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1 Introduction

In high energy collision experiments there is a constant compromise between energy and
precisions. Hadron colliders, such as the Large Hadron Collider (LHC) in CERN, allows
for extremely high energy collisions with

√
s = 13 TeV. However, the drawback is that

the colliding protons are dynamical systems consisting of a sea of quarks and gluons for
which the properties are not known from first principles. Lepton colliders on the other hand,
provide a much cleaner environment since the electrons (the particle that realistically would
be used in a lepton collider) in the Standard Model (SM) are fundamental particles. The
draw back for lepton colliders are that in circular machines they emit so much synchrotron
radiation that they would evaporate at high energies. Future lepton colliders must therefore
be linear machines such as the proposed International Linear Collider (ILC) [1] or Compact
Linear Collider (CLIC) [2]. A future lepton collider would provide unprecedented precision
for measurements in the electroweak, top and Higgs sectors.

The top quark is the heaviest particle in the SM and is therefore of special interest.
Because of its large mass, the top quark together with the Higgs boson are crucial for the
stability problem of the electroweak vacuum [3, 4] and exact determination of its mass and
Yukawa coupling to Higgs boson is therefore desirable. Due to its large mass, the top quark
decays before hadronization via t→ bW , where the W boson continues to decay while the
b-quark hadronizes and can be identified as a tagged jet. The lack of hadronic background
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in lepton collisions makes the reconstruction of the b-jet reasonably easy and precise in this
situation [5].

In this paper we do not only study tt̄ and tt̄H production in lepton collisions but we do a
general validation of different processes at next-to-leading order (NLO) QCD for the multi-
purpose event generator WHIZARD [6, 7] which is extended to preform automated NLO
calculations. The one-loop contributions are calculated with OpenLoops [8] and compared
to MadGraph5_aMC@NLO [9]. This is done using the current development version of
WHIZARD to make sure no errors have appeared in the new versions of the code.

This paper is organized as follows. In the following section we introduce WHIZARD and
NLO calculations using OpenLoops. In section 3 we discuss top quark physics and especially
how to deal with singularities at NLO. Following this we show the input parameters and
the results in section 4 and make some concluding remarks in section 5.

2 Calculation setup

2.1 WHIZARD at NLO

The multi-purpose event generator WHIZARD is designed to work both for hadron and
lepton collisions, on its own it can deal with arbitrary SM processes and many beyond the
Standard Model (BSM) processes at tree level. Furthermore, it can treat many processes at
NLO. WHIZARD consists of many components, some of the most important are O’MEGA
[6], VAMP [10] and CIRCE [11]. The matrix elements are calculated by O’MEGA, they are
calculated as helicity amplitudes to avoid the use of Feynman diagrams. VAMP preforms
Monte Carlo integration and grid sampling while CIRCE defines and evaluates lepton beam
spectra.

The treatment of NLO calculations are based on the FKS subtraction scheme [12, 13].
A simple description of this is the following; it partitions the phase space into regions where
only one divergent configuration in each and these are then regulated by plus-distributions.
In this work OpenLoops has been used as one-loop matrix provider.

2.2 OpenLoops

OpenLoops [8] provides all necessary Born and one-loop amplitudes together with colour
and helicity correlators required by the FKS subtraction scheme. The regularization of hard
(UV) and soft (IR) divergences are done by dimensional regularization. Renormalization
of the strong coupling constant, αs, is done in the MS scheme, heavy quark contribution
can be removed via zero-momentum subtraction and unstable particles are treated in the
complex-mass scheme. OpenLoops comes with an extensive amplitude library containing all
matrix elements needed for NLO QCD corrections. Moreover, it includes colour and helicity
correlators and real radiation as well as loop-squared amplitudes for hundreds of LHC
processes. For lepton collisions the LHC libraries may usually be used, but for processes
with massive quarks in the final state there are special dedicated libraries.
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3 Top quark physics

Because of its large mass, the top quark plays a special role in the Standard Model (SM)
and extensions thereof. With a mass around 173 GeV it is heavier than the W boson and
may therefore decay semi-weakly as t → Wb. Therefore, it has a very short lifetime and
decays before hadronization. A special interest in the top quark comes from Higgs physics
where it is the only quark whose Yukawa coupling to the Higgs boson is order of unity. The
unique phenomenology of the top quark provides a great testing ground for perturbative and
non-perturbative QCD. Detailed calculations and measurements of top quark parameters
such as mass, couplings, decay branching ratios etc. may provide important information
about interactions at the electroweak breaking scale and about physics beyond SM.

