
Process monitoring with containers in

David Prelogović, University of Zagreb, Croatia

September 7, 2017

Abstract

Description of software containers in general, what they are, differences with re-
spect to virtual machines. After describing basic advantages of Docker containers
and how to use them, we will take a look into monitoring containers and other
processes on the host system.

1

Contents

1. Introduction 3
1.1. Container v.s. VM . 3
1.2. Docker image structure . 4

1.2.1. Namespaces . 5
1.2.2. Control groups . 5

1.3. My first container . 5

2. Docker containers - deeper dive 6
2.1. Networking . 6

2.1.1. Port publishing . 8
2.2. Volumes mounting . 8

2.2.1. CVMFS . 9
2.3. Dockerfile . 9

2.3.1. Cern Root example . 9
2.4. Registry . 11

3. Monitoring containers 12
3.1. Collecting stats - cAdvisor . 12
3.2. Processing stats - Logstash . 14
3.3. Saving stats - ElasticSearch . 14
3.4. Showing stats - Kibana . 15

4. Conclusion 16

5. Acknowledgements 16

Appendix A. Monitoring condor processes 17

Appendix B. Setting up Logstash container 19

2

1. Introduction

Reader might ask herself/himself if this project will be about dockers and containers in
harbours, ships, how to put containers on them, etc. So I would like to cheer you up
(or disappoint) from the start by saying it won’t be. Our subject is far from any ships,
containers or any metal in general. Here we will talk about software containers and how
they can make someone’s life easier (maybe). Or at least less painful. Our main goal
will be a bit farther from that point though, as we will try to see how containers can
help us in monitoring processes.
As one could suspect, naming software containers as containers is not just a coincidence,
but indeed, a matter of convenience. Because they do exactly what one would say: they
contain software in a closed package, which you can very easily ’ship’ - using software
called Docker. As with containers in ’real life’, one can ship more goods, or in our
case applications, more quickly and easily. (There are also other software solutions for
containers besides Docker, for example Singularity, with some differences, advantages
and disadvantages, but here our main focus will be on Docker.)

1.1. Container v.s. VM

Both containers and virtual machines serve the purpose of isolating processes, resources,
network. Because most of the readers probably had some experience, or at least heard
of virtual machines, the best way to explain what containers are, is to see what differs
them from VM’s.

Hardware

Host	OS

Hypervisor

Guest	
OS

Guest	
OS

Guest	
OS

Libs	A Libs	B Libs	B

App	X App	Y App	Z

Hardware

Host	OS

Container	Engine

Libs	A Libs	B

App	X App	Y App	Z

VM	1 VM	2 VM	3

Cont 1 Cont 2 Cont 3

Figure 1: Structural difference of processes (apps) running inside of containers and VM’s
on a single host.

3

Fig. 1 shows an example for the difference in structure between three processes running
on the host in virtual machines and in containers. We demand separation of those
processes. Two main differences are the following: first, apps inside of containers are
running directly on the host OS with help of a Container Engine, where in the case
of VM’s, apps are running inside of guest OS ran by Hypervisor - therefore, each app
requires whole OS just for itself. (It has to be mentioned though, that apps inside of a
container are constrained by the kernel version of the host OS.) Second difference is that
with containers, apps can share libraries, which is essential for the storage efficiency of
containers.
Before starting our first container, let’s briefly explain how Container Engine creates a
container from image.

1.2. Docker image structure

To run a process inside of virtual machine, you need to install Guest OS inside of it,
and then install all libraries you need to run processes in it. Similarly for containers,
you need a base image. Most commonly that is stripped-down version of some operating
system, for example Ubuntu, Centos, Debian. Based on this images, you can build your
own, with all libraries installed and services properly configured. Later, we will take a
look how to properly create our own image from base one, in particular we will build an
image which by default runs Cern Root software and is based on CentOS 7 image.
For now, I would just like to describe how an image looks like, and what happens when
Container Engine starts a container from that image.

