
1 
 

 

 

 

 

 

 

 

 

 

 

Investigation of the FLASH DAQ Timing System  

 

 

 

Konstantin Kharitonov 

Ural Federal University, Ekaterinburg, Russia 

Supervisors: Stefan Düsterer, Erland Müller 

DESY, Hamburg, Germany 

Thursday7
th

 September, 2017 

 

Abstract 

This paper describes the process of testing 

mechanisms how the FLASH DAQ (data 

acquisition system) assigns unique numbers 

(pulse IDs) to soft x-ray pulses and how the 

system relates timestamp information acquired 

from different subsystems to the soft x-ray 

pulses. 

 

 

 

 



2 
 

 

 

 

 

Contents 

1. Introduction ....................................................................................................... 3 

2. Measurement scheme ........................................................................................ 4 

3. Idea description ................................................................................................. 5 

4. Single Camera test ............................................................................................. 6 

5. Multiple camera test .......................................................................................... 8 

6. Multiple ADC test ............................................................................................. 9 

7. Several ways of getting data .............................................................................. 9 

8. Data timestamps comparison .......................................................................... 11 

9. Multiple camera timestamp test ...................................................................... 11 

10. Conclusion ..................................................................................................... 11 

References ........................................................................................................... 13 

Appendix A ......................................................................................................... 13 

 

 

  



3 
 

1. Introduction 

At FLASH, the Free Electron Laser facility at DESY in Hamburg, the emission 

of photon pulses has special pulse structure. It consists of so-called pulse trains 

which are delivered with 10 Hz repetition rate. Each pulse train contains 

between 1 to 800 pulses separated by 1 to 20 µs and total length of the pulse 

train does not exceed 800 µs.  Each pulse train is identified by an event number 

which also can be called bunch ID, or pulse ID, or burst ID. The ID is set 20 ms 

before the pulse arrives at the experiment and stays for 80 ms after the pulse. To 

be able to compare data measured by different detectors over time, each piece of 

data acquired by the measuring system also has a timestamp providing 

microsecond information [1].  Accuracy of the burst ID is very important at 

FLASH and at all free electron lasers in general. Since every laser pulse is result 

of the   SAUSE (Self-amplified spontaneous emission) process, it is unique. So 

experimental conditions vary from pulse to pulse and it is important to know 

what pulse train corresponds to the data.

 

 

Figure 1 Basic principle of Event ID distribution [1]  

 



4 
 

The control and measurement system in the FLASH experimental halls consists 

of several   MTCA (Micro Telecommunications Computing Architecture) 

stations and PCs, some of them are being used to connect analog devices using 

ADC and some to connect cameras. Besides, there are some additional DAQ 

(Data Acquisition) servers. Due to lack of synchronization with primary time 

servers there may be differences in local time between the machines. Together 

with latencies of the network regards transmission of the timing information this 

could lead to the change in the data’s burst IDs and timestamps. 

This report describes the methods which were used for reading information from 

the FLASH DAQ system, finding burst ID shifts and its (future) correction. 

2. Measurement scheme 

During the tests, the following measurement scheme was used: An alignment 

laser irradiated a photodiode (DET36A, Thorlabs) which was connected to two 

channels of a MHz ADC (SIS8300-L2 [2]) and a GHz ADC (ADQ412 [3]). In 

addition a camera (ACA1300-30gm [4]) imaged the photodiode [5]. The camera 

was connected to a camera PC. This setup allowed recording the alignment laser 

by several independent detectors. The fast shutter was used to create short laser 

flashes, by opening and closing the laser beam’s path. Matlab was used for data 

acquisition and processing. 

 

 

  

Figure 2 Measurement Scheme 



5 
 

3. Idea description 

To be able to determine, if there is some burst-IDs shifting between two 

measurement devises and how much it is, I used two sequences of data which 

were taken in one experiment – one from each device. After that, I compared the 

data to determine, whether the burst-IDs of relevant data match. For more 

convenient processing I used data which could be easily   “binarized”: 0 

corresponds to closed shutter and 1 corresponds to open shutter. With a dataset 

like this, you can easily determine the presence of a shift and its magnitude by 

using a cross-correlation function [6], which is useful for determining the time 

delay between two signals. After calculating the cross-correlation between the 

two signals, the maximum of the cross-correlation function indicates the point in 

time where the signals are best aligned. Thus, for unshifted data correlation 

maximum should correspond to shift value 0 etc. Therefore, by using such a 

method for always two of the measurement devices you can automatically 

determine the magnitude of shifts and correct them. Otherwise you can choose 

one device as burst ID standard and correct all shifts according to this device.  

