

Summer School Report 2017
18 August - 7 September

Simulations of 2D pixel detectors at
European XFEL

Extending X-CSIT to SimEx

Author: Jan-Philipp Burchert
Email: j.burchert@stud.uni-goettingen.de

University of Göttingen
Supervisor: Dr. Carsten Fortmann-Grote
Email: carsten.grote@xfel.eu
Group: XFEL WP-84 (Scientific Instrument SPB/SFX)

DESY
Notkestraße 85
22607 Hamburg

T +49 40 8998-0
t +49 40 8998-3282
B desyinfo@desy.de
m http://www.desy.de/

European XFEL GmbH
Holzkoppel 4
22869 Schenefeld

T +49-40-8998-6006
t +49-40-8994-1905
B contact@xfel.eu
m https://www.xfel.eu/

mailto:desyinfo@desy.de

http://www.desy.de/

mailto:contact@xfel.eu

https://www.xfel.eu/

Contents
1 Motivation 1

2 Background and Theory 1
2.1 X-ray Free Electron Lasers . 1
2.2 Detector Effects on Signal . 3
2.3 Basics of Object Oriented Programming Languages 4

3 Existing Software 5
3.1 Geant4/ X-CSIT . 5
3.2 SimEx . 6
3.3 Extending C++ to Python . 7

4 Design 7
4.1 C++ classes . 9
4.2 Python calculators . 10
4.3 Cmake . 11

5 Application 12

6 Remaining Issues 14

7 Conclusion 14

8 Acknowledgements 15

References 16

Abstract

The following report describes design and implementation of a detector simulation soft-
ware, based on the existing software packages Geant4 and X-CSIT. X-CSIT describes
the photon-matter interaction in the active layer of the detector and the propagation of
created charges to the detector readout electronics. We make use of principles of object
oriented programming to expose the X-CSIT library in the start-to-end simulation plat-
form SimEx. C++ classes are compiled and linked to a shared object and made available
in python by virtue of boost.python. Furthermore, cmake configuration and build instruc-
tion sets facilitate compiling this project. A test calculation for the AGIPD detector at
the SPB-SFX instrument at European XFEL concludes the project.

Keywords: Geant4, X-CSIT, SimEx, detector simulation, single particle imaging, boost
python, cmake, C++, python

1 Motivation
The European X-ray Free Electron Laser (XFEL) facility at Schenefeld is currently
providing the brightest source of X-ray radiation with the highest pulse rate worldwide
[Ebe17a]. For this purposes, it uses a large superconducting linear accelerator. However,
like in every research facility, the quality of the X-ray data suffers from imperfections
of its components such as optical elements, radiation damage or the detector response
to incoming radiation. To improve experimental outcome the influence of these distur-
bances and noise need to be understood and minimized. For this purpose, simulations
of the experiments are performed that allow to estimate this influence on the data both
quantitatively and qualitatively.
For this reason, the software package SimEx (https://github.com/eucall-software/
simex_platform) is developed which enables start-to-end simulations of the experiments.
This project, py_detector_interface, the simulation of a photon detector is assigned
to SimEx. The aim of SimEx is to simulate components of a X-ray facility as well as the
entire facility to investigate the error propagation. So far the detector implementation
has only implemented Poisson statistics but detectors usually have more fluctuations
and effects to take into account. This project aims to integrate these additional features
into the detector simulation of SimEx.
For this purpose, the software packages Geant4 (http://geant4.cern.ch/) and X-CSIT
(https://git.xfel.eu/gitlab/karaboDevices/xcsit) are utilized that have already
been successfully implemented in the data analysis and control framework of the Euro-
pean XFEL karabo (https://git.xfel.eu/gitlab/Karabo/Framework). In contrast to
karabo, where all the simulation is performed with devices which are integrated into the
framework processing pipe, SimEx is a collection of classes. These so-called calculators
are except for the input and output data independent of each other but all dependent
on an SimEx abstract interface defining their layout and functionality. Each calculator
simulates a certain component of the beam path. Consequently, installation as well as
maintenance and usage of new components are more convenient in SimEx.
Another difference to karabo and X-CSIT is the programming language used: In contrast
to karabo and X-CSIT which are written in C++, SimEx is written in python. Since
X-CSIT is the basis of the simulation also in this project, the interface defined needs to be
made accessible from python. To integrate it into SimEx an additional calculator needs to
be written that utilizes the extended functions from X-CSIT. To achieve this, an interface
between C++ written X-CSIT and python written SimEx source code is designed and
implemented. This includes writing source code in C++ and python as well as creating
a build procedure with cmake. Furthermore, an appropriate documentation and similar
coding style like the one used for other SimEx calculators is required.

