material present in the angular region of interest.

Please note that each cable configuration was simulated for thin and thick cables and the
cable configurations with highest IP precision were further simulated using an additional
FTD-like pixel disk in the cryostat at Z = 8.15 cm and R = 1.6 cm.

3.3 Results

From the plots shown in Fig. 6, we observe that σD0 increases sharply at approximately
θ = 7◦. This feature is independent of cable configuration, as previously discussed. From
baseline measurements, where no cables were introduced in the model, we also find that,
in agreement with previous studies, σD0 increases by a factor of five. For polar angles
less than 15◦, the particle trajectory firstly intersects the beryllium support structure
and cryostat, and subsequently intersects FTD-1, where a hit is recorded by the layer’s
readout electronics. This simulation is of particular importance because it serves as a
benchmark for optimal cable routing.

Other features of interest in the plot include the impact of additional cables run-
ning around the beryllium shell and the resolution increase that can be achieved for
10◦<θ<12◦ by simply running the cables through the beryllium extension at Z = 14.6
cm and R = 3.0 cm.
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(a) (b)

(c) (d)

Figure 5: Diagrams showing the investigated cable configurations: (a) cables run along
the outer beryllium shell; (b) cables run along the berylliu shell and are tun-
nelled through the beryllium kink; (c) cables run inside the beryllium shell;
(d) cables from layer 1 run along the beam-pipe, whilst cables from layers 2
and 3 are routed upwards. Please note that the cables are drawn in magenta
and that the orange lines should be ignored.

The split cable routing and the configuration in which the cables run inside the beryllium
shell, within the Faraday cage show the highest level of precision across the range of in-
terest. Despite almost replicating the simulation plot obtained for no-cable scenario, the
latter arrangement is possibly unfeasible. The cables could interfere electromagnetically
with the VTX layers, thus affecting the accuracy of the VTX across all angular ranges
and undermining the purpose of the Faraday cage.

To study the possibility of using an additional FTD-like pixel disc, we used the split-cable
and F-cage configurations, with thin and thick cables. As shown in Fig. 7, σD0 increases
by a factor of two for θ<11◦, when using thick cables. Because of the impossibility of fully
covering the angular region of interest with an additional pixel disk, no improvement is
seen when simulating a FTD-type pixel disk in cryostat at Z = 8.15 cm and R = 1.6 cm.

3.4 Conclusion & Outlook

Without additional FTD discs in the cryostat, we conclude that the resolution of the
IP depends largely on cable thickness and routing, within the critical region 9◦<θ<15◦.
The maximum resolution, for the optimal cable configuration, is approximately 120 µm
for thick cables. With an additional FTD-like disk in the cryostat, we conclude that
the resolution can be doubled, allowing for relatively constant resolution levels for θ>8◦.
In both cases, however, we note that the optimal cable configuration should limit the
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radiation length along the beam pipe, independently of the number of FTD-like discs
placed within the cryostat.

Future work will necessarily have to consider detector assembly, if one of the above con-
figurations is adopted, and further analysis using the complete ILD simulation package.
Also, we recommend conducting this study at different low momentum values.
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Figure 6: Plot showing the behaviour of σD0 for 6◦<θ<24◦ for all cable configurations,
where only thick cables have been simulated and no additional FTD pixel-discs
have been introduced in the model.
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Figure 7: Plot showing the behaviour of σD0 for 6◦<θ<24◦ when simulating F-cage and
split-cable configurations, with and without additional FTD disks. (a) Thin
cables (b) Thick cables.
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Appendix A SGV Program structure

The overall core structure of SGV after installation is as follows, as detailed in the
README file:

• Top directory, containing the installation script (install), the script to recompile
libraries (makesgvlibs), the script to compile and link the user’s program (cres-
gvexe) and template user routines and steering files.

• Library subdirectory, containing four subdirectories:

– sgvlib, containing the compiled core routines;

– sgvdeflib, with compiled defaults for some routines the user might wish to
alter;

– sgvdumlib, containing no-op defaults for some routines the user might wish
to alter;

– sgvmodule, containing binaries of interface-blocks;

• Source-code subdirectory, containing eight subdirectories:

– sgvdeflib, sgvdumlib, sgvlib, sgvmodule, containing the source code of
the libraries;

– sgvevsim, containing the source-code to interface to different event genera-
tors (Pythia, Whizard, etc.);

– sgvinclude, containig .h files to interface to external Fortran77 code, such
as CERNLIB routines;

– sgvnews, which is an empty directory for upgrades;

– sgvuser, containing the source code of user routines.
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Appendix B FFREAD in SGV

In this section, we will give an example of how FFREAD is called in SGV. The first program
portion (B.1) is from the SGV initilisation routine zxini, which is a subroutine of the
steering initialisation routine zx steering. The second portion of code (B.2) is taken
from the routine zdord, which sets the keys of the detector simulation and initialises
the tracking.