 The only disadvantage of the using correlation function to determine the shift 

value is that correlation function determines only shifts of data as one whole, 

whereas in our case, different data frames may have different shift value. 

Thereby only the most frequent magnitude of the shift can be found, 

corresponds to the maximum value of the cross-correlation.  

  



6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: General view of the correlation function. Normalization means that correlation 

value of the two identical signals with zero delay equal to one. 

Figure 4: Cross correlation of data set where all data have shift equal to one. 



7 
 

 

 
Figure 5: Cross correlation of data set where sixty percent of data have shift equal to one and 

thirty percent have shift equal to zero. 

4. Single Camera test 

  

The first test was performed using a camera and a photodiode, which was 

connected to a slow ADC and a “feedback” signal from the fast shutter together 

with the alignment laser. Thus, controlling the shutter, I could create a sequence 

of light pulses, which were registered by the photodiode and the camera. After 

that, all data was “binarized”, (mean value of image pixels was used in case of 

camera) and the magnitude of the shift was calculated.  There are several camera 

parameters that one can change, which can affect the magnitude of the shift: 

resolution and image depth, which affects the image file size, and sender delay 

setting, which affects the time between camera taking an image and the data 

request from the DAQ. Datasets with different settings were analyzed, results 

are shown in the table. 

 

 



8 
 

Sender 

delay value 

ms \image 

size  from 

maximum 

1 1\2 1\4 1\8 
  

Sender 

delay 

value 

ms\image 

size  from 

maximum 

1 1\2 1\4 1\8 

20 93% 100% No No 
  

20 100% 70% No No 

40 No No No No 
  

40 100% No No No 

60 No No No No 
  

60 53% No No No 

80 No No No No 
  

80 No No No No 

 

Table 1 : Percent of shifts in data sequence depending on resolution image depth and sender 

delay left- 8bit image depth right- 16 bit image depth 

 

The percent value of shifts shows proportion of data shifted to the most frequent 

shift value.  It was calculated as ratio of the number of shifted data in the data 

sequence after the correction to the number of shifted data before the correction. 

Therefore, 100% of shifts mean that all data in sequence was shifted with the 

same magnitude, thus all shifts can be fully corrected. The value between 100% 

and zero means, that a random fraction of the recorded images was shifted; 

therefore you cannot correct all shifts automatically, but only those, which have 

the maximum shift magnitude (all images are shifted by the same amount). Also, 

combinations of settings which ensure no shifts were defined. In these 

measurements datasets from HDF5 files were used  

5. Multiple camera test 

Tests with several cameras using different image depth and resolution settings 

with optimal sender delay settings were performed. During the test up to four 

cameras were connected with image sized from maximum to one eighth of the 

maximum. Tests showed that in case of sixteen bit image depth only one camera 

can transmit data with full resolution settings without data loss. And four 

cameras can work without losses only with resolutions lower than one fourth 

from maximum. (Tests were performed using 1 GB network interface card 

(NIC), after changing the NIC to 10 GB results should significantly improve). 



9 
 

6. Multiple ADC test 

Tests with multiple ADC channels in different MTCA crates were performed to 

find possible ID shifts between different ADC channels. Two channels of 

SIS8300 and two channels of ADQ412 were tested. A permanent shift between 

ADQ412 channels was detected. Each channel was located in a different MTCA 

crate. In addition the software version was different in the two MTCAs used. 

Repeated test after a software update of one crate showed that this shift was 

fixed completely. 

 

7. Several ways of getting data  

 In the next series of measurements datasets were taken in several ways from 

several sources in DAQ and DOOCS (Distributed Object Oriented Control 

System) to determine if some points of the system induce changes of the 

timestamps. Data that were obtained from HDF5 files, through daq_read and 

daq_read_svr Mex functions, and through online reading from DOOCS using 

jdoocs 

Data in .HDF5 files can be downloaded from the server through ftp client. Data 

received straight from .RAW files storage contained full set of timestamps. 

  



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

daq_read and daq_read_svr  are Matlab MEX functions which can be used to get 

data from the DAQ using Matlab. [7]  The difference is that daq_read_svr 

requests data from DAQ server while daq_read gets the data straight from 

.RAW file storage.  

Tests showed that the data from the DAQ server have timestamps which are 

only filled in the second level with meaningful data while the microsecond 

timestamps contained only random two digits numbers. The data received 

straight from the .RAW files storage contained timestamps providing 

microsecond information. 

