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Abstract

The purpose of this project is to investigate the use of boosted decision trees
in the search for charginos and neutralinos originating from a vector-boson fusion
(VBF) process in the ATLAS detector. Charginos produced in the VBF process are
assumed to decay with a branching fraction of 100% to staus and tau sneutrinos. An
iterative removal algorithm is used to determine a ranking of the optimal variables to
train the boosted decision trees. Two reference points in compressed SUSY scenarios,
both with a mass splitting of ∆m = 50 GeV, are investigated. The optimal analysis
for the reference point mχ̃0

1
= 100 GeV, mχ̃±

1
=mχ̃0

2
= 150 GeV is found to have a

significance of 3.65, and the optimal analysis for the reference point mχ̃0
1

= 150 GeV,
mχ̃±

1
=mχ̃0

2
= 200 GeV is found to have a significance of 2.03.
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1 Introduction

In the following subsections, the necessary theoretical background is summarized. First,
the Minimal Supersymmetric Standard Model (MSSM) is briefly motivated and explained.
Then, the motivation for this specific search analysis involving vector boson fusion is dis-
cussed. Finally, the main analysis method used in this project, boosted decision trees, is
described.

i The Minimal Supersymmetric Standard Model

Supersymmetry (SUSY) is an extension of the Standard Model (SM), in which the space-
time Poincaré symmetry is extended by a symmetry that transforms fermions into bosons,
and vice versa. SUSY is motivated by the fact that it can provide a framework for the
unification of particle physics and gravity, as well as an explanation for the hierarchy
problem arising from the large difference between the electroweak symmetry breaking scale
(∼ 100 GeV) and the Planck scale (∼ 1019 GeV) [1]. If SUSY was an exact symmetry of
nature, then all superparticles would have the same mass as their SM counterparts. As
no superparticles have been observed yet, SUSY must be a broken symmetry, allowing for
SUSY particles to be much heavier than their SM counterparts. While there are many
versions of SUSY, this analysis is constrained to consider the Minimal Supersymmetric
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Standard Model, which is the simplest extension of the SM. The particle content of the
MSSM is briefly summarized as follows:

• The gauge supermultiplets consist of gluons and their gluino fermionic superpartners,
as well as SU(2)×U(1) gauge bosons that are accompanied by their gaugino fermionic
superpartners. The winos are the superpartner particles of the W bosons (W± and
W 3

0 ), while the bino is the superpartner of the weak hypercharge gauge boson [2].

• The matter supermultiplets consist of 3 generations of quarks and leptons and their
superparticles, squarks and sleptons, along with their corresponding antiparticles [2].

• The MSSM contains two complex Higgs doublets, resulting in 5 Higgs bosons total:
one CP-odd and two CP-even neutral Higgs bosons and two charged Higgs bosons,
called higgsinos [2].

• The charged gauginos and the neutral gauginos mix with the higgsinos to create phys-
ical states of definite mass, namely the charginos (χ̃±

i , i = 1, 2 in order of increasing
masses) and neutralinos (χ̃0

j , j = 1, 2, 3, 4 in order of increasing mass), respectively
[2].

The MSSM Lagrangian is constructed using all possible 4-dimensional supersymmetric
interaction terms that satisfy SU(3)×SU(2)×U(1) gauge invariance and B−L conservation,
where B is baryon number and L is lepton number. As a consequence of this B − L
invariance, one can also include another multiplicative quantum number, called R-parity,
defined as R = (−1)3(B−L)+2S, for a particle with spin S. Thus, the SM particles have R =
+1 and their superpartner particles haveR = −1. By requiring thatR-parity is a symmetry,
one can deduce that a superparticle must decay into an odd number of other superparticles,
along with any number of SM particles. Therefore, the lightest supersymmetric particle
(LSP) must be stable, and is thus a good candidate for dark matter. A candidate for
the LSP in the MSSM is the lightest neutralino (χ̃0

1), which is a mixture of the bino, the
neutral wino, and the neutral higgsinos [2]. The LSP is also considered to be only weakly
interacting. Thus, if any LSPs are created at the Large Hadron Collider, they will traverse
the ATLAS detector without leaving a signal.

ii Motivation for Analysis

This analysis targets the production of charginos and neutralinos in vector boson fusion
processes. To date, the masses of the strongly produced gluinos and first- and second-
generation squarks have been excluded up to 1 TeV [1]. However, the mass limits on the
weakly produced charginos and neutralinos are considerably lower, because these processes
have smaller cross sections at the Large Hadron Collider. The mass limits for charginos
and neutralinos are summarized in Fig. 1.

