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Abstract

The Belle experiment was designed to allow for precise measurements of B mesons
decays. This document presents the steps needed to train a machine to find the
rare decay B0 → K∗(892)0e+e− and suppress the background on Monte Carlo (MC)
simulated data. The background suppression strategy, based on classifiers and mul-
tivariate statistics, is tested and cross-validated by the extraction of the branching
ratios B(B0 → J/ψK∗(892)0) and B(B0 → ψ(2S)K∗(892)0) on two MC data sets.
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1 Introduction

The Belle experiment was designed to allow for precise measurements of B mesons decays.

It was located along the assymetric-energy e+e− collider KEKB in Tsukuba, Japan, and

acquired data from 1999 to 2010. The KEKB was able to produce B+B− and B0B0 pairs

by operating at the Υ (4S) resonance energy. This experiment can be used to test very

finely the predictions of the Standard Model of particle physics (SM) and look for new

physics. For example, deviations in the branching ratios of rare B mesons decays could

be interpreted as new particles contributing to the Feynman diagrams.

This document presents the steps needed to train a machine to find the rare decay

B0 → K∗(892)0e+e− and suppress the background on Monte-Carlo (MC) simulated data.

In the first part, the Belle experiment is very briefly described as well as the decay B0 →
K∗(892)0e+e−. In the second part, one builds and tests a background suppression strategy

based on classifiers and multivariate statistics. Finally, the procedure is cross-validated by

an extraction of the branching ratios B(B0 → J/ψK∗(892)0) and B(B0 → ψ(2S)K∗(892)0)

on two MC data sets.

2 The Belle detector and the rare decay B0 → K∗(892)0e+e−

As stated above, the KEKB collider produces B mesons pairs by operating at the Υ (4S)

resonance energy. It collides 8.0 GeV e− and 3.5 GeV e+ to reach the resonance:

MΥ (4S) = (10.5794± 0.0012) GeV ≈
√
s = 2

√
8 · 3.5 GeV, (1)

where
√
s is the total center-of-mass energy. Then, Υ (4S) decays into B mesons pairs

with a probability > 96% [3]. The daughter particles are detected by the Belle detector.

Figure 1 shows a schematic view of the detector and table 1 lists its main components.

The details of its working principles go beyond the framework of this report.

Detector component Main purpose

Silicon Vertex Detector (SVD) tracking, vertex locator
Central Drift Chamber (CDC) tracking, momentum and energy loss measurement
Time Of Flight counter (TOF) velocity measurement
Aerogel Cherenkov Counter (ACC) velocity measurement
Thallium doped Cesium Iodine (CsI) energy measurement
Extreme Forward Calorimeter (EFC) energy measurement
K0
L and µ detection system (KLM) particle identification

Table 1: Summary of the main components of the Belle detector. The combination of the
outputs allows for Particle IDentification (PID).

This analysis aims to find the rare decay B0 → K∗(892)0e+e−, whose branching ratio

is
(
1.03+0.19

−0.17

)
× 10−6 [3]. This very low value reflects the fact that the SM does not allow

this decay on tree-level. Indeed, the Z0 boson does not couple different generations of

quarks: figure 2. The lowest order Feynman diagrams for this decay are either penguin
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Figure 1: The Belle detector. [4]

diagrams (figure 3) or box diagrams. As a consequence, new particles would enhance or

suppress this decay with a relatively large contribution.

b s

d d

e+

e−

Z0

B0 K∗(892)0

Figure 2: Feynman diagram forbidden by the Standard Model.

3 Background suppression with classifiers

In this section, one develops a background suppression strategy based on classifiers. One

uses the scikit-learn python library, which provides several classifiers. The physical back-

ground is simulated by the Belle generic MC. Its different components are summarised in

table 2.
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Figure 3: Feynman diagram allowed by the Standard Model.

Name Description

uds continuum e+e− → uu, dd, ss
charm continuum e+e− → cc

mixed Υ (4S) → B0B0, with generic B0 decay
charged Υ (4S) → B+B−, with generic B+ decay

Table 2: Description of the events generated by the Belle generic MC. [1]

3.1 Preliminary cuts for particle and event selection

The first stage of the reconstruction is made by the detector itself. By cutting on the

particle identification system (PID) outputs it is possible to select the following daughter

particles: e±, µ±, π±, K±, K0
S , π0 and γ (see [1] for more details). The next step is

to make an event selection. Figure 4 compares the signal and background normalised

distributions of the dilepton invariant mass Me+e− . Three sharp peaks can be observed

in the background distribution. The first one comes from γ → e+e−, π0 → e+e− γ and

non-physical low energy events. The other two peaks correspond to the J/ψ → e+e− and

Υ (2S) → e+e− decays respectively. In order to suppress these sources of background,

three preliminary cuts, summarised in table 3, are applied.