Base	Image	/	Layer

Series	of	layers	added	when	creating	
your	image	on	top	of	Base	Image	.		

.		
.

read	only

read	only

Layer	added	by	Container	Engine
read	/	write

Figure 2: Scheme of image layers.

Fig. 2 shows structure of a container after Engine has started it. It differs from an
image just in top read/write layer. Docker is controlling all layers of a container with
special type of file system called Union File System. Details of how it woks can be found

4

here. What is worth mentioning is that this feature gives to Docker containers storage
efficiency. If you would like to start a new container from the same image, just one new
read/write layer would be created, nothing more.
Besides mentioned UnionFS, there are few more underlying technologies, which give
to containers an isolation from the rest of the host OS, or more precisely they create
container with it’s content and state inside of host OS.

1.2.1. Namespaces

Docker uses namespaces to provide the isolated workspace - container. When you run
a container, Docker creates a set of namespaces for that container.
These namespaces provide a layer of isolation. Each aspect of a container runs in a
separate namespace and its access is limited to that namespace. Docker Engine uses
namespaces such as the following:

• pid namespace: Process isolation (PID: Process ID).

• net namespace: Managing network interfaces (NET: Networking).

• ipc namespace: Managing access to IPC resources (IPC: InterProcess Commu-
nication).

• mnt namespace: Managing filesystem mount points (MNT: Mount).

1.2.2. Control groups

Docker Engine on Linux also relies on control groups (cgroups). A cgroup limits an
application to a specific set of resources. Control groups allow Docker Engine to share
available hardware resources to containers and optionally enforce limits and constraints.
For example, you can limit the memory available to a specific container, CPU share,
and so on.
Usage of cgroups is important for monitoring containers, because it gives live data
about resources for every process on the host OS, and therefore also for each container.

1.3. My first container

Let us finally try to start our first container. After installing Docker, just run in terminal:

docker run -it centos /bin/bash

With this command what happend is the following. Docker daemon (dockerd) received
command from terminal for starting container based on centos:latest image (this is
default behaviour, otherwise you could specify version of centos). It looked if the image
exists in local files, if not, it pulled it from the Docker Hub [4] and started /bin/bash

5

https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/
https://docs.docker.com/engine/installation/

process inside of container, interactively (-it part of a command). So you have found
yourself inside of a container, where you can run bash commands. Instead of bash you
could also run any other process, or more of them.
dockerd is controlling all Docker operations. From processing user’s requests, making
and holding containers, monitoring them, pulling images from registries. Docker Hub
is official Docker registry where anyone can publicly store his/her own images, or pull
other’s. But if you wish to, you can easily set up and run your own registry, for storing
personal images. More about this topic will be covered later.

2. Docker containers - deeper dive

Now we will take a look into details of Docker containers, how to connect them, how to
store and save data from them, how to build images, etc.
For the beginning let’s take a look as an example of how isolation works in container for
the pid namespace isolation. For this purpose we will use pstree command on the host
OS and inside of a container, which shows all processes visible in parent-child format. I
have started container and in it few sleep processes. The following is the output of the
command on the two, respectively.

systemd-+-cron

|-dbus-daemon

|-dhclient

|-dockerd-+-docker-containe-+-docker-containe-+-bash---5*[sleep]

| | | ` -8*[{docker-containe}]

| | ` -8*[{docker-containe}]

| ` -9*[{dockerd}]

|-login---zsh---pstree

|

...

bash-+-pstree

` -5*[sleep]

As we can clearly see, processes inside of a container are isolated. But if we for some
reason need to change this behaviour and break pid namespace isolation, we can easily
do that by passing --pid=host flag when starting (running) a container. Then, the
previous command gives the same output. What’s also visible from the previos output
is that dockerd sits as a parent of all container processes.