B.1 zxini

!.

!. skipped beginning of program

!.

USE zxste

IMPLICIT NONE

REAL, INTENT(INOUT) :: steer(4,0:*)

! FFREAD space

REAL :: ffspa

COMMON /cfread/ ffspa(1000000)

CALL ffinit(1000000)

#if (defined(LINUX))

OPEN(17,FILE=’fort.17’,STATUS=’OLD’,ERR=99)

#endif

!-- Set FFREAD options

CALL ffset(’LINP’, 17)

CALL ffset(’LOUT’, 6 )

CALL ffset(’SIZE’, 32 )

CALL ffset(’LENG’, 132)

! Define cards for...

! general stuff

CALL zxgord(0,steer)

! event generator

CALL zeord(0,steer)

! detector simulation

CALL zdord(0,steer)
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! and analysis.

CALL zaord(0,steer)

! Read cards.

CALL ffgo

! Do initalization using the values just read.

CALL zxgord(1,steer)

IF ( steer(1,1) == 0. ) THEN

CALL zeord(1,steer)

END IF

CALL zdord(1,steer)

CALL zaord(1,steer)

CLOSE(17)

! .

! . code continues...

! .

B.2 zdord

USE zxsiz

IMPLICIT NONE

INTEGER, INTENT(IN) :: mode

REAL, INTENT(OUT) :: steer(4,0:*)

INTEGER :: iii

LOGICAL :: vdhits,mtkr,chshow,genbc,prdet,pldet

INTEGER :: vdlays,ndets,usesvp

REAL*4 :: pminbr,pminpa,ptloslim

COMMON /dsivari/ vdhits,mtkr,chshow,genbc,prdet,vdlays,ndets,&

usesvp(maxste-17),pldet

COMMON /dsivarr/ pminbr,pminpa,ptloslim

IF ( mode == 0 ) THEN

! Generate hits in the vertex detector ? If so, the VD will

! not be included in the track parameters generated by ZDETSI.

! Instead, the user must supply code to use the hit-pattern in

! her analyising routines.

vdhits = .false.

CALL ffkey( ’VDHITS’,vdhits,1,’LOGICAL’)
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! Number of layers in the vertex detector (if hits generated)

vdlays = 1

CALL ffkey( ’VDLAYS’,vdlays,1,’INTEGER’)

! Generate full track parameters (w/ error-matrix) or just

! pxpypz and production points.

mtkr = .true.

CALL ffkey( ’MTKR’,mtkr,1,’LOGICAL’)

! Number of detector geometries to simulate.

ndets = 1

CALL ffkey( ’NDETS’,ndets,1,’INTEGER’)

! Generate showers in calorimeters also for charged

! particles (else only for neutrals).

chshow = .true.

CALL ffkey( ’CHSHOW’,chshow,1,’LOGICAL’)

! Generate brems and photon conversions in the detector

! material

genbc = .false.

CALL ffkey( ’GENBC’,genbc,1,’LOGICAL’)

! Minimum electron momentum to generate brems.

pminbr = 0.3

CALL ffkey( ’PMINBR’,pminbr,1,’REAL’)

! Minimum photon momentum to generate pair-production.

pminpa = 0.3

CALL ffkey( ’PMINPA’,pminpa,1,’REAL’)

! Minimum fraction of pt after to pt before the brems for the

! original electron to be kept for the tracking

ptloslim = 0.9

CALL ffkey( ’PTLOSLIM’,ptloslim,1,’REAL’)

! Send particles with these codes to analysis

! By default, all particles with non-zero lifetime

! are sent and need not be specified here.

! Use the LUND partcle codes.

usesvp=0.

CALL ffkey(’SAVE_PARTICLES’,usesvp,100,’INTEGER’)
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! Print the geometry of the dectector after loading.

prdet = .false.

CALL ffkey( ’PRDET’,prdet,1,’LOGICAL’)

! Print the geometry of the in a form suitable for

! drawing it in PAW

pldet = .false.