3.1 Top quark decay

Since the top quark decays semi-weakly we may treat theW boson as an on-shell final state
particle when calculating Γ(t→ bW ). The matrix element is given by

M =
gw√

2
ε∗µ(pW )ū(pb)γ

µ 1

2
(1− γ5)u(pt) (3.1)

where gW = e/ sin θW and ε∗µ is the polarization vector of the W boson. Going to the CoM
frame of the top quark, defining the b-quark direction as the z-axis and assuming mb = 0

the different four-momenta are

pt = (mt, 0, 0, 0)

pb = (p∗, 0, 0, p∗) (3.2)

pW = (E∗, 0, 0− p∗)

where, sinceW is on-shell, E∗2 = p∗2 +m2
W . Since mb is taken to zero the helicity and chiral

states of the b-quark is equivalent and consequently, since the weak interaction only couples
to left-handed chiral states, only left-handed chiral/helicity states may be produced. The
chiral spinor for the b-quark is

uL(pb) =
√
p∗(0, 1, 0,−1). (3.3)

and the two different spin states of the t-quark have the spinors

u1(pt) =
√

(2mt)(1, 0, 0, 0) (3.4)

u2(pt) =
√

(2mt)(0, 1, 0, 0). (3.5)

Finally the W boson has three polarization states;

ε∗+(pW ) = − 1√
2

(0, 1,−i, 0)

ε∗−(pW ) =
1√
2

(0, 1, i, 0) (3.6)

ε∗L(pW ) =
1

mW
(−p∗, 0, 0, E∗).
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The only combinations of spinors and polarizations that are non-zero are those that conserve
angular momentum; giving only two non-zero contributions to the matrix element

M1 =
gW√

2
ε∗+,µ(pW )(ūL(pb)γ

µu1(pt)) = −gW
√

2mtp∗ (3.7)

M2 =
gW√

2
ε∗L,µ(pW )(ūL(pb))γ

µu2(pt) = −gWmt

mW

√
mtp∗. (3.8)

The spin-averaged matrix element squared is therefore

〈
|M|2

〉
=

1

2

(
|M1|2 + |M2|2

)
=

1

2
g2
Wmtp

∗
(

2 +
m2
t

m2
W

)
. (3.9)

To get the total decay width we just have to integrate over phase space

Γ =
p∗

32π2m2
t

∫ 〈
|M|2

〉
dΩ =

g2
W p
∗2

16πmt

(
2 +

m2
t

m2
W

)
(3.10)

which may also be written as

ΓLO(t→ bW ) =
GFm

3
t

8π
√

2

(
1−

m2
W

m2
t

)2(
1 +

2m2
W

m2
t

)
. (3.11)

To the next-to-leading order the width is given by [14](neglecting terms of orderm2
b/m

2
t , α

2
s

and αsm2
W /πm

2
t )

ΓNLO(t→ bW ) = ΓLO

[
1− 2αs

3π

(
2π2

3
− 5

2

)]
. (3.12)

Using mt = 173, 3 GeV and αs(mZ) = 0.118 the lifetime of the top quark is approximately
5 · 10−25s which is about one tenth of the characteristic QCD time scale and thus no tt̄
quarkonium should be created in collisions.

3.2 Cross section for tt̄ production

The Born amplitude for e+e− → tt̄ is an s-channel process with γ/Z exchange, see Fig. 1.
For the full cross section both contributions have to be included, but the purpose of this
section is to calculate NLO QCD contributions and show the appearance and cancellation
of divergences, thus we will only study the γ-exchange for simplicity. A complete O(αS)

calculation, where the Z-exchange is included can be found in [15–17]. Let p and q be
the four-momentum of the electron and positron respectively and let p′ and q′ be the four-
momentum of the top and anti-top quark. Neglecting the electron mass the matrix element
for the Born process is

MLO =
e2QeQt

s
v̄(q)γµu(p)ū(p′)γµv(q′)δij (3.13)
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Figure 1: The s-channel Born process for e+e− → tt̄.

where i and j are the colour indices of the outgoing quarks. In the CoM frame of the
colliding leptons the four-momenta are

p =

√
s

2
(1, 0, 0, 1)

q =

√
s

2
(1, 0, 0,−1)

p′ =

√
s

2
(1, β sin θ, 0, β cos θ)

q′ =

√
s

2
(1,−β sin θ, 0,−β cos θ)

where s = (p+ q)2 and

β =

√
1− 4m2

t

s
.

In d = 4− 2ε dimensions the square amplitude is

|MLO|2 = 64π2α2Q2
tNc

[
2(1− ε) + β2(cos2 θ − 1)

]
(3.14)

where the colour factor is Nc = 3. To get the corresponding cross section we need the
two-body phase space

dΦ2 =
22ε

16π

(
4π

s

)ε
β1−2ε 1

Γ(1− ε)

∫ π

0
sin1−2ε θdθ (3.15)

which yields the cross section

σLO =
1

8s

∫
|MLO|2dΦ2

=
β

128πs

∫ 1

−1
d cos θ|MLO|2 +O(ε)

=
2πNcα

2Q2
t

3s
β(3− β2) +O(ε). (3.16)
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(a) (b)

Figure 2: The two virtual contributions to σNLO(e+e− → tt̄). (a) is the vertex correction
and (b) the wave function renormalization.