Backgroud source Selection

B0 → K(∗)0(J/ψ → e+e−) −0.45 < Me+e−(γ) −MJ/ψ < +0.08 GeV/c2

B0 → K(∗)0(Υ (2S) → e+e−) −0.20 < Me+e−(γ) −MΥ (2S) < +0.08 GeV/c2

γ → e+e− and π0 → e+e− γ Me+e− > +0.14 GeV/c2

Table 3: Background sources and corresponding selections. The values for MJ/ψ and
MΥ (2S) are given by the PDG [3].

On top of that, two other cuts are applied on two variables defined in the Υ (4S) rest

frame: the energy difference ∆E and the beam constrained mass Mbc defined by

Mbc =
√
E2

beam − p2B (2)

and

∆E = EB − Ebeam (3)
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Figure 4: Dilepton invariant mass Me+e− normalised distributions. The different sources
of background are defined in table 2.

where Ebeam is the beam energy, EB the B meson energy and pB the B meson momentum,

all of them defined in the Υ (4S) rest frame. Preliminary cuts on these two variables are

given in table 4.

Variable Selection

Mbc 5.22 < Mbc < 5.89 GeV/c2

∆E −0.15 < ∆E < +0.15 GeV/c2

Table 4: Beam constrained variables and corresponding cuts.

3.2 Training variables

A variable is chosen to train the classifier if its distribution allows for a good distinction

between signal and background. Figure 5 displays two such variables: ∆E, already defined

above, and R2, which will be introduced in section 3.2.2. Another point needed to be

considered is the possible correlations between the training variables and Mbc.

If one or several training variables are correlated to Mbc, the classifier may learn in

which region of Mbc the signal is located and may cause a peak in the Mbc background

Variable Description

Ptot Total momentum of the B0 candidate
cos θB Cosine of the angle θB between the B0 candidate and the beam
cos θL Cosine of the angle θL between the direction of e− and the direction of

the e+e− system in the B0 candidate rest frame

Table 5: Description of a set of variables causing an artificial background peaking.
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Figure 5: Comparison between signal and background normalised distributions. The
different sources of background are defined in table 2.
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Figure 6: Mbc background distribution for 3 cuts based on the outputs (predictions) of a
Gradient Boosted Decision Tree trained with a variable correlated to Mbc.

distribution. Figure 6 shows this effect with a Gradient Boosted Decision Tree (GBDT)

trained on the variables Ptot, cos θB and cos θL defined in table 5. As the cut on the

classifier output goes close to 1, the background exhibits a peak around the B0 mass.

Here, the most problematic training variable is Ptot, because it is strongly correlated to

Mbc, as expected from the energy-momentum relation E2 = p2c2 +m2c4.

There are two families of training variables depending on which source of background

is considered (see again table 2).

3.2.1 Non continuum suppression

In total, 10 variables are used for the non continuum background suppression. They are

listed in table 6. Figure 7 shows that there is no linear correlation between these variables

and Mbc. Higher order correlations could exist, but the results indicate that, if any, it

does not cause background peaking.
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Variable Description

∆E Energy difference defined in equation (3)
cos θB Cosine of the angle θB between the B0 candidate and the beam
Ch0 m K∗(892)0 mass
FT LL Result of a Neural Network flavor tagging, see [1]
FT NN Result of a Maximum Likelihood flavor tagging, see [1]
χ2 χ2 of the vertex fit of the candidate
∆zll Distance between the two leptons in the beam direction
Kp lm invMass Invariant mass of K+`−

mom dir dev Momentum direction deviation
dist to IP Distance to the interaction point

Table 6: Description of the training variables used for the non continuum background
suppression.
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Figure 7: Linear correlation coefficients among the non continuum suppression variables
and Mbc.

3.2.2 Continuum suppression

The continuum suppression variables look at the angular shape of the events, because the

light quarks pairs coming from the anihilation of an electron and positron form back to

back jet-like structures. For this purpose, one introduces the Fox-Wolfram moments Hk

[5] and the ratio Rk:

Hk =

N∑
i,j=1

|~pi||~pj |Pk(cos θij)

E2
visible

(4)

and

Rk =
Hk

H0
, (5)

where one sums over all the particles in the considered event. Evisible is the total visible

energy of the event, pi the momentum of the ith particle, Pk the kth Legendre polynomial

and θij the angle between the ith and the j th particle. One constructs also Super Fox-

Wolfram moments [6] and Cleo Cones variables [7].