2 Background and Theory

2.1 X-ray Free Electron Lasers
XFELs produce high intensity X-ray pulses featuring peak brilliances of approximately
1033 photons/s/mm2/mrad2/0.1%BW and short pulses of less than 100 fs duration (Eu-
ropean XFEL according to [Gra09], [Ebe17a]). The peak brilliance is approx. nine orders
of magnitude higher and the pulse length approx. three orders shorter than those created

https://github.com/eucall-software/simex_platform

https://github.com/eucall-software/simex_platform

http://geant4.cern.ch/

https://git.xfel.eu/gitlab/karaboDevices/xcsit

https://git.xfel.eu/gitlab/Karabo/Framework

Figure 1: Schema of the European XFEL beamlines with undulators, beamlines and
experimental stations as well as their research topic. Source [Ebe17b].

from synchrotron radiation [Gra09]. Such light sources have multiple components. The
electron gun produces 27000 electron bunches per second [Ebe17a]. These are injected
into a linear accelerator which increases the speed of those electrons very close to the
speed of light [SDR08, S. 121]. To accelerate the European XFEL uses superconducting
niobium cavities [Ebe17a].
After being accelerated the electron bunches are injected into undulators, where alter-
nating strong magnetic fields urge the bunches to radiate their energy as X-rays. This
process is highly non-linear [SDR08, p. 70] and is called Self-Amplified Spontaneous
Emission (SASE). In principle, the electron bunch and the X-ray light interact leading
to an exponential gain in in the light intensity (for details see ref. [SDR08, p. 103ff]).
However, the first photons in the undulators are emitted randomly spontaneos. For this
reason, no shot is equal to another one which requires a lot of statistics when performing
experiments and analysis [SDR08]. However, the light produced has the same proper-
ties than laser light making it usable for diffraction experiments [SDR08, p. 8]: nearly
monochromatic, polarized, extremely bright, tightly collimated and highly spatially co-
herent.
The currently brightest light source of this type is the European XFEL (Schenefeld,
Germany). It possesses a large superconducting accelerator (2,1 km) and produces a
bright X-ray beam at a very high frequency [Ebe17b]. Electrons are accelerated to 17,5
GeV before entering the undulators where they radiate X-rays with wavelength down to
0.1 nm. There are five beam lines planned each provinding two experimental stations.
Currently, the experimental stations SPB-SFX and FXE (see figure 1) are completely
equipped [Ebe17b]. They use hard X-rays for their experiments. However, when all
planned experimental stations are built there will be also two stations SQS and SCS
operating with soft X-rays. Additional information can be found in reference Altarelli
[Alt11].
Experiments performed at SPB-SFX deal with single particle imaging and imaging of
clusters. If high temporal resolution is required, experiments can also be performed at
FXE. XFELs are well suited for resolving structures with single particle imaging methods
e.g. of biomolecules which cannot be crystallized [FGBJ+17]. Because of their heigh
photon flux and ultra-short pulses, images of the sample can be taken, before the sample
suffers to much from radiation damage. The time molecule can withstand X-ray photons
of 5 keV is according to Fortmann-Grote at al. O(1)fs [FGBJ+17]. Furthermore, due to

Figure 2: Application Specific Integrated Circuit of a single pixel of the AGIPD detector
with storage pipeline. Source: [HBD+11].

the high intensity even waekly scattering materials such as biological material can produce
a sufficient signal [FGBJ+17].

2.2 Detector Effects on Signal
Detector noise results from inevitable fluctuations and imperfections of the detector com-
ponents [PG11]. However, it can be reduced. Understanding the performance of the
detectors with respect to realistic data via simulation of the physical processes allows us
to reduce the noise to the level required for a clear signal in the recorded experimental
data. Each optimization is a trade off between noise reduction and performance. Every
action to reduce noise will downgrade other detector paremeters such as speed [PG11].
On the basis of the Adaptive Gain Integrating Pixel Detector (AGIPD) of the SPB
beamline of XFEL, many noise sources can be identified.
Each detector possesses electronic components. These range from simple transistors to
complex Application Specific Integrated Circuits (APIC) [PG11] [SDH+10]. Due
to imperfections in the material those circuits bear a natural source of fluctuations. Espe-
cially, the influence of leakage currents on operation amplifiers that increase with radiation
intensity can result in increased noise levels [SDH+10]. Despite that, the resulting noise
is often still smaller than e.g. the statistical fluctuations in of the photon number in each
pixel [SDH+10].
Furthermore, leakage currents from another origin are much more serious. Since the
XFEL source produces more images than can be processed in one of its 600 µs pulse
trains, the detector needs to store those image values previous to processing in a pipeline
for each pixel (see figure 2). After each of those pulse trains there is a gap of approx.
100 ms, where the detector reads the pixel values of all stored images, digitizes them and
store them on a hard disk. This pipelines consist of capacities and switches that suffer
from leakage currents, as well. This not only affect the output values of intensity but also
the noise level of the readout and digits [SDH+10].
Detectors at European XFEL have to cope with a very complex parameter space. They
have to cover a broad range of energy of many keV for every pixel independently of each
other. Furthermore, the pulse rate of the recording is quite high. Additionally, they need
to be sensible enough to detect single photons but robust enough not to be destroyed at
high intensities. This requires protection of the electronics leading to additional readout
noise [PG11]. Despite optimization detectors have a finite dynamic range of values, which
once exceeded, lead to noise in the shape of cut-off signals [PG11].