Java.jdoocscall functions allow getting online data from DOOCS [8,9] to 

Matlab. The only drawback of this method is the low data collection rate, even 

when reading only two channels, the maximum data sampling rate is lower than 

20 Hz, which however is enough since the camera takes shots with 10 Hz 

frequency. The data obtained by using Java.jdoocscall contains a full set of 

timestamps for the camera, but only a timestamp with seconds resolution  for the 

ADC. 

Figure 6 Data flow scheme  



11 
 

8. Data timestamps comparison 

Data obtained from all sources was processed in Matlab. Firstly all datasets were 

binarized for more convenient correlation analysis, then the presence of shifts 

was tested, after confirmation of the absence of shifts the timestamps of the data 

with equal burst ID were checked, results are shown in the table below. 

 

 

 

  MHz ADC GHz ADC Camera 

  Usec  Sec Usec Sec Usec Sec 

.HDF5 identical identical identical identical identical identical 

daq_read identical identical identical identical identical identical 

aq_read_srvr Random  identical Random identical Random identical 

Java.jdooocscall 
can't 

read 
identical 

can't 

read 
identical identical identical 

Table 2: Results of timestamps testing  

9. Multiple camera timestamp test 

Timestamps of two cameras which were connected to different camera servers 

were checked through DOOCS. They also were identical to within microseconds  

This confirms the theory that all timestamps in the measurement system are 

copied from the external burst ID timestamp. 

10. Conclusion 

 

In this project several tests of the DAQ system were performed. 

 A single camera and photodiode test allowed to find the settings that provide 

data collection from cameras without shifts of the burst ID. Tests have shown 

that the camera sender delay below 80ms with resolution greater than one fourth 

can cause shifts because the sender requests data from the camera before they 

are “ready”. A sender delay of 80 ms allows you to prevent shifts with any 

values of resolution and image depth. 



12 
 

As second part, limits of the resolution and the number of cameras that can be 

reliably were tested.  It was found out that the system could collect data from 

cameras without data loss with one camera with full resolution, but only with 

one eighth resolution with three cameras because of data size increasing. In 

addition, all cameras must have the same image depth to work correctly. 

Updating the network card to a faster one removed the data size limitations. 

Then, burst ID shifts between ADC channels were tested. To do that, an 

identical signal was connected to several channels of fast and slow ADCs. The 

test showed that there is no burst ID shift between slow ADC channels at any 

load, but fast ADC can show a burst ID shift between different MTCAs running 

with different software versions. This bug was fixed after the test. 

Several ways to read data from DAQ and DOOCS were tested. For camera 

timestamps to within microseconds were received only from daq_read, DOOCS, 

and .HDF5 files.  The timestamp field in data from daq_read_svr was blank.  

For ADC timestamps to within microseconds were received from every source 

except DOOCS and daq_read_svr, because ADC’s microsecond timestamp from 

daq_read_svr looked like random set of two digits number. All timestamps were 

identical to within microseconds, what could lead us to conclusion that they all 

are inferred by the burst ID and not represent the local time of data acquisition, 

because different servers are definitely not synchronized to within 

microseconds, but every microseconds timestamp is identical to others from 

corresponding burst ID. 

 In future some deep inspection of the data’s timestamps inside network should 

be performed to check timestamps at every point to understand better  which one 

is correct and where are possible sources of shifts - and why. Also another kind 

of network architecture may be developed to either prevent timestamps from 

changing or increase time synchronization accuracy between different machines. 

Or the whole timing system could be based not on timestamps but on the clock 

signal which can be distributed across whole system. Such architecture would 

require some additional clock modules which can be connected to usual PC 

interfaces directly. 

 

 

  



13 
 

References 

[1] Description of bunch IDs system at FLASH 

http://hasfweb.desy.de/bin/view/Setup/BunchId 

[2] SIS8300 datasheet http://hasfweb.desy.de/pub/Setup/MtcaAdc/sis8300l2-m-

x009-1-v101.pdf 

[3] ADQ412 datasheet http://hasfweb.desy.de/pub/Setup/MtcaAdc/10-

0494_C_ADQ412_datasheet.pdf  

[4] cA1300-30gm datasheet 

https://www.baslerweb.com/en/products/cameras/area-scan-

cameras/ace/aca1300-30gm/ 

[5] DET36A datasheet https://www.thorlabs.com/drawings/24e0f142ce925526-

3232AF8F-F283-7060-28174CC98E5CCF2A/DET36A-Manual.pdf 

[6] Cross correlation function https://en.wikipedia.org/wiki/Cross-correlation 

[7] DAQ Matlab manual  

http://www.desy.de/~wwwuser/daqmatlabaccessexamples.html 

[8] JDOOCS documentation http://ttfinfo.desy.de/doocs/doocs_libs/jdoocs/doc/ 

[9] DOOCS Matlab manual 

https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=MATLABClientInterface 

Acknowledgements 

Summer Student program at DESY was a unique experience for me. I would 

like to thank my supervisors Stefan Düsterer and Erland Müller for guiding me 

and answering my question. I would also like to thank the Summer Students 

Program organizers for allowing me to join this program. I also thank all people 

who were working around me at FLASH for their help or sometimes just 

talking.  