CALL ffkey( ’PLDET’,pldet,1,’LOGICAL’)

ELSE

steer(3,0) = ndets

IF ( vdhits ) THEN

steer(3,1) = vdlays

ELSE

steer(3,1) = 0

END IF

IF ( mtkr ) THEN

steer(3,2) = 1

ELSE

PRINT *, ’ Sorry, right now You must tranfere the full’

PRINT *, ’ track-parameters and errors to the analysis.’

PRINT *, ’ The program will ignore that You set MTKR to’

PRINT *, ’ .FALSE.’

steer(3,2) = 1

END IF

IF ( chshow ) THEN

steer(3,3) = 1

ELSE

steer(3,3) = 0

END IF

IF ( pldet ) THEN

prdet = .true.

END IF

IF ( genbc ) THEN

steer(3,4) = 1

steer(3,5) = pminbr

steer(3,6) = pminpa

steer(3,7) = ptloslim

ELSE

steer(3,4) = 0

steer(3,5) = 0.0
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steer(3,6) = 0.0

steer(3,6) = 0.0

END IF

steer(3,17) = count(( usesvp(1:maxste-17) /= 0 ))

steer(3,17+1:maxste) = usesvp(1:maxste-17)

IF ( steer(1,1) == 0.0 ) THEN

! Initialise the tracking.

CALL ztini(steer,3.0,prdet,pldet)

END IF

END IF

END SUBROUTINE zdord
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Appendix C Namelists in SGV

In this section, we will give the same examples from Appendix B, namely zxini and
zdord. The major difference, however, is the use of namelists instead of FFREAD.

C.1 zxini

!.

!. skipped beginning of program

!.

USE zxste

IMPLICIT NONE

REAL, INTENT(INOUT) :: steer(4,0:*)

CALL zxgord(1,steer)

IF ( steer(1,1) == 0. ) THEN

CALL zeord(1,steer)

END IF

CALL zdord(1,steer)

CALL zaord(1,steer)

CLOSE(17)

!.

!. code continues

!.

C.2 zxdord

USE zxsiz

IMPLICIT NONE

INTEGER, INTENT(IN) :: mode

REAL, INTENT(OUT) :: steer(4,0:*)

INTEGER :: iii

LOGICAL :: vdhits =.FALSE.,&

mtkr = .TRUE.,&

chshow = .TRUE.,&

genbc = .FALSE.,&

prdet = .FALSE.,&

pldet = .FALSE.

INTEGER :: vdlays = 1,&
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ndets = 1

INTEGER :: usesvp(100) = 0

REAL*4 :: pminbr = 0.3,&

pminpa = 0.0,&

ptloslim = 0.9

COMMON /dsivari/ vdhits,mtkr,chshow,genbc,prdet,vdlays,ndets,&

pldet,usesvp!(maxste-17)

COMMON /dsivarr/ pminbr,pminpa,ptloslim

NAMELIST /detste/ vdhits,vdlays,vdlays,mtkr,ndets,chshow,chshow,genbc,&

pminbr,pminpa,ptloslim,usesvp,prdet,pldet

IF ( mode == 1 ) THEN

#if (defined(LINUX))

OPEN(10, FILE = ’fort.10’) ! input file is opened

#endif

READ(10, NML = detste) ! namelist from opened file is read

steer(3,0) = ndets

IF ( vdhits ) THEN

steer(3,1) = vdlays

ELSE

steer(3,1) = 0

END IF

IF ( mtkr ) THEN

steer(3,2) = 1

ELSE

PRINT *, ’ Sorry, right now You must tranfere the full’

PRINT *, ’ track-parameters and errors to the analysis.’

PRINT *, ’ The program will ignore that You set MTKR to’

PRINT *, ’ .FALSE.’

steer(3,2) = 1

END IF

IF ( chshow ) THEN

steer(3,3) = 1

ELSE

steer(3,3) = 0

END IF

IF ( pldet ) THEN

prdet = .true.
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END IF

IF ( genbc ) THEN

steer(3,4) = 1

steer(3,5) = pminbr

steer(3,6) = pminpa

steer(3,7) = ptloslim

ELSE

steer(3,4) = 0

steer(3,5) = 0.0

steer(3,6) = 0.0

steer(3,6) = 0.0

END IF

steer(3,17) = count(( usesvp(1:maxste-17) /= 0 ))

steer(3,17+1:maxste) = usesvp(1:maxste-17)

! IF ( steer(1,1) == 0.0 ) THEN

! Initialise the tracking.

CALL ztini(steer,3.0,prdet,pldet)

! END IF

WRITE(18, NML = detste)

CLOSE(10)

END IF

END SUBROUTINE zdord
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