Figure 3: Sketch of polymorphism and inheritance. The coloured area can be understood
as the amount of functions, methods and attributes defined in the class.

Additionally to the noise from electronic components and digitalization, there are also
physical effects producing noise. Thermal fluctuations can be reduced by cooling. How-
ever, high intensity radiation can create plasmas in detector pixels that effect neighbouring
pixels due to electron drift [PG11]. The process is called blooming and is taken into ac-
count in the charge simulation of this detector simulation project. Additional information
can be found in references: Joy et al. [JWH+15], Rüter et al. [RHK+15], Shi et al.
[SDH+10] and Potdevin et al. [PG11].

Last but not least, the number of photons arriving at a pixel and the number of charges
created from an interacting photon are statistical values. They are uncertain and follow
the Poisson statistics. Together with the blooming this makes up the most important
source for noise. Nevertheless, in many experiments the noise resulting from a well opti-
mized detector is much less than the fluctuations in the signal resulting e.g. from optical
elements[PG11].

2.3 Basics of Object Oriented Programming Languages

In object oriented programming languages related source code is gathered in classes defin-
ing an abstract data type. From those classes instances can be created and linked to vari-
ables of the same type of the class. For this reason, in object oriented languages previous
to usage of a variable the type of this variable needs to be declared and an instance of
this type needs to be connected to the variable.

This structure allows special programming techniques. The type of a variable specifies
the functions, methods and attributes that can be called upon this variable. For this
reason, also instances of classes derived from that type can be linked to the variable.
Since deriving from a class means inheriting its functions and attributes as well as adding
additional ones, all the functions that can be called on the base instance can also be called
on the child instance.

More generally, the instances linked to a variable of a certain type must have at least the
function, methods and attributes of instances of that specific type. Consequently, many
different instances can be linked to one variable to be declared on the base type of all the
instances. This concept is called polymorphism (see figure 3 and allows for instance to
use software without changing or knowing its source code.

Figure 4: Schema of the different parts of the detector simulation software X-CSIT. Source:
[JWH+15].

Figure 5: Sketch how a charge cloud produced from a single interaction can spread to
neighouring pixels. Source: [JWH+15].

3 Existing Software

3.1 Geant4/ X-CSIT

For the simulation of detectors Joy et al. (see ref. [JWH+15]) have created a software
written in C++. X-CSIT is an object oriented approach to simulate the behaviour of 2D
semiconductor pixel detectors. Due to the object orientation not only the initally impl-
mented LPD, AGIPD, DCCS, pnCCD and FastCCD detectors but also derived detectors
can be supported [JWH+15]. Initially written for being integrated into the karabo frame-
work, the software is universal enough to be stand-alone. For this reason, utilization in
this project is possible.
X-CSIT consists of three parts [JWH+15] as can be seen in figure 4. The first one, the
particle simulation simulates, how in this case photons interact with the active layer of the
detector. For this purpose X-CSIT acts as a wrapper of the interaction simulation software
Geant4 [JWH+15]. Geant4 covers the physical models of a broad range of energy ranging
from keV to TeV [AAA+03]. The models included can handle electromagnetic processes
such as the photo electric effect and fluorescence but also hadronic and optical processes.
The standard processes such as photo electric effect, Compton and Rayleigh scattering as
well as Auger processes are also included [JWH+15] [AAA+03]. For this part X-CSIT has
the task to manage the data transfer from and to Geant4.
The second part, the charge simulation, deals with the propagation of the charges and
plasmas created by interactions. Their behaviour is mainly governed by drift and diffusion
of electrons which can be described with a Gaussian normal distribution (see figure 5)

(a) Sketch of the experimental setup for sin-
gle particle imaging with undulator (U), offset
mirrors (HOM), focussing mirrors (FM), the
sample (S) and the diffraction pattern cap-
tured at the detector (D).