In total, 30 continuum suppression variables are selected for the training. Again, figure
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8 shows that there is no linear correlation between these variables and Mbc.
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Figure 8: Linear correlation coefficients among the continuum suppression variables and
Mbc.

3.3 Training and testing
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Figure 9: Signal and background separation obtained by applying a GBDT. The distribu-
tions are normalised.

After having chosen the training variables, the considered classifiers are trained on a

MC data set (the train set) and tested on another data set (the test set) to remain unbi-

ased. Figure 9 displays the signal and background separation obtained from the outputs

(predictions) of a GBDT trained with the continuum and non continuum suppression vari-

ables together. One can see a good separation between signal and background. In this

subsection, one introduces several quantities to evaluate and compare the classifiers.
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3.3.1 Receiver operating characteristics

In order to evaluate the quality of a classification, two quantities are defined: the efficiency

and the purity. They are given by the two following relations:

efficiency =
nT
NT

(6)

and

purity =
nT

nT + nF
, (7)

where nT (nF) is the number of true (false) selected events and NT is the total number of

true events.

When the efficiency and the purity are computed as a function of cuts on the classi-

fier output, one obtains curves called receiver operating characteristics (ROC). Figure 10

displays the ROC curves for 3 classifiers. The area is simply the area under the curve,

while the score is a value returned by the scikit-learn classifiers. These 3 classifiers have

been chosen because of their good scores and their robustness against overfitting, an effect

which may occur if, by example, the maximal depth of a decision tree is chosen too high.

Figure 11 illustrates a typical case of overfitting: the decision tree achieves a perfect sep-

aration between signal and background when applied to the training data set, but shows

poor results on the testing data set. Here, the maximal depth of the decision tree was set

to 2000 (see [9] for details).

0.0 0.2 0.4 0.6 0.8 1.0
Efficiency

0.0

0.2

0.4
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0.8

1.0

Pu
rit

y

Receiver Operating Characteristic (test score)

Gradient_Boosting_Classifier: area=0.979, score=0.914
Neural_Net: area=0.964, score=0.890
AdaBoost: area=0.974, score=0.904

Figure 10: ROC curves for 3 classifiers applied to the test data set.

3.3.2 Figure of merit

Another quantity used to compare the classifiers and choose a right cut on their outputs

is the Figure of Merit (FOM), defined by

FOM =
nsig√

nsig + nbkg

∣∣∣∣
5.27GeV/c2<Mbc<5.29GeV/c2

, (8)
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Figure 11: Comparison between 2 ROC curves obtained by applying a Decision Tree on
the test and on the train data sets respectively.

where nsig (nbkg) is the expected number of signal candidates in the Belle data after the

selection. This expected number of signal candidates is given by

nsig = ε · BPDG(B0 → K∗(892)0e+e−) · 2 ·NBB · B
PDG(Υ (4S)→ B0B0), (9)

where ε is the efficiency, NBB the number of B mesons pairs produced at Belle, which is

(772± 11)× 106 [1], and the BPDG are the PDG values of the branching ratios, given by(
1.03+0.19

−0.17

)
× 10−6 for B0 → K∗(892)0e+e− and (48.6± 0.6)% for Υ (4S) → B0B0 [3].

Figure 12 shows the FOM as a function of cuts on three classifiers outputs. These

curves consist of 200 points uniformly distributed among the outputs of each classifier.

The reason why the Ada Boost curve does not extend to 0 and 1 is that all of its outputs

are close to 0.5.

The cuts providing the highest FOM are listed in table 7. The best FOM is obtained by

combining two GBDT trained on the continuum and non continuum suppression variables

separately. The signal and background distributions obtained after applying these last

cuts are displayed in figure 13. The signal distribution was rescaled such that its area

corresponds to nsig. In particular, one can see that there is no background peaking in the

signal region.

4 Cross-validation by extraction of branching ratios

It is possible to cross-validate the procedure described above by extracting the two branch-

ing ratios B(B0 → J/ψK∗(892)0) and B(B0 → ψ(2S)K∗(892)0) on generic MC data sets.