To calculate the cross section at NLO we need both real and virtual contributions to
the LO cross section,

σNLO = σLO + σvirtual + σreal. (3.17)

The one-loop virtual contributions consists of a vertex correction and a wave function
renormalization, see Fig. 2. For the virtual corrections we are not interested in the incoming
leptons so we may write the amplitude for the vertex correction as

Mvertex = eQev̄(q)γνu(p)
1

s
Γν(p′, q′) (3.18)

with
Γν(p′, q′) = (−eQt)δijg2

sCF [N ]ū(p′)

[
A

(p′ + q′)ν
2mt

+Bγν

]
v(q′) (3.19)

where we have chosen the normalization

[N ] =
1

16π2

(
4πµ2

m2
t

)ε
Γ(1 + ε) (3.20)

and have the colour factor

CF =
N2
c − 1

2Nc
=

4

3
. (3.21)

The parameter µ is the renormalization scale. Explicit calculations of A and B can be
done, see [15–17], but for us it is enough to notice that A is independent of ε and that we
may write B as

B =
Bε
ε

+Bfinite. (3.22)

To get the O(αs) contribution to the virtual cross section we calculate the interference term
of the vertex amplitude and the leading order amplitude, this yields

σvertex = 2
1

8s

∫
dΦ2MLOM∗vertex

=
αs
2π

(
4πµ2

m2
t

)ε
CFΓ(1 + ε)σLO

[
Bε
ε

+Bfinite

]
. (3.23)
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Figure 3: A Feynman diagram for real gluon emission.

Note that the O(ε) term from σLO together with Bε/ε forms a finite term. The wave
function renormalization, Fig. 2(b) can easily be dealt with using on-shell renormalization,
giving the cross section

σZ = 2δZttσLO (3.24)

where

δZtt =
∂Π(p2)

∂p2

∣∣∣∣
p2=m2

t

= −αS
4π

(
4πµ2

m2
t

)ε
CFΓ(1 + ε)

[
3

ε
+ 4

]
. (3.25)

With the total virtual contribution now given by

σvirtual = σvertex + σZ

= σLO
αs
2π

Γ(1 + ε)CF

(
4πµ2

m2
t

)ε [
(−3 +Bε)

1

ε
− 4 +Bfinite

]
. (3.26)

What is left now, to get the total cross section at NLO, is the real contribution which
comes from real gluon emission, see Fig. 3. Calculating this contribution is even more
elaborative than the virtual contribution (e.g. we now have a three-body phase space), so
here we will only focus on the divergences. Note that because of the massive top quark,
the diagram in Fig. 3 has no collinear singularity. However, it has a soft (IR) singularity
as the energy of the emitted gluon approaches zero. This singularity can be regulated with
phase space slicing (PSS) [17]. The idea is that we split the phase space in one soft and
one hard part such that

σreal = σsoft + σhard (3.27)

where σhard is finite and the soft singularity is contained in σsoft, this introduces an arbitrary
parameter δs describing where the phase space is cut, clearly σreal must be independent of
this parameter. Calculating the three-body phase space integral for the soft contribution
will after some pages of work give
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Figure 4: (a) the cross section for e+e− → tt̄ calculated at LO and NLO using WHIZARD.
(b) the K-factor defined as K = σNLO/σLO.

σsoft = σLO
αs
2π
CF

(
4πµ2

s

)ε
Γ(1− ε)
Γ(1− 2ε)

[
Cε
ε

+ Cfinite

]
. (3.28)

We now have the total NLO cross section

σNLO = σLO + σvirtual + σsoft + σhard (3.29)

where the hard and leading order contributions are finite while both the virtual and soft
contribution as a 1/ε singularity. Using the explicit expressions for Bε and Cε these singu-
larities actually cancels [17] and we are left with a finite expression. The cross section for
e+e− → tt̄ is shown in Fig. 4, both at LO and NLO, calculated using WHIZARD.

4 Validation of NLO QCD for lepton collisions

4.1 Setup

As input parameters we used the following masses (all others are set to zero)

mZ = 91.188 GeV, mW = 80.419002 GeV, mH = 125.0 GeV

mt = 173.2 GeV, mτ = 1.777 GeV.

The widths of the gauge bosons, the top quark and Higgs are set to zero. We use GF =

1.16639·10−5 GeV−2 together with αs(mZ) = 0.118 where the running includes five colours.
For the electron collisions we have

√
s = 1 TeV.

4.2 Validation

In Table 1 a sample of cross section calculations at LO and NLO is shown together with
the MadGraph5 results from [9].