(b) Representation of the experimental setup
of 6a as a SimEx simulation.

Figure 6: Comparison of the setup between experimental and simulation in SimEx. Source:
[FGAB+16].

with the following standard derivation [JWH+15]:

σd =
√

2kBT

qE
· d. (1)

Here d is the depth in the material, T the temperature, q the drifting total charge and E
the electrical field that pulls the charge to the readout electronics of the detector.
The last part of X-CSIT is made up by the detector readout electronics. The electronic
simulation simulates the electronic components of the detector and their behaviour. For
this purpose, X-CSIT offers modules which are combined to represent the circuits of the
detector [JWH+15]. This simulation is not included in this project.

3.2 SimEx
SimEx is capable to simulate an entire experiment from the light source to the detector
(see figure 6). Consequently, it is a tool aiming to improve the preparation, execution
and analysis of experiments e.g. at the European XFEL [FGAB+16]. The platform
has a hierarchical structure as can be seen in figure 7. The two topmost layers are
abstract python classes defining the general structure of the the implementations. The
last layer, depicted in green colour, are the implementations of those abstract interfaces
[FGAB+16]. They are called calculators since here the simulation is run. The calculators
are responsible for running the calculations [FGAB+16]. For this purpose, they include
a method called backengine. Despite the fact, that they are written in python (https:
//www.python.org/), they often use software written in other languages such as C++ to
perform the simulation. In this cases, the calculators act like a translator between input/
output data from SimEx to the simulation application and visa versa. The communication
between different calculators, different steps of the beam propagation, is implemented by
exchanging Hierarchical Data Format (hdf5) files. Each calculator accepts one or more
of them as input and creates one or more as output [FGAB+16].
Each calculator can cover a wide range of setups and experiment. Calculators simulating
the source simulate the spectral, temporal and spatial characteristics of XFEL pulses.

https://www.python.org/

https://www.python.org/

Figure 7: Class hierarchy of the calculators in SimEx. Colours: white/ blue =̂ virtual,
green =̂ implementation. Source: [FGAB+16].

Other ones simulate optical elements in the beam path such as apertures, mirrors or
gratings. There is also a calculator that simulates the interaction between sample and
photons and produces a diffraction pattern [FGAB+16]. Like the other calculators the
detector simulation calculator receives input data, process them and creates ouput data,
too [FGAB+16].

3.3 Extending C++ to Python
Since X-CSIT is written in C++ and the calculators of the SimEx are written in python,
there is a need of extending C++ classes to python. The opposite process of using
python code in C++ is called embedding [AS17]. To extend the classes of this project to
python, boost.python (http://www.boost.org/doc/libs/1_65_0/libs/python/doc/
html/index.html) and Swig (http://www.swig.org/) were taken into consideration.
Swig is essentially a parser of the C++ header files that produces according to the set
of desired options a shared object (Unix equivalent of Windows dynamic linked libraries)
extending the header files. For this reason, it requires very little additional programming
work of the developer and is quite efficient. However, not all features of C++11 standard
are currently included (see http://www.swig.org/).
Additionally, X-CSIT already includes boost C++ libraries (http://www.boost.org/)
and many users report that Swig can fail on projects including boost libraries. For this
reason, boost.python was used to extend the C++ classes to python. Boost.python
consits of header files that need to be added to the C++ implementations. Additionally, in
the implementing source code a BOOST_PYTHON_MODULE needs to be defined. This
module creates the equivalent of a python module and needs to define all the extended
classes, their functions as well as their return and input parameters explicitly [AS17].
Consequently, boost.python can be seen as a module including abstract types that can
be linked to C++ instances as well as to python instances.

4 Design
One of the major design ideas of this project is the usage of the already existing software
X-CSIT. It already proved to be capable to perform a task like the desired one. For this

http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html

http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html

http://www.swig.org/

http://www.swig.org/

http://www.boost.org/

Figure 8: Sketch showing the dependencies and inheritance structure of the
py_detector_interface. Colour code: yellow =̂ classes written in python, blue =̂ classes
written in C++, red arrows =̂ inheritance, green arrows =̂ manipulation of other instances,
black arrows =̂ data flow.