These mass limits are especially low in the compressed mass spectrum scenarios of SUSY,
where the mass of the LSP is only slightly lighter than the other SUSY particles. These
scenarios have mass points close to the line labeled mχ̃0

2
= mχ̃0

1
in Fig. 1. Previous searches

for charginos and neutralinos have mainly focused on direct production processes, where
the final states are characterized by a large missing transverse energy from the escaping
LSP and leptons with high transverse momenta that arise from the decay chains of the
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Figure 1: Summary of the ATLAS search for electroweak production of charginos and
neutralinos. Each color corresponds to a different topology and decay channel scenario.
The dashed and solid lines show the expected and observed limits, respectively.

superparticles. This search, however, is only sensitive to scenarios where the mass splitting
between the LSP and the other supersymmetric particles is relatively large. If this mass
splitting is small, then the leptons from the decay chain will have low transverse momenta,
making the triggering of these events difficult.

A solution to this is to search for the production of charginos and neutralinos in vector
boson fusion. Vector boson fusion offers a unique signature of two forward jets in opposite
hemispheres of the detector, thus resulting in a high dijet invariant mass. These features
make VBF production of charginos and neutralinos a promising probe for compressed
SUSY scenarios that would otherwise be too experimentally difficult to explore via direct
production. While there are multiple different VBF SUSY signatures, the specific topology
investigated in this analysis is illustrated in Fig. 2.

In this topology, two W bosons fuse to create two charginos of either same or opposite sign.
The most probable decay of a chargino is currently unknown. In this search we assume
that the chargino decays with a branching fraction of 100% to staus or tau sneutrinos. This
is theoretically motivated because SUSY scenarios with a small mass splitting and a light
stau are favored in coannihilation processes that set the dark matter relic density to be
consistent with experimental observations [3]. The mass limits for this decay process are
depicted by the pink and purple lines in Fig. 1. The two reference points investigated in
this report are as follows:

• Reference point 1 (RP1): mχ̃0
1

= 100 GeV, mχ̃±
1

= mχ̃0
2

= 150 GeV

• Reference point 2 (RP2): mχ̃0
1

= 150 GeV, mχ̃±
1

= mχ̃0
2

= 200 GeV
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Figure 2: Feynman diagram of example VBF production studied in this analysis

Both reference points have a mass splitting of ∆m = 50 GeV and are thus classified as
compressed SUSY scenarios.

iii Multivariate Analysis: Boosted Decision Trees

In this analysis, the method of Boosted Decision Trees within the Toolkit for Multivariate
Analysis (TMVA) is used. TMVA is a ROOT-integrated analysis toolkit that hosts a large
variety of multivariate classification algorithms [4]. One such algorithm is boosted decision
trees (BDT). A BDT is a binary tree structured classifier, that splits the phase space into
many regions that are eventually classified as signal or background.

The TMVA BDT algorithm works as follows. The data is first split into training and
testing subsets. Training starts at the root node, where the algorithm scans through all
kinematic variables provided to it, and chooses the variable and cut that maximizes the
separation between signal and background in the training data subset. The separation
of each proposed cut is evaluated using the Gini Index, defined by p · (1 − p), where the
purity, p, is the ratio of signal events to all events in the node. The sample is then divided
according to the optimal cut criterion into two new nodes, where one is signal-like and
the other is background-like. This process continues until either a node has reached a
pre-specified minimum number of events, or a maximum depth in the tree. These limits
are set to help prevent the tree from overtraining, which occurs when the tree has learned
statistical fluctuations in the training sample. After one of these limits has been reached,
all of the events in the leaf node are then characterized as signal or background. The final
collection of nodes is called a decision tree.

In order to stabilize the classification performance with respect to statistical fluctuations
in the training sample, a method called boosting is used. After the first tree is trained, the
events are re-weighted such that the signal events that were misclassified as background
(and vice versa) receive a higher weight. Then, another tree is grown using these new
event weights. This continues iteratively until a forest of trees is created.