 

Appendix A 

 

 

http://hasfweb.desy.de/bin/view/Setup/BunchId
http://hasfweb.desy.de/pub/Setup/MtcaAdc/sis8300l2-m-x009-1-v101.pdf
http://hasfweb.desy.de/pub/Setup/MtcaAdc/sis8300l2-m-x009-1-v101.pdf
http://hasfweb.desy.de/pub/Setup/MtcaAdc/10-0494_C_ADQ412_datasheet.pdf
http://hasfweb.desy.de/pub/Setup/MtcaAdc/10-0494_C_ADQ412_datasheet.pdf
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-30gm/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-30gm/
https://www.thorlabs.com/drawings/24e0f142ce925526-3232AF8F-F283-7060-28174CC98E5CCF2A/DET36A-Manual.pdf
https://www.thorlabs.com/drawings/24e0f142ce925526-3232AF8F-F283-7060-28174CC98E5CCF2A/DET36A-Manual.pdf
https://en.wikipedia.org/wiki/Cross-correlation
http://www.desy.de/~wwwuser/daqmatlabaccessexamples.html
http://ttfinfo.desy.de/doocs/doocs_libs/jdoocs/doc/
https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=MATLABClientInterface


1

Table of Contents
.Hd5 file usage: ..................................................................................................................  1
DaqRead usage ...................................................................................................................  2
Java.jdooocscall Usage .........................................................................................................  3

.Hd5 file usage:
%you can use built-in matlab function for .HD5 files
% List of .HDF5 names can be found here
%https://stash.desy.de/projects/CS/repos/pah/browse/data/
channel2HdfName.dat

addr='D:\Flash data/
FLASH1_USER2_stream_2_run18131_file1_20170728T154450.1.h5';
shutter=h5read(addr,'/Beamlines/BL/Fast shutter/shutter');% Shutter
%data reading
sh=mean(shutter,1);% you would  have 2 dimensional array of ADC
 spectrums
length=size(sh,2);% for shutter for simplicity you could use
%mean value of every spectrum
for  l=1:1:length%1 corresponds to opened shutter, 0 to closed
    if(sh(l)>0.5)
        sh(l)=1;
    else
        sh(l)=0;
    end
end

channel1=h5read(addr,'/Experiment/BL2/SIS8300 100MHz ADC/CH1/TD');
ch1=mean(channel1,1);%ADC data reading
m=min(ch1);
M=max(ch1);
ch1pr=ch1;
for  l=1:1:length%
    if(ch1(l)>((M+m)/2))
        ch1(l)=1;
    else
        ch1(l)=0;
    end
end

cams=h5read(addr,'/Experiment/BL3/Camera 6/image.sec');%camera
 timestamp
camus=h5read(addr,'/Experiment/BL3/Camera 6/image.usec');%and burst ID
camid=h5read(addr,'/Experiment/BL3/Camera 6/image.event');% data
 reading
tmusec=h5read(addr,'/Timing/Bunch train info/index 1.usec');%Bunch
 train
%timestamp data reading



2

camera=h5read(addr,'/Experiment/BL3/Camera 6/image');%camera images
 reading
cammean=mean((mean(camera,1)),2);%Mean value of image pixels was used
%to determine presence of a laser beam and, consequently,
%the opening of a shutter
for l=1:1:length
    cam(l)=cammean(:,:,l);
end
length=size(cam,2);
campr=cam;
nonzero=find(campr>1);
mCam=min(campr(nonzero));
Mcam=max(campr(nonzero));

for l=1:1:length
    if(campr(l)>((Mcam+mCam)/2)*0.95)%Threshold  coefficient
        cam(l)=1;%should be selected depending on the background
    else%brightness for efective binarization
        cam(l)=0;
    end

end

figure
plot(abs(cam-ch1));% This plot shows differences between camera a
title('Cam -ch1 before correction') %nd shutter signals
shifts_before=size((find(abs(cam-ch1))),2);