reason, this software package has the task to condense X-CSIT to its essential components
necessary for the simulation in SimEx.
Since C++ and python programming languages belong to the object oriented program-
ming languages, the concept of inheritance and polymorphism are well suited to achieve
this. Polymorphism is the key concept for using self written classes of this design in
X-CSIT. It allows also to minimize redundant source code that is always a potential source
of error and very difficult to maintain. However, the required features remain accessible.
For this reason, all the created classes except Constants are derived from X-CSIT or
SimEx base classes and interfaces as can be seen in figure 8.
Another important aspect of this design is the design of the python class. In the end, this
is the class that is accessed and used for performing the simulation. For this reason, it
should have control over input and output as well as control over running the simulation.
As can be seen in figure 8, the XCSITPhotonDetector calculator is given control over
each step of the simulations. This includes creating data containers, initiate and run the
simulations as well as reading the input file and creating the output file.
Nevertheless, the simulation itself should be triggered from C++ code. One reason for
this is that tunnelling through the boost.python layer is assumed to be slow. Addi-
tionally, python code is slower than C++ and there where additional features needed
such as a changed function signature in ChargeSim. Consequently, setting up and run-
ning simulations is programmed in C++ and only calling these functions is extended to
python.
Last but not least, the entire project needs to be integrated into SimEx. With regard to
the source code style and function this can easily be achieved by applying inheritance.
However, one does not want to compile X-CSIT each time you compile also this project.
For this reason, for both X-CSIT and py_detector_interface cmake is used to compile and
link the compiled classes to shared objects. Shared objects are the Unix equivalents of
Windows’ dynamical linked libraries (.dll) offering a comfortable way to release and use
applications.

4.1 C++ classes

Since X-CSIT was already implemented in the karabo framework there has already been
a template how to write this classes. This template is the xdsp/karabo framework
project by Tonn Rüter (see ref. [RHK+15]). Unfortunately, for that project karabo is
required. For this reason, only the procedures suggested there could be used and had to
be implemented again in a less restrictive and in a karabo independent manner. However,
the order how certain X-CSIT classes are initialized and functions are called is adapted
from those classes.
There are essentially two groups of C++ classes written for this projects. The first
one consists of the input and output containers. They are derived from abstract in-
terfaces located in X-CSIT, which have already an implementation in X-CSIT. However,
at design time it was finally clear, if the implementation of XCSITPhotonDetector re-
quires additional functionalities. Furthermore, the question if boost.python can ex-
tend classes and functions that are already compiled and stored in a shared object could
not be answered. For these reasons, the data containers where implemented again us-
ing the abstract X-CSIT interfaces: XPhotonEntry, XPhotonData, XInteractionData,

category options
DetectorType pnCCD, LPD, AGIPD, AGIPDSPB, CAD
PlasmaSearch BLANK
PlasmaSim BLANKPLASMA
PointSim FULL, FANO, LUT, BINNING

Table 1: This table show the options to choose from when selecting a mode for the
simulations.

XInteractionEntry, XChargeEntry and XChargeData. Due to polymorphism other
X-CSIT functions can deal with classes derived from them.
The second group of C++ classes deal with the simulations. There is a simulation of the
photons interacting with the matter of the detector and a simulation dealing with the
propagation of created charges in the detector. Both simulations have a parent class in
X-CSIT. Their task is to behave like a filter. To run a simulation with the X-CSIT parent
classes certain functions with certain formal parameters in their signature have to be
called in a specific sequence. In order to avoid the need to extending all those types from
X-CSIT possible to use as these formal parameters the simulation classes are necessary.
The functions of ParticleSim and ChargeSim receive strings to choose which instances of
X-CSIT need to be instantiated and bound to a formal parameter of a X-CSIT simulation
call. Furthermore, this make addition of e.g. detectors easier because they need to be
added to the C++ simulation classes and Constants only. There is no need to export
them to python. Currently the following options are included:
Furthermore, the simulation characterisation options specified in table 1 are needed in
various classes. For instance, the „DetectorType“option is required for both ParticleSim
and ChargeSim. Additionally, all their constants need to be accessible from the
XCSITPhotonDetectorParamters class as well. For this reason, the constants are stored
in an own class. Exploiting the capacities of C++ classes to inherit from many parent
classes, ParticleSim and ChargeSim are not just inheriting from their X-CSIT parents
but also from Constants. In principle, it would also be possible to make
XCSITPhotonDetectorParamters inherit the constants from Constants. Since this is
much more complicated due to the nature of the attributes of Constants (arrays of strings)
than adding functions to Constants that return the values, the latter was implemented.