If everything is correct, one should obtain the Event Generator (EvtGen) parameters

used to simulate these data. To extract these branching ratios, one applies the classifier

in parallel to the signal and the generic MC data sets after a cut on Me+e− which ve-

toes everything outside the considered charmomium peak (see again figure 4). Then, the
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Classifier Classifier output cut(s) FOM efficiency [%] nsig nbkg

Gradient Boosting 0.95 (ncs) & 0.49 (cs) 4.85 3.89 31 10
Gradient Boosting 0.94 4.32 4.90 39 43
Ada Boosting 0.52 4.11 5.40 43 67
Neural Network 0.95 3.04 4.42 35 100

Table 7: Maximum FOM and corresponding cuts, efficiencies and expected numbers of
signal (nsig) and background (nbkg) events. The best result is obtained by training two
GBDT on the continuum suppression (cs) and non continuum suppresion (ncs) variables
separately.
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Figure 12: FOM, defined in equation (8), as a function of cuts based on the outputs of 3
classifiers.

branching ratio is given by

B(B0 → XccK
∗(892)0) =

Nobs

ε · BPDG(Xcc → e+e−) · 2 ·NBB · BPDG(Υ (4S)→ B0B0)
, (10)

where Nobs is the number of generic MC candidates remaining after the selection, Xcc =

J/ψ or ψ(2S), NBB the number of B mesons pairs produced at Belle and ε the recon-

struction efficiency, defined with its uncertainty by the system


ε =

Nrec

Ngen

σε =

√
Nrec(Ngen −Nrec)

N3
gen

,

(11)

where Nrec (Ngen) is the number reconstructed (generated) events. Nobs is extracted after

the selection by fitting the Mbc distribution on the generic MC data set. A Crystall Ball

model [2], depending on three parameters ( m0, σ and α), is used to fit the signal:
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Figure 13: Comparison between signal and background distributions after the cuts pro-
viding the best FOM. The signal distribution was rescaled such that its area corresponds
to nsig defined in equation (9). The different sources of background are defined in table 2.

PCB(Mbc,m0, σ, α, n) =

e−
(Mbc−m0)

2

2σ2 if Mbc > m0 − ασ(
n
α

)n · e−α2

2 ·
(
m0−Mbc

σ + n
α − α

)−n
if Mbc ≤ m0 − ασ.

(12)

The background is fitted with a model introduced by the Argus Collaboration [8] and

depending on two parameters (m0 and α):

PARGUS(Mbc,m0, α) = Mbc ·

√
1−

(
Mbc

m0

)2

· e−α(1−(Mbc/m0)2). (13)

Two generic MC data sets were used. Figure 14 displays the fits and table 8 lists the cor-

responding results. Here, only the statistical errors are taken into account. The branching

ratio B(B0 → J/ψK∗(892)0) measured on the two data sets is in good agreement with the

EvtGen parameter used to simulate these data. In the case of B(B0 → ψ(2S)K∗(892)0),

two values are mentioned in the EvtGen script. One of them is in agreement within the

statistical errors of the measurement; the other value could indicate the presence of a

systematic error.

Xcc = J/ψ [×10−3] Xcc = ψ(2S) [×10−4]

BFirst(B0 → XccK
∗(892)0) 1.31± 0.05 8.3± 0.5

BSecond(B0 → XccK
∗(892)0) 1.36± 0.04 8.0± 0.5

BEvtGen(B0 → XccK
∗(892)0) 1.31 7.2

Table 8: Extracted branching ratios from two generic MC data sets (First and Second)
and comparison with the EvtGen parameters used to simulate the data. In the case of
B(B0 → ψ(2S)K∗(892)0), the value 8.0 is also mentioned in the EvtGen script.
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(b) First data set, Me+e− cut around Mψ(2S),
Mbc is given in GeV/c2.
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(c) Second data set, Me+e− cut around MJ/ψ ,
Mbc is given in GeV/c2.
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(d) Second data set, Me+e− cut around Mψ(2S),
Mbc is given in GeV/c2.

Figure 14: Mbc fits needed to extract B(B0 → J/ψK∗(892)0) and B(B0 → ψ(2S)K∗(892)0)
from MC data sets. The models used to fit the signal and the background are defined in
equations (12) and (13) respectively.
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5 Conclusion and outlook

The Gradient Boosting Classifier was proven robust against overfitting and allowing for a

higher FOM than several other classifiers. The best FOM was obtained by combining two

of them trained on the continuum and non continuum suppression variables separately.

The method was cross-validated by extracting the two branching ratios B(B0 →
J/ψK∗(892)0) and B(B0 → ψ(2S)K∗(892)0) from generic MC data sets. The results

were in agreement with the EvtGen parameters within statistical errors. However, in the

latter case, more tests are necessary to determine which EvtGen value was used to simulate

the data.

In any case, this study should be completed by looking for differences between MC and

real data and other sources of systematic uncertainties. The Belle II experiment, planned

to be started in 2018 and aiming to reach a higher luminosity, will allow for much more

precise measurements.
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