Based on the output of all trees in the forest, each event is assigned a BDT response value
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ranging from -1 to +1. Background-like events will have a BDT response value shifted
towards -1, and signal-like events will have a response value shifted towards +1. The
BDT classifier then creates a receiver operating characteristic curve (ROC) by applying
sequential cuts to the BDT response value and calculating the respective signal efficiencies
and background rejections. The integral of the ROC curve indicates the level of performance
of the classifier; the closer the integral is to 1, the better the classifier has performed. While
there are other performance indicators provided by the TMVA BDT output, the ROC
integration is the only indicator used in this analysis.

2 Analysis Procedure

In this section, the exact steps of the analysis are detailed. First the generation of the
signal and background sample events are briefly outlined. Then, the kinematic variables
considered in this analysis are discussed. Finally, the method used to determine the most
discriminating variables, iterative removal, is described.

i Sample Generation

Monte Carlo (MC) samples are generated such that the signal events have at least one
hadronically decaying tau lepton, at least two leptons total, and at least two jets with high
separation. The signal samples are created to enrich the number of events with highly
separated and highly energetic jets. The most prominent sources of background arise from
the production of W or Z bosons in association with jets (W/Z+jets), top quark production,
and diboson production. The W+jets background arises predominantly from when a W
boson decays leptonically, and one or more jets are misidentified as a lepton. The top
background contains both tt̄ and single top production.

ii Input variables and precuts

In total, 19 variables are considered in this analysis. A summary of these variables is
presented in Tab. 1. More complete descriptions of mT2, meff, and drtt are listed in Ap-
pendix A. To remove these unphysical differences between signal and background due to
the MC event generation, precuts are made before beginning the analysis. The precuts ex-
ecuted are: ∆η(jet) > 3.0, pT,1(jet) > 30 GeV, pT,2(jet) > 30 GeV, pT,1(lep) > 20 GeV and
pT,2(lep) > 20 GeV. All event variables are first plotted to visually analyze their distribu-
tions. Two of these event histograms, showing the dijet invariant mass and ∆η between the
leading jets, are presented in Fig. 3(a) and Fig. 3(b), respectively. As expected, the signal
events are significantly shifted towards higher values of the dijet invariant mass. Though
less pronounced, the signal events also have slightly higher jet separation in pseudorapidity.

6



Variable Description
MET Missing transverse energy (magnitude)
mT2* Stransverse mass

m12(lep) Invariant mass of leading leptons
m12(jet) Invariant mass of leading jets
mt12 Sum of transverse mass of leading leptons
meff * Effective mass
drtt * ∆R of leptons
pT,1(lep) Transverse momentum of leading (1)
pT,2(lep) and subleading (2) leptons
pT,1(jet) Transverse momentum of leading (1)
pT,2(jet) and subleading (2) jets
η1(jet) Pseudorapidity of leading (1)
η2(jet) and subleading (2) jet
∆η(jet) Separation in η of leading jets
η1η2(jet) η1,jet · η2,jet
| ∆φ(jet) | Separation in φ of jets, where φ is

the azimuthal angle
mT,1(jet) Transverse mass of leading (1)
mT,2(jet) and subleading (2) jet

njet Number of jets

Table 1: Brief descriptions of the event variables considered in this analysis. Starred (*)
variables are described in more detail in Appendix A.

(a) m12, jet distribution (b) ∆η jet distribution

Figure 3: Distributions of the invariant mass of the jets (a) and difference in pseudorapidity
of the jets (b) after the precuts have been applied. The signal area is normalized to the
total MC background to show the distribution shapes. Reference point 1 is shown in blue
and Reference point 2 is shown in red.

Additional vetos to be used in combination with the precuts are also analyzed. The three
types of vetos investigated are a b-jet veto, a mll veto, and a Z boson veto. An event
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passes the b-jet veto (‘bVeto’) if there are no b-tagged jets. This cut significantly reduces
the top background. An event passes the mll veto (‘mllVeto’) if the combination of leptons
in the event with the maximum invariant mass yields m12 > 12 GeV. This cut removes
taus that are produced via low mass resonance decays. Finally, the Z boson veto involves
both a cut on the invariant mass of the leptons, as well as a cut on the ‘qualEle’ variable.
The ‘qualEle’ variable is based on a BDT for tau selection that is used to remove overlaps
with electrons. To ensure a tau has been selected, ‘qualEle’ must be 0. Additionally, the
invariant mass requirement to pass the Z veto (‘zVeto’) is | m12−mZ |> 10 GeV. Here, the
mass of the Z boson in this cut is set to be mZ = 70 GeV. This is because the Z boson mass
in di-tau decays is reconstructed lower than its actual mass, due to the neutrinos resulting
from the tau decays [5]. This shift of the Z mass peak can be seen in the m12 distribution
shown in Fig. 4.