4.2 Python calculators
For this project two python classes were written. The first one,
XCSITPhotonDetectorParameters, implements the abstract python class
AbstractCalculatorParameters. Its purpose is to gather and check all the input param-
eters. If an parameter is set which is not specified in Constants an exception is raised.
Nevertheless, instances of this class are essentially containers with property getter and
setter functions. The properties are the same as the options in table 1.
The second class is the calculator itself. It implements AbstractPhotonDetector which
itself is derived from AbstractBaseCalculator. For this reason, the way the simulation
is performed is already predetermined:

1. After instantiation python calls immediately the init function. This function pos-
sesses three formal parameters: a XCSITPhotonDetectorParameters instance, a

variable to store the path for the input file and a variable to store the path for the
output file. Since python variables do not have types, the init function has to check
if the inserted actual parameters fit with the required instances. Furthermore, init
deals with incomplete input.

2. The next method to call is readH5. Since the input to this calculator is different to
the input of ParticleSim and ChargeSim, the data from the hdf5 input file has to
be translated: The matrix of intensities is read and transformed into instances of
PhotonEnty stored in an instance of PhotonData. The instances of PhotonEntry
store for each photon the following attributes: energy, normalized vector of flight
direction, current position. Those values where calculated from the input data by
applying geometry.

3. For running the simulation the backengine method has to be called. It consists of
two parts:
a) The PhotonData instance is passed into ParticleSim which transfers the con-

tainer into XCSIT::XGeant4ParticleSim where interactions of the photons
with the detector material are simulated. The output container
InteractionData is also passed to those classes. During the simulation it is
filled with instances of type InteractionEntry that contain for each interac-
tion the deposited energy in the material at a given site of the detector and
the time when that happens after start.

b) The instance of InteractionData is handed to the instance of ChargeSim
which transfers it into XCSIT::XPlasmaPointChargeSim and the Geant4
classes respectively. Since the readout electronics cannot be at the surface
of a detector an electrical field is applied to pull the created charges in the
material to the readout electronics. During this propagation charge clouds
resulting from e.g. plasmas can broaden and effect neighbouring pixels. This
is simulated in ChargeSim. The output is an instance of ChargeMatrix, where
each element, ChargeEntry, represents a pixel of the detector and each element
contains the number of charges recorded in that detector pixel. Please note,
that the perspective to look at the matrix is parallel to the z-axis/ propagation
direction of the light.

4. Last but not least, the data containers and their content are written to the hdf5
output file at the location specified by the output path.

The structure of the input and output file can be found in the wiki of this project (https:
//github.com/JPBGoe/py_detector_interface/wiki).

4.3 Cmake
On Unix systems the classical triad „configure“, „make“and „make install“is used to
build software from source. Nevertheless, this can only be applied if there are not to
many other application to link to since otherwise creating the makefile would be a tough
task. For this project, this classical approach does not work due to linking e.g. to
X-CSIT. For this reason, a modern way to create the makefile is chosen. Using cmake
(https://cmake.org/) allows to create a makefile including compilation and linking from

https://github.com/JPBGoe/py_detector_interface/wiki

https://github.com/JPBGoe/py_detector_interface/wiki

https://cmake.org/

Figure 9: Depicted are the dependencies of the py_detector_interface project. The green
circled names represent shared objects (.so) on Unix operating systems.

other libraries to a library. Additionally, cmake offers functions to create bash (https:
//www.gnu.org/software/bash/) files necessary for setting environmental variables.
Furthermore, SimEx already uses cmake to compile its C++ sources and to download
and install the entire software package. For these reasons, cmake was also used in this
project. During this project CMakeLists.txt files, the source code files for cmake, have
been created for this project as well as for X-CSIT. This allows to control the dynamic
linking of the shared objects more efficiently, especially, since the linking dependencies
of this project are not simple as can be seen in figure 9. In the end this project is also
exported as libpy_detector_interface.so.

5 Application
To test the termination and as a proof of principle the SimEx tutorial (https://github.
com/eucall-software/simex_platfrom/wiki/SimEx-Tutorial) has been used to cre-
ate a sample diffraction pattern of Nitrogenase Iron protein from the Protein Data Base
(see PDB 2NIP [BWF+00]). The used detector quadrant of the „AGIPD“detector has
512 x 512 pixel, each of a size of 200 x 200 µm2. All the photons are simulated with an
energy of 4960 keV and the detector is 13 cm away from the origin of diffraction. To have
enough photons at reasonable time the intensity I was non physically transformed into
num photons as follows:

num = bI · 100000c.

As can be seen in the resulting images of this simulation (see figure 10) the chosen design
is in principle capable of running such simulations. As expected for X-ray of such energies
the interaction with the sample is very weak. However, one would expect at least a few
scattered photons of the sample which cannot be observed in figure 10c). However, the
charges after propagation meet the positions of the interactions. One cannot observe any
„blooming“events.

https://www.gnu.org/software/bash/

https://www.gnu.org/software/bash/

https://github.com/eucall-software/simex_platfrom/wiki/SimEx-Tutorial

https://github.com/eucall-software/simex_platfrom/wiki/SimEx-Tutorial

(a) Input intensity calculated by the diffrac-
tion calculator.