2.1. Networking

Docker by default gives us a lot of functionality when comes to networking inside of
containers. When you are creating a container, you can add it to a network. To see

6

(list) all currently available networks just run docker network ls. By default there are
three of them: bridge, host and none. It should be an easy guess that host network
represents host OS network, corresponding to the network card usually named eth0.
Similar guess works for the none network also. When one installs Docker, new network
device is added, docker0 (you can inspect that by running ip addr or ifconfig in your
terminal), which corresponds to bridge network listed before. This is a default network
to which every container is connected if you do not specify another one explicitly. Also,
dockerd creates new network device for every container which you run.

So let’s finally see how would you connect two containers so that you can communicate
between them. There are two possible ways. The first one is following.

docker run -it --detach=true --name=cont1 some_image

docker run -it --detach=true --name=cont2 --link=cont1 some_image

We have two containers named cont1/2 running in detached mode. Because we didn’t
specify the network, they are both connected to the default one. That means that,
with any further settings, containers are basically connected, because they are part of
the same network, with local IP addresses. That means if we find out IP addr of each
container we could communicate between them. One can do that very easily, just by
running docker network inspect bridge - to see all containers connected to bridge

network and their info, or one can run docker inspect cont1 - to see all info about
particular container.
But that sounds, and indeed it is very tedious. So there is where --link=cont1 part
comes into play. Basically it just maps cont1 IP address with it’s name, so one could
run ping cont1 inside of cont2 and it should work properly.

There is more elaborate way of connecting containers, and that is by using user-defined
networks inside Docker. Let’s create one network.

docker network create --driver=bridge my_network

Now if we list all networks, we will see the new one on the list with it’s name and defined
driver. And also if we list all network devices available on our system we will see one
more. (There are more types of networks in Docker besides bridge, they are used in
more complicated setups with more hosts, but the basic principles are the same)
Let’s add some containers to our network.

-d <=> --detach=true

docker run -itd --network=my_network --name=cont1 some_image

docker run -itd --network=my_network --name=cont2 some_image

7

What is really nice with containers connected to the same user-defined network is they
are all discoverable by their names inside of other containers. That is possible because
dockerd runs DNS (Domain Name System) server for every user-defined network.

It should be noted that containers can communicate with outside world, just as your host
machine, but one could easily disable it so that the whole world visible to a container
would be just the network to which it is connected.

2.1.1. Port publishing

If we have a container connected to some user-defined network and we wish that someone
from the outside can reach that container, then we would use port publishing. E.g.,
nginx is a web server which by default runs simple web page on port 80. There is a
Docker image for it, so we can run it inside of container.

docker run -d --name=nginx --network=my_network --publish=8888:80 nginx

Now, we can type in our browser localhost:8888, and should see default nginx mes-
sage, which means that port 8888 on the host is forwarded to port 80 in container.

2.2. Volumes mounting

When we start a new container, read/write layer is created on the top of an image.
When we remove it, the whole layer is removed and no data is saved. That is totally
fine if we run some processes inside of it, so we don’t care about data inside of it. But
if we want to save data produced by some process inside of a container, or if we need
some data for running the process in the first place (let’s say some script or code), then
what we could do is mount a path from our host to some path inside of a container.

docker run -d --volume=/path/to/docs:/some/path/to/docs some_image

This way, everything we write in /path/to/docs on the host will be visible inside of a
container at /some/path/to/docs and vice versa.
If I don’t care about the path on my host where container stores data, but I just care
it’s somewhere, I could leave dockerd do it for me and just run:

you can omit the first command, since volume is created if there is none

docker volume create --name=some_volume

docker run -d --volume=some_volume:/some/path/to/docs some_image

In most cases, you don’t care about where is your data exactly - as long as you know
it’s on some isolated location and that you can access it if you want to. What you get

8

in return with this approach is portability, because you don’t have hard-coded paths
mounted inside of a container.1

2.2.1. CVMFS

CernVM File System [2]is used by majority of particle physicists and others around the
World, and the question is can you use it inside of a container. Because it’s much more
complex than some folder on your PC, it has to be mounted properly.