Figure 4: Distribution of m12 showing the shifted Z mass peak after the precuts have been
applied. The signal area is normalized to the total MC background to show the distribution
shapes. Reference point 1 is shown in blue and Reference point 2 is shown in red.

The following combinations of cuts are analyzed:

• cutA = bVeto + precuts

• cutB = bVeto, mllVeto + precuts

• cutC = bVeto, mllVeto, zVeto + precuts

The total event counts after applying these cuts are summarized in Tab. 2. cutA is excluded
from further analysis in this project, because cutB is able to exclude an appreciable amount
more of background events with negligible loss of signal when compared to cutA. Thus, the
following analysis steps are carried out 3 times, once with only the precuts, once with cutB,
and once with cutC.

iii Iterative Removal Analysis

Iterative removal (IR) is a procedure used to determine the optimal variables to train
the BDT classifier. The optimal variables are the ones that have the most discriminating
power, or the highest ability to separate signal from background. When choosing the
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Cut Signal Signal Background (S/B)×103 (S/B)×103

events (RP1) events (RP2) events (RP1) (RP2)
No precuts 136.27 50.23 2528000 0.0539 0.020
Precuts 43.58 27.66 148597 0.293 0.186
cutA 42.84 27.30 119019 0.359 0.229
cutB 42.84 27.23 118858 0.360 0.229
cutC 22.47 17.47 65555 0.342 0.266

Table 2: Event counts after applying cuts specified in Sec. 3.ii. The last two columns show
the ratio of signal to background events, scaled by 1000.

optimal variables, one must also take into account correlations. If two variables both have
high separation power, but are highly correlated, then likely only one of these is needed
to train the BDT classifier. The iterative removal process is able to take this type of
correlation into account when selecting the optimal variables. In the IR process, one first
begins with the entire variable list. Each variable is removed one at a time, and the BDT
classifier is trained and tested without this variable in the list. The variable that, when
removed, decreases the ROC integration the least, is deemed the least important variable,
and discarded permanently. The process continues until an entire ranking of the variables,
from least important to most important, is created.

One alternative to this method is the ‘brute force’ method. In this method, one tries every
possible combination of the desired final number of variables to find the best performing
combination. In this project, where 19 variables are considered, using the brute force
method is unfeasible to accomplish because of the number of times one would have to
train and test the BDT classifier. For example, if one wanted to determine the best 5
variables with the brute force method, the BDT classifier would have to be trained and
tested

(
19
5

)
= 11, 628 times. On the contrary, the iterative removal process only requires

19 + 18 + ... + 3 + 2 = 189 iterations for a complete variable ranking. Thus, IR offers
a much more efficient way to create a variable ranking. For details on the IR algorithm,
refer to [6].

A summary of the BDT classifier parameters used in this analysis are shown in Table 3.
A description of these parameters can be found in the TMVA users guide [4]. In addition
to the event variables, the event weights are also sent to the BDT such that the events
are properly weighted for training and testing. To shorten the computation time of the
iterative removal analyses, the number of trees is reduced to 200 from the amount used to
produce the final results (800).

3 Results

For each set of cuts on each reference point, the iterative removal analysis is executed
to determine a variable ranking, and a plot of the ROC integration as a function of the
number of variables is made. An example of this plot for both reference points with the
precuts applied is shown in Fig. 5. Similar plots for both reference points with cutB and
cutC applied can be found in Appendix B. For each analysis, the first local maximum of
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BDT Parameter Value
NTrees (IR) 200

NTrees (Results) 800
MaxDepth 3

MinNodeSize 5%
nCuts 20

BoostType AdaBoost
NegWeightTreatment IgnoreNegWeightsInTraining

Table 3: Summary of important BDT training parameters. Details can be found in [4].