(b) Photonlist created from the the input (see
10a.

(c) Interactions of the photons with the de-
tector material calculated by X-CSIT and
Geant4.

(d) Output of the charge propagation simula-
tion.

Figure 10: This figure shows the state of the data containers at intermediate steps of the
simulation.

6 Remaining Issues
Apart from this proof of principle there are some issues in the python classes that need
to be settled. The following list should give an overview. The following issue regards
XCSITPhotonDetectorParameters:

• Inheritance: make it inherit from Constants to achieve a uniform inheritance struc-
ture between C++ and python classes respectively

• Test: add additional tests to the class

The following unsettled issues regard XCSITPhotonDetector:

• PointSim option LUT causes problems in X-CSIT: In this project running an simu-
lation with this option will raise an exception

• Search: If there are to many photons (factor 100000) the charge simulation creates
some e.g. 2 x 2 areas of infs or nans.

• Check: in the simulation there are no diffracted photons. Is this due to statistic or
an program error?

• Multiple input files: At the moment only one input file is accepted. However, the
diffraction calculator can produce multiple files at once that are necessary for the
whole simulation

• Intensity photon transition: Include an appropriate intensity to photons calculation

• The charge matrix is turned by pi with respect to the recorded interactions. In the
current simulation this has been corrected by a left-right and top-down flip of the
charge matrix before saving it to the file.

• Single pattern treatment: So far all the incoming intensity matrices are simply
summed up and the result is used as one single pattern. Better would be to run the
simulation on each pattern and maybe sum up afterwards.

• Test of IO files: Especially, the input and output files need to be tested

• Test of physical properties: Does the number of interaction agree with the interac-
tion cross section for this experiment? Does the charge simulation also agree?

• Include electronics: Include the electronics simulation into this project

7 Conclusion
Taking everything into consideration, there are lots of issues that remain to be settled.
Especially, testing the results for consistency with the expectations and getting rid of
smaller problems are task for future work. Furthermore, additional source code needs
to be added to handle the interaction-to-photon transition in the XCSITPhotonDetector
calculator more appropriately. Simulating each pattern and its intensity matrix on its own
instead of summing them up and treating all the patterns as one would also be a valuable

feature that can be added. Nevertheless, it was shown, that the current design based on
inheritance and polymorphism and by applying boost.python libraries and cmake makefile
production is capable of accessing the X-CSIT detector simulation from SimEx.

8 Acknowledgements
First of all I would like to thank Ute Micheelsen, Olaf Behnke, Rainer Gehrke and the
other organization team members for organizing this exciting summer school. Without
their commitment and preparation this summer school would have been less informative,
less fun and maybe also less productive than it was. Especially, their quick response to
questions and the well done organization and provision of information was very helpful
to concentrate on the contents of lectures and the project.
Furthermore, I would like to thank Adrian Mancuso, head of the XFEL Scientific Instru-
ments SPB/SFX group, for accepting a summer student in his group. I am aware that
students often mean additional bureaucracy and little scientific results/ progress. This is
especially worth mentioning, since the summer student program took place at the time
of probably additional workload due to the near opening of the XFEL facility. For this
reason, I am grateful for being given this opportunity.
Special thanks go to my supervisor Carsten Fortmann-Grote for selecting the project
and taking care of my progress. It was a demanding project to work on and I hope it
can contribute to SimEx package a little bit. I enjoyed working at it and overcoming
those obstacles on the way. Whenever there was a problem I was given hints, advice or
new techniques for figuring out and solving the challenge. My impression is that I really
learned a lot during the project. This ranges from programming languages like python
via error prevention strategies such as unit tests to debugging tools such as gdb. Without
his dedication and his advises this project would doubtlessly not have evolved half to the
state it is.
Last but not least, I am very grateful to be allowed to participate in this summer school
and to work at the XFEL site. It have been exciting weeks with a challenging project and
interesting lectures. Furthermore, working at the fascinating XFEL facility only weeks
before it officially opens was a really exciting experience. I am looking forward, for the
next opportunity to participate in such a great project.