docker run --volume=/cvmfs:/some/path/to/cvmfs:shared some_image

2.3. Dockerfile

Until now we talked about how to use an image. In this section we will see how to build
one, and in the next one how to save it on some remote location.
How one could basically create his own image is just by starting, let’s say CentOS
7 container, installing all libraries he needs, exit container and run docker commit

container id, docker tag --tag=some image name image id. And there you have
it, your very own image would be ready. But then if one would neet to make some small
change: install new version of package, update to CentOS 8, or something similar, odds
are he would need to do all steps by himself from the beginning.
That’s way Dockerfile comes into play. Basically what you do is put all configuration
commands into a file and run

docker build --tag image_name .

2.3.1. Cern Root example

For my own exercise I’ve created Dockerfile with which you can build image for Cern
Root software.

1 #Dockerfile for cern-root

2

3 #number of commands equals number of image layers, therefore it's good to

4 #combine some of them into one

5

1 In some earlier versions of Docker, there was no option for creating named volumes, and therefore
you would use data-only containers, where you would create container with volumes and then mount
them all inside desired container. With an option to create named volumes, this practice becomes
obsolete.

9

http://cernvm.cern.ch/portal/filesystem

6 #base image centos:latest

7 FROM centos

8

9 #downloading root and installing dependencies

10 RUN cd /opt \

11 && curl -O \

12 https://root.cern.ch/download/root_v6.10.02.Linux-centos7-x86_64-gcc4.8.tar.gz \

13 && tar -xzf root_v6.10.02.Linux-centos7-x86_64-gcc4.8.tar.gz \

14 && rm root_v6.10.02.Linux-centos7-x86_64-gcc4.8.tar.gz \

15 && yum install -y make gcc-c++ gcc binutils \

16 libX11-devel libXpm-devel libXft-devel libXext-devel \

17 && yum clean all

18

19 #installing aditional packages

20 RUN yum install -y gcc-gfortran openssl-devel pcre-devel \

21 mesa-libGL-devel mesa-libGLU-devel glew-devel ftgl-devel mysql-devel \

22 fftw-devel cfitsio-devel graphviz-devel \

23 avahi-compat-libdns_sd-devel libldap-dev python-devel \

24 libxml2-devel gsl-static \

25 && yum clean all

26

27 #setting up user and ownerships for some folders

28 ENV HOME /home/cern-root-user

29 RUN useradd --create-home --home-dir $HOME cern-root-user \

30 && chown -R cern-root-user:cern-root-user $HOME \

31 && mkdir /data \

32 && chown -R cern-root-user:cern-root-user /data

33

34 #working directory

35 WORKDIR /data

36 #defining user

37 USER cern-root-user

38 #adding post-install script to the .bashrc which defines all variables for

39 #cern-root, and then adding command which runs actual root

40 RUN echo "source /opt/root/bin/thisroot.sh" >> $HOME/.bashrc \

41 && echo "root" >> $HOME/.bashrc

As it says in comment (3 − 4) number of commands equals number of layers in final
image. With “FROM” we define base image. The following “RUN” commands are just
what we would write in terminal when installing Cern Root. Part (27− 32) defines user
and gives proper privileges to it for some folders. For security reasons, one should always
run processes in a container as a user, ie. not root (if not necessary).
We can now build this image as:

docker build -tag=cern-root .

Additionally, if we want to have display output from the container, we should pass

10

DISPLAY variable and mount .X11 folder. What would also be nice, is to have some data
or code inside of a container for analysis with root. We can therefore run container such
way that folder in which we are currently in, is mounted on /data inside of a container.
All together, we would run our container from cern-root image as following.

docker run -it \

--rm \

--volume=/tmp/.X11-unix:/tmp/.X11-unix \

--env=DISPLAY=unix$DISPLAY \

--name=root<F3>

--volume=$PWD:/data \

cern_root

2.4. Registry

In this section we will take a look how to setup basic, unsecure registry where you can
push your images. Unsecure, because anyone with an access to IP address of the machine
on which it is running will be able to push and pull from it. For more advanced setup
with https support take a look here.