[acor lag]=xcorr(cam,ch1);% Using cross-correlation to
[~,I] = max(abs(acor));%find main shift magnitude value
lagDiff = lag(I);

camal = cam(lagDiff+1:end);%Move camera array to correct shifts

 figure
 stem(camal);
hold on
stem(ch1(1:end-lagDiff),'marker','x');
hold off;
title('Cam and ch1 after ')
shifts_after=size((find(abs(camal-ch1(1:end-lagDiff)))),2);
figure
 plot(abs(camal-ch1(1:end-lagDiff)))
 title(1-(abs(shifts_after-shifts_before))/(shifts_before+1))
%Check how many shifts were corrected successfully

DaqRead usage
you need to know run number to get the data. Time does not need to be specified exactle,it works correctly
even with random time, but do not exploit it. Adresses may be found here

%https://stash.desy.de/projects/CS/repos/pah/browse/data/
channel2HdfName.dat
%or in JDDD app. Last time DaqRead().local() ... contained seconds and



3

%microseconds  timestamps, while DaqRead() contained only seconds and
 some
%random stuff in microseconds timestamps

[shuttern, ids]=
 DaqRead().fl1user2().local().fl1user2().run(18125 ).structs('2017-08-23
 14:52',1,'FLASH.FEL/ADC.SIS.FL1FS/BL.SHUTTER');
[shuttern, ids]= DaqRead().fl1user1().run(18397).structs('2017-08-23
 14:56',1,'FLASH.FEL/ADC.SIS.FL1FS/BL.SHUTTER');

Java.jdooocscall Usage
information about java methods can be found here

 %http://ttfinfo.desy.de/doocs/doocs_libs/jdoocs/doc/
 %some methods which require poiners and arrays do not working with
 matlab
 %you can ask a custom method wrappers frome Erland for them
 %in this example custom wrapper  was pariculary used
 %Java.jdooocscall allow you only to get live data

 javaaddpath('\\win.desy.de\home\kharitok\My Documents\MATLAB')
import de.desy.fsfl.jdoocs.*

import ttf.doocs.*;
import ttf.doocs.clnt.*; % import of java methods to matlab

Set DOOCS channel address

%addresses can be found in JDDD or  here
%*https://stash.desy.de/projects/CS/repos/pah/browse/data/
channel2HdfName.dat*

% Initialize DOOCS objects for equipment adresses
fCH = ttf.doocs.clnt.EqAdr();
fCH.adr('FLASH.FEL/ADC.ADQ.BL1/EXP1.CH03/CH00.TD');
SCH = ttf.doocs.clnt.EqAdr();
SCH.adr('FLASH.FEL/ADC.SIS.BL2/EXP2.CH01/CH00.TD');
SHU =ttf.doocs.clnt.EqAdr();
SHU.adr('FLASH.FEL/ADC.SIS.FL1FS/BL.SHUTTER/CH00.TD');
CAM =ttf.doocs.clnt.EqAdr();
CAM.adr('FLASH.FEL/FBL2.CAM/CAM6/IMAGE_EXT');

% Initialize DOOCS objects for synchronous call and data
eq = ttf.doocs.clnt.EqCall();
ed = ttf.doocs.clnt.EqData();

l=1;% you could run infinite loop for online data acquisition
%then just stop run using Control-C and save everything you need
while (l>0)

%Making calls
sh = eq.get(SHA, ed);
im = eq.get(CAMA, ed)a



4

fa = eq.get(fCH3A, ed);
sa = eq.get(SCH0A, ed);

%FAST ADC

fCH0(l)=mean(sh.get_spectrum.d_spect_array );
fCH0time(l)=sh.get_time;
fCH0timesp(l)=sh.get_spectrum.tm.value;

%SLOW ADC

SCH0(l)=mean(sh.get_spectrum.d_spect_array );
SCH0time(l)=sh.get_time;
SCH0timesp(l)=sh.get_spectrum.tm.value;

%SHUTTER
SHmean(l)=mean(sh.get_spectrum.d_spect_array );
SHtime(l)=sh.get_time;
SHstimesp(l)=sh.get_spectrum.tm.value;

%CAMERA
CAMstamp(l)=EqDataMatlab(im).pulseIdStamp();% custom wrapper method
CAMsec(l)=EqDataMatlab(im).secondsStamp();% EqDataMatlab
CAMmicro(l)=EqDataMatlab(im).microSeconsStamp();%used here
%ask Erland for it
image(l,:)=im.get_image_bytes();%image
width(l)=im.get_image_header().aoi_width;%width
heigth(l)=im.get_image_header().aoi_height;%heigth
imdate(l)=im.get_time;%jdoocs standart time mehod
% always returns 0 for images

end

Published with MATLAB® R2016a