– 8 –



T
ab

le
1:

C
ro
ss

se
ct
io
n
ca
lc
ul
at
io
ns

at
LO

an
d
N
LO

us
in
g
W

H
IZ
A
R
D

an
d
co
m
pa

re
d
to

M
ad

G
ra
ph

5
re
su
lt
s
fr
om

[9
].

M
G
5

W
H
IZ
A
R
D

F
in
al

st
at
e

σ
L

O
[fb

]
σ

N
L

O
[fb

]
K

σ
L

O
[fb

]
σ

N
L

O
[fb

]
K

jj
62

2.
3(
5)

63
9(
1)

1.
02

68
4

62
2.
83

(7
)

64
2.
3(
1)

1.
03

12
6

bb̄
91

.8
9(
4)

92
.8
(3
)

1.
00

99
92

.3
11

(8
)

94
.7
2(
9)

1.
02

59
tt̄

16
6.
2(
2)

17
4.
5(
6)

1.
04

99
16

6.
41

(1
)

17
4.
86

(4
)

1.
05

08
tt̄
tt̄

6.
46

(2
)·1

0−
4

12
.2
1(
5)
·1

0−
4

1.
89

6.
48

5(
15

)·1
0−

4
12

.1
6(
3)
·1

0−
4

1.
87

69
bb̄
bb̄

1.
64

4(
3)
·1

0−
1

3.
60

(2
)·1

0
−

1
2.
19

51
1.
63

(2
)·1

0−
1

3.
5(
8)
·1

0−
1

1.
87

5
tt̄
bb̄

1.
81

9(
3)
·1

0−
1

2.
92

(1
)·1

0
−

1
1.
61

32
6

1.
84

(1
)·1

0−
1

5.
46

(3
)·1

0−
1

3
tt̄
j

48
.1
3(
5)

52
.7
6(
22

)
1.
08

11
48

.3
2(
16

)
55

.9
3(
53

)
1.
45

83
tt̄
H

2.
01

8(
3)

1.
91
1(
6)

0.
94

55
45

2.
03

0(
3)

1.
92
1(
3)

0.
94

58
1

tt̄
γ

12
.7
0(
2)

13
.3
5(
4)

1.
05

51
2

–
–

–
tt̄
Z

4.
61

2(
6)

4.
94
9(
14

)
1.
06

29
1

–
–

–
tt̄
H
Z

3.
60

0(
6)
·1

0−
2

3.
57

9(
13

)·1
0−

2
1

–
–

–
tt̄
γ
Z

2.
21

2(
3)
·1

0−
1

2.
36

4(
6)
·1

0−
1

1.
06

78
7

–
–

–
tt̄
γ
H

9.
75

6(
16

)·1
0−

2
9.
42

3(
32

)·1
0−

2
0.
96

91
–

–
–

tt̄
γ
γ

0.
36

50
(8
)

0.
38

33
(1
3)

1.
04

11
0

–
–

–
tt̄
Z
Z

3.
78

8(
4)
·1

0−
2

4.
00

7(
13

)·1
0−

2
0.
94

75
–

–
–

tt̄
H
H

1.
35

8(
1)
·1

0−
2

1.
20

6(
3)
·1

0−
2

0.
88

97
1

–
–

–
tt̄
W

+
W
−

0.
13

72
(3
)

0.
15

40
(6
)

1.
12

40
9

–
–

–
tt̄
W
±
jj

2.
40

0(
4)
·1

0−
4

3.
72

3(
12

)·1
0−

4
1.
54

17
–

–
–

jj
j

34
0.
1(
2)

31
7(
2)

0.
93

23
5

–
–

–
jj
jj

10
4.
7(
1)

10
9.
0(
6)

1.
03

81
0

–
–

–
tt̄
tt̄
j

2.
71

9(
5)
·1

0−
5

5.
33

8(
27

)·1
0−

5
1.
94

85
3

2.
70

2(
15

)·1
0−

5
4.
05

5(
29

)·1
0−

5
1.
48

15
tt̄
H
j

0.
25

33
(3
)

0.
26

58
(9
)

1.
05

13
83

0.
25

55
(1
2)

0.
26

86
(1
5)

1.
03

85
tt̄
γ
j

2.
35

5(
2)

2.
61
7(
10

)
1.
11

01
7

–
–

–
tt̄
Z
j

0.
61

59
(6
)

0.
69

40
(2
8)

1.
12

01
3

–
–

–

– 9 –



5 Concluding remarks

The validations shown in Table 1 have not been preformed for all processes. The goal would
be to do all the tests done with previous versions of WHIZARD, see Appendix A. For the
calculated processes the agreement between MadGraph5 and WHIZARD is for the most
part satisfactory, except for NLO tt̄bb̄ and NLO tt̄tt̄j.
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A Earlier WHIZARD validation

Here we show an earlier set of WHIZARD validations.
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