(a) Reference point 1 with precuts (b) Reference point 2 with precuts

Figure 5: ROC integration scaled to 100 as a function of the number of variables in the IR
analysis

the ROC integral occurring with more than 5 variables is chosen as the optimal number of
variables to use for that analysis. This criteria allows the ROC integration to be maximized
while the number of variables is still kept minimal. A summary of the best variables chosen
for each run and reference point is listed in Tab. 4. For each reference point and each set
of precuts, the best set of variables is sent to a BDT classifier to be trained with 800 trees.
The BDT response value, scaled with the event weights, for both reference points with
precuts applied is shown in Fig. 6. The BDT response histograms for the cutB and cutC
runs are shown in Appendix C.

The final step in the analysis is to find the optimal cut on the BDT response value such
that the significance is maximized. The significance, S, is estimated using:

S =
S√
S +B

, (1)

where S and B are the number of signal and background events after the cut has been
applied, respectively. Sequential cuts are applied to the BDT response histogram of each
run, and the significance of each cut is calculated. The results for both reference points
with precuts applied are shown in Fig. 7. The results for both reference points with cutB
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Reference 1 Reference 2
precuts only cutB cutC precuts only cutB cutC

ROC
integral 0.975 0.968 0.980 0.990 0.993 0.990
Nvar 8 7 8 8 8 9
# 1 njet njet njet MET MET MET
# 2 mT,2(jet) mT,1(jet) mT2 njet njet njet

# 3 drtt m12(jet) drtt drtt m12(jet) mT2

# 4 m12(jet) drtt mT,2(jet) mT2 drtt drtt
# 5 m12 η2(jet) | ∆φ(jet) | | ∆φ(jet) | m12 pT,1(jet)
# 6 mt12 mT2 MET m12 mT2 m12

# 7 η2(jet) MET m12(jet) η1η2(jet) η1(jet) η2(jet)
# 8 ∆η(jet) pT,1(lep) ∆η(jet) η1η2(jet) | ∆φ(jet) |
# 9 meff

Table 4: Variable ranking according to iterative removal analysis. Included is the final
number of variables selected, Nvar, and the optimal ROC integral value.

(a) Reference point 1 with precuts (b) Reference point 2 with precuts

Figure 6: BDT response value distributions for signal and background events, scaled with
the event weights. Shown are the precut-only runs for both Reference points.

and cutC are shown in Appendix D. The maximal significances and BDT cut values for
all runs are listed in Tab. 5.

In the cutB and cutC runs for Reference point 2 (See Appendix C Fig. 9(c) and (d)), the
events with negative weights are excluded from the calculation of the significance. This
is because at some cut values, there are more background events with significant negative
event weights than signal events, and the significance can not be calculated.
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(a) Reference point 1 with precuts (b) Reference point 2 with precuts

Figure 7: Estimated significance as a function of the BDT response cut value for each
reference point with precuts applied.

Reference point 1
Cut Maximum Significance Signal Background BDT cut

precuts 3.52 13.9 1.8 > -0.136
cutB 3.65 18.1 6.5 > -0.148
cutC 3.37 14.8 4.4 > -0.285

Reference point 2
Cut Maximum Significance Signal Background BDT cut

precuts 1.88 7.9 9.6 > -0.048
cutB 2.03 10.3 15.7 > -0.059
cutC 1.89 7.3 7.7 > -0.103

Table 5: Maximum significance using cuts on the BDT response values.

4 Interpretation

As shown in Tab. 5, the most sensitive analysis for Reference point 1 and Reference point
2 had a significance of 3.65, and 2.03, respectively. Both maximal significances occurred
when the precuts were applied in combination with a bVeto and an mllVeto. Thus, neither
analysis is sensitive enough to make a discovery, and only the analysis for Reference point
1 is sensitive enough to claim evidence. These analyses are therefore in need of more
optimization before they can be applied to a search with real ATLAS data.