Setting up basic registry is very easy once you have host which you can discover either
by IP address or domain name. There is already an image on Docker Hub, you just have
to start a container.

docker run \

--detach=true \

--publish=5000:5000 \

--restart=always \

--name=registry \

--volume=registry:/var/lib/registry \

registry:2

Flag --restart=always instructs dockerd to restart container in all circumstances.
Now if you want to push images from you PC to that registry, just put the following
into /etc/docker/daemon.json:

{

"insecure-registries" : ["address_of_registry:5000"]

}

where adress of registry is IP address, or domain name of registry host. To push
some image:

11

https://docs.docker.com/registry/deploying/

docker tag some_image address_of_registry:5000/username/some_image

docker push address_of_registry:5000/username/some_image

3. Monitoring containers

We have finally covered all needed for our main goal, to monitor containers or processes in
them. Comparing process running on the host and the one running inside of a container,
besides the advantage of being isolated, process in a container is much easier to monitor.
Furthermore, because every container has dedicated network device, you can record how
much data your process is pulling or uploading to the network, which is something you
cannot record or constrain for normal process.
If you want to monitor a process on your machine, you would use cgroups, and the same
thing you use for containers. Our goal here is not constraining containers by how much
CPU or memory should they use, but just to capture how much of the resources they
are using at the moment, saving those stats somewhere for later processing and showing
some graphical output of it.

For monitoring we will use a set of tools, which all can be run inside of a container,
so we will have completely containerized environment. In next sections we will in short
introduce those tools and at the end combine them into one compact environment which
you can run on each host to collect data for all containers running on it.

3.1. Collecting stats - cAdvisor

There are few possible ways to collect stats about containers running on a host. You
could use built-in docker stats command or similar tools from Docker, or you could
use some other tool. But at the end it all eventually come down to reading cgroups and
somehow combining that data.
Therefore we won’t reinvent the wheel but will use a tool called cAdvisor . What’s even
more, you can run it as a container, and the metrics it collects are not constrained just
to docker containers, but to all processes in cgroups. It collects live data which you can
see on web interface. An example of CPU usage for one container is shown in Fig. 3. But
we are not particulary interested in web interface, we want to use cAdvisor to collect
data, process it and then send it in some database, from where we can pull it and display
it as we wish. When starting cAdvisor container, one needs to mount some of the host’s
folders so it can access data it needs.

docker run \

--volume=/:/rootfs:ro \

--volume=/var/run:/var/run:rw \

12

https://github.com/google/cadvisor

Figure 3: CPU usage for container in cAdvisor’s web interface.

--volume=/sys:/sys:ro \

--volume=/var/lib/docker/:/var/lib/docker:ro \

--volume=/dev/disk/:/dev/disk:ro \

--publish=8080:8080 \

--detach=true \

--name=cadvisor \

google/cadvisor:latest

All statistics visible on Fig. 3 together with the ones for memory, network, etc., are
available on cAdvisor’s web API in form of .json file. For example if we would want to
get stats for all Docker containers currently running on the host, we could type:

13

curl -XGET 'localhost:8080/api/v1.3/docker'

supposing cAdvisor is running on localhost:8080. v1.3 is API version. The same in
Python would be:

import requests

import json

stats = requests.get('http://localhost:8080/api/v1.3/docker').json()

In Appendix A you can find script which prints out stats about all condor processes
running on a machine. What is condor exactly is not important at the moment, all you
need to know is that it can start any process (also any Docker container) on the machine
in a condor cgroup, and from all processes running on the host I pick just ones started
by condor.