References
[AAA+03] Agostinelli, Sea ; Allison, John ; Amako, K a. ; Apostolakis, J ;

Araujo, H ; Arce, P ; Asai, M ; Axen, D ; Banerjee, S ; Barrand, G
u. a.: GEANT4—a simulation toolkit. In: Nuclear instruments and meth-
ods in physics research section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 506 (2003), Nr. 3, S. 250–303

[Alt11] Altarelli, M: The European X-ray free-electron laser facility in Hamburg.
In: Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 269 (2011), Nr. 24, S. 2845–2849

[AS17] Abrahams, David ; Seefeld, Stefan: boost.python documenta-
tion. http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/
index.html. Version: Spt 2017

[BWF+00] Berman, H.M. ; Westbrook, J. ; Feng, Z. ; Gilliland, G. ; Bhat, T.N.
; Weissig, H. ; Shindyalov, I.N. ; Bourne, P.E.: The Protein Data Bank.
www.rcsb.org. Version: 2000. – Nucleic Acids Research, 28: 235-242

[Ebe17a] Ebeling, Bernd: Facts and Figures. online. https://www.xfel.eu/
facility/overview/facts_amp_figures/index_eng.html. Version: 2017

[Ebe17b] Ebeling, Bernd: XFEL website. https://www.xfel.eu/facility/.
Version: September 2017

[FGAB+16] Fortmann-Grote, C ; Andreev, AA ; Briggs, R ; Bussmann, M ;
Buzmakov, A ; Garten, M ; Grund, A ; Hübl, A ; Hauff, S ; Joy, A
u. a.: SIMEX: Simulation of Experiments at Advanced Light Sources. In:
arXiv preprint arXiv:1610.05980 (2016)

[FGBJ+17] Fortmann-Grote, Carsten ; Buzmakov, Alexey ; Jurek, Zoltan ;
Loh, N-TD ; Samoylova, L ; Santra, R ; Schneidmiller, EA ;
Tschentscher, T ; Yakubov, S ; Yoon, CH u. a.: Start-to-end sim-
ulation of single-particle imaging using ultra-short pulses at the European
X-ray Free-Electron Laser. In: IUCrJ 4 (2017), Nr. 5, S. 560–568

[Gra09] Graafsma, Heinz: Requirements for and development of 2 dimensional X-
ray detectors for the European X-ray Free Electron Laser in Hamburg. In:
Journal of Instrumentation 4 (2009), Nr. 12, S. P12011

[HBD+11] Henrich, B ; Becker, J ; Dinapoli, R ; Goettlicher, P ; Graaf-
sma, H ; Hirsemann, H ; Klanner, R ; Krueger, H ; Mazzocco, R ;
Mozzanica, A u. a.: The adaptive gain integrating pixel detector AGIPD
a detector for the European XFEL. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 633 (2011), S. S11–S14

[JWH+15] Joy, Ashley ; Wing, Matthew ; Hauf, Steffen ; Kuster, Markus ; Rüter,
Tonn: X-CSIT: a toolkit for simulating 2D pixel detectors. In: Journal of
Instrumentation 10 (2015), Nr. 04, S. C04022

http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html

http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html

www.rcsb.org

https://www.xfel.eu/facility/overview/facts_amp_figures/index_eng.html

https://www.xfel.eu/facility/overview/facts_amp_figures/index_eng.html

https://www.xfel.eu/facility/

[PG11] Potdevin, Guillaume ; Graafsma, Heinz: Analysis of the expected
AGIPD detector performance parameters for the European X-ray free elec-
tron laser. In: Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 659
(2011), Nr. 1, S. 229–236

[RHK+15] Ruter, Tonn ; Hauf, Steffen ; Kuster, Markus ; Joy, Ashley ; Ayers,
Ruth ; Wing, Matthew ; Yoon, Chun H. ; Mancuso, Adrian P.: X-ray
detector simulation pipelines for the European XFEL. In: Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE IEEE,
2015, S. 1–4

[SDH+10] Shi, X ; Dinapoli, R ; Henrich, B ; Mozzanica, A ; Schmitt, B ;
Mazzocco, R ; Krüger, H ; Trunk, U ; Graafsma, H ; Consortium,
Agipd u. a.: Challenges in chip design for the AGIPD detector. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 624 (2010), Nr. 2, S. 387–391

[SDR08] Schmüser, Peter ; Dohlus, Martin ; Rossbach, Jörg: Ultraviolet and soft
X-ray free-electron lasers: introduction to physical principles, experimental
results, technological challenges. Bd. 229. Springer Science & Business Media,
2008

		Motivation

		Background and Theory

		X-ray Free Electron Lasers

		Detector Effects on Signal

		Basics of Object Oriented Programming Languages

		Existing Software

		Geant4/ X-CSIT

		SimEx

		Extending C++ to Python

		Design

		C++ classes

		Python calculators

		Cmake

		Application

		Remaining Issues

		Conclusion

		Acknowledgements

		References