While the optimal variable list for Reference point 1 only includes 7 variables, the list
for Reference point 2 includes 9 variables. The plots in Fig. 5 and Fig. 8 demonstrate
that supplying the BDT classifier with more variables for training does not always lead
to better results. A method like iterative removal is always needed to identify the best
variables to maximize the performance of the BDT classifier.
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Both optimal variable lists include njet, MET, drtt, η2(jet), and mT2. The top variable for
every set of cuts with Reference point 1 is njet, while the top variable for each run with
Reference point 2 is MET. This is likely because the mass of the escaping LSP in Reference
point 2 (150 GeV) is larger than that in Reference point 1 (100 GeV), and therefore the
MET in Reference point 2 events will be shifted to larger values that further separate it
from background. It is unclear why the number of jets is an important variable in many
variable lists. However, the possibility that this is due to the way these sample events are
generated has not been excluded. Thus, further investigation into the exact mechanism
for creating these MC events is required to confirm these results and ensure that no biases
are present in the MC event data.

Negative event weights are ignored by the BDT classifier when it is in the training stage.
Nevertheless, negative event weights cause a problem for the analysis of Reference point
2 when cutB and cutC are applied. In the calculation of the significance, often times
there are more negative background events than positive signal events when cutting on
BDT response values in the tails of the background distributions, resulting in an imaginary
significance. However, this issue only arose in the cutB and cutC runs of Reference point
2, which is likely due to the low signal event counts in these runs, as seen in Tab. 2.

5 Conclusion and Future Work

While using BDTs to search for the production of charginos and neutralinos via VBF in
compressed SUSY scenarios is a promising approach, this analysis has shown that more
optimization is needed before this technique can actually be applied.

One of the challenges with this analysis is the requirement to apply precuts. Although these
precuts significantly reduce the background event count, it also reduces the signal event
count by roughly 68% for Reference point 1 and 46% for Reference point 2 (see Tab. 2).
These precuts are on the ‘safe-side’, such that it is certain that no biases are present in
the ∆η, pT(lep), or pT(jet) distributions. However, it should be investigated whether
these precuts can be relaxed without introducing biases, such that less signal events are cut.

This analysis can be optimized in a plethora of ways. One could experiment with trying
new variables, such as the recently developed ‘razor variables’ [7]. Additionally, one can
run an analysis to determine the best parameters for the training of the BDT classifier,
such that the signal and background separation is optimized while the trees still remain
safe from overtraining.

Once this analysis has been further optimized, it can be compared to other analyses such
as the rectangular cuts method in TMVA. Using rectangular cuts to define signal regions
is a more traditional approach to data analysis in ATLAS, and was very common in the
analysis of data from ATLAS during Run 1 of the LHC. However, with better modeling of
data and the development of TMVA, the TMVA methods such as BDTs are likely to be
more abundantly used for the analysis of data from Run 2 and future runs of the LHC.
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A Event variable descriptions

mT2: The stransverse mass is defined as:

mT2 = min~qT [ max(mT( ~pT,1 , ~qT),mT( ~pT,2, E
miss

T − ~qT) ) ],

where ~pT,1 and ~pT,2 are the transverse momenta of the leading and subleading
leptons, respectively. ~qT is a transverse vector that minimizes the larger
of the two transverse masses, mT. The stransverse mass distribution has
a kinematic endpoint for events where two massive pair produced
particles each decay semi-visibly [5].

meff: The effective mass is the scalar sum of the transverse momenta of the leptons,
jets, and E miss

T in the event:

meff= E miss
T +

∑
p leptons

T +
∑
p jets

T

drtt: The separation of the leptons, drtt, is characterized by ∆R, which is defined:
as:

∆R =
√

(∆η)2 + (∆φ)2
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B ROC integral plots

(a) Reference point 1 with cutB (b) Reference point 1 with cutC

(c) Reference point 2 with cutB (d) Reference point 2 with cutC

Figure 8: ROC integration scaled to 100 as a function of the number of variables in the
iterative removal analysis, for cutB and cutC of each reference point.
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C BDT response histograms

(a) Reference point 1 with cutB (b) Reference point 1 with cutC

(c) Reference point 2 with cutB (d) Reference point 2 with cutC

Figure 9: BDT response value distribution for signal and background events, scaled with
the event weights. For (c) and (d), the negative event weights are excluded, as discussed
in Sec. 3.
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D BDT cut optimization plots

(a) Reference point 1 with cutB (b) Reference point 1 with cutC

(c) Reference point 2 with cutB (d) Reference point 2 with cutC

Figure 10: Estimated significance as a function of BDT response cut value for each reference
point with cutB and cutC applied.
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