3.2. Processing stats - Logstash

With script in Appendix A, we extracted stats about processes of our interest in form
of .json ’blob’, now we would like to send this data to some database. We could send
data directly from python script to adress where we have our database running, but
the better way is to use Logstash. Logstash in general can be used to filter data first,
and then sending it to database, but here, we will use it just as a mediator. Reason for
this is ease of use, portability and scalability. We will set up logstash container with all
Python scripts already in it, so all you will need to do is start a container and it would
have already collected some stats and sent it to desired database location.
What’s even more, with Logstash container, it is very easy to add some additional
data. For that, we would mount host system inside of a container, for example as
--volume=/:/rootfs. Therefore with additional effort one could extract data not visible
at cAdvisor. For it, it’s often necessary to break pid isolation.
Dockerfile and logstash settings can be seen in Appendix B.

3.3. Saving stats - ElasticSearch

The database we use is ElasticSearch [5]. It works very well with Logstash, it is NoSQL

(no sequel) type of database, which means you can save data of different structures,
and it does data selection on your request very well. To start ElasticSearch instance as
Docker container you could run:

14

docker run \

--detach=true \

--volume=elasticsearch/data:/usr/lib/elasticsearch/data \

--volume=elasticsearch/logs:/usr/lib/elasticsearch/logs \

--publish=9200:9200 \

--publish=9300:9300 \

--name=elasticsearch \

elasticsearch:1.7.0

Now you just have to write IP address where your ES is running in logstash.conf from
Appendix B and you are ready to go.
All data saved on it is available on web interface, where you can also check if Elastic-
Search instance is running properly by visiting: elasticsearch:9200/, where elasticsearch
is IP address of it.

3.4. Showing stats - Kibana

Now, at the end, collecting data from containers and other processes works and is send
to our ElasticSearch instance. We would like to see it in some nicer format, with some
graphs of CPU usage and so on. For it we can use Kibana. Basically it’s graphical
interface which can send queries to ElasticSearch, receive data from it, process it and
display it in nice format.
Running Kibana is pretty straightforward, just start container:

docker run \

--restart=always \

--detach=true \

--name=kibana \

--env=ELASTICSEARCH_URL=http://elasticsearch:9200 \

--publish=5601:5601 \

kibana:4.1.1

where again elasticsearch is IP address or domain name of ElasticSearch instance,
and Kibana is running on port 5601.
On Fig. 4 there is a basic Kibana setup with graph about amount of data sent to
ElasticSearch in last 12h. At the bottom you can see beginning of a .json ’blob’ from
last event.

15

Figure 4: Screenshot of Kibana interface.

4. Conclusion

Containers in the world exist for a long time, but with Docker (or Singularity) they
became accessible to everyone as fast and convenient solution for process isolation. One
could use that for fast application deployment, or in our case for monitoring.
We have built containerized environment for collecting process statistics which can be
run everywhere. For complex systems like batch system here at DESY, you could think
of building it completely based on containers. However it’s not clear if that is reasonable
or possible at the moment. What should be a better way for building such systems is
something for the future, incorporating containers at the moment sound as a promising
idea.

5. Acknowledgements

I would like to give special thanks to my supervisor Thomas Hartmann, for supporting
me throughout this summer project which gave me a deeper insight into batch systems
and process monitoring, and for all patient explanations and discussions we had.

I would also like to thank Christian Voß for introducing me to Docker and for building
VM’s for me. Many thanks to Michael Schuh for showing me how to configure registry.

16

Appendix A Monitoring condor processes

Following is a Python script for pulling stats from cAdvisor about all processes on the
host started by condor. Prerequisite is to have cAdvisor running on cadvisor:8080.

1 import requests

2 import json

3 import datetime

4

5 import condor_job_statistics

6

7 def timestamp_to_time(timestamp):

8 date, microseconds = timestamp.split('.')

9 timestamp_time = datetime.datetime.strptime(date, "%Y-%m-%dT%H:%M:%S")

10 timestamp_time += datetime.timedelta(seconds = int(microseconds[0] > '4'))

11 return timestamp_time

12

13 def datetime_diff(t1, t2):

14 delta = (t1 - t2).total_seconds()

15 if delta < 0.:

16 return -delta

17 else:

18 return delta

19 return False

20

21 def find_closest_time_index(timestamps, time):

22 min_time = datetime_diff(time, timestamp_to_time(timestamps[0]))

23 c_t_i = 0

24 for i in range(1, len(timestamps) - 1):

25 temp = datetime_diff(time, timestamp_to_time(timestamps[i]))

26 if temp < min_time:

27 min_time = temp

28 c_t_i = i

29 return c_t_i

30

31

32 try:

33 condor_data = requests.get(

34 'http://cadvisor:8080/api/v1.3/containers/system.slice/condor.service').json()

35 except:

36 condor_data = requests.get(

37 'http://cadvisor:8080/api/v1.3/containers/htcondor').json()

38

39

40 try:

41 subcontainers = condor_data['subcontainers']

42 except:

43 quit()

44

45

17

46 for subcontainer in subcontainers:

47 all_process_data = requests.get(

48 'http://cadvisor:8080/api/v1.3/containers' + subcontainer['name']).json()

49

50 time = datetime.datetime.utcnow() - datetime.timedelta(seconds = 30)

51 timestamps = [i['timestamp'] for i in all_process_data['stats']]

52 closest_time_index = find_closest_time_index(timestamps, time)

53

54 process = {}

55 process['name'] = all_process_data['name']

56 process['spec'] = all_process_data['spec']

57 process['stats'] = all_process_data['stats'][closest_time_index]

58

59 #adding aditional data

60 additional_process_data = condor_job_statistics.getCgroupStats(process['name'])

61 process['process_info'] = json.loads(json.dumps(additional_process_data))

62

63 print json.dumps(process)

18

Appendix B Setting up Logstash container

1 # Dockerfile

2 FROM docker.elastic.co/logstash/logstash:5.5.2

3

4 USER root

5 RUN yum install -y python-requests && yum clean all

6 USER logstash

7

8 RUN mkdir /usr/share/logstash/documents

9 ADD condor_job_statistics.py /usr/share/logstash/documents/

10 ADD condor_services_logstash.py /usr/share/logstash/documents/

11

12 ADD logstash.conf /usr/share/logstash/pipeline/logstash.conf

Notice that we have to have all files in the same directory as Dockerfile so to be able
to copy them (with ADD command) to container.

1 #logstash.conf

2

3 input {

4 exec {

5 command => "/usr/share/logstash/documents/condor_services_logstash.py"

6 interval => 300

7 codec => json_lines

8 type => "condor_job_monitoring_info"

9 }

10 }

11 filter {

12 if [type] == "condor_job_monitoring_info" {

13 json {

14 source => "message"

15 }

16 date {

17 match => ["timestamp" , "YYYY-MM-dd HH:mm:ss"]

18 timezone => "CET"

19 }

20 }

21 }

22 output {

23 elasticsearch {

24 hosts => ["elasticsearch:9620"]

25 index => "stats-%{type}-%{+YYYY.MM.dd}"

26 }

27 }

From this .conf file we can easily see structure of Logstash process as input -> filter

-> output.

19

References

[1] Using Docker: Developing and Deploying Software with Docker, Adrian Mouat,
O’Reilly Media Inc., 2016.

[2] CernVM File System

[3] Docker Documentation

[4] Docker Hub

[5] ElasticSearch

20

https://cvmfs.readthedocs.io/en/stable/
https://docs.docker.com
https://hub.docker.com
https://www.elastic.co/products/elasticsearch

	Introduction
	Container v.s. VM
	Docker image structure
	Namespaces
	Control groups

	My first container

	Docker containers - deeper dive
	Networking
	Port publishing

	Volumes mounting
	CVMFS

	Dockerfile
	Cern Root example

	Registry

	Monitoring containers
	Collecting stats - cAdvisor
	Processing stats - Logstash
	Saving stats - ElasticSearch
	Showing stats - Kibana

	Conclusion
	Acknowledgements
	Appendix Monitoring condor processes
	Appendix Setting up Logstash container

