
 

 

 
 

 

 

 

Applicability studies of SASE FEL pulse shape retrieval 

algorithm 

 

 

 

 

 

Bohdana Sobko 

Ivan Franko National University of Lviv, Ukraine 

 

Supervisor: Svitozar Serkez 

European XFEL, Hamburg, Germany 

 

 

 

 

 

Hamburg, September 6, 2017 



 

 

Abstract 

X-ray Free electron lasers (XFELs) provide short radiation pulses with brightness 

significantly higher than that generated in traditional synchrotron radiation sources.  

Aside of generation, it is necessary to measure the duration and preferably the 

shape of the radiation pulse. We are improving a method, based on the connection 

between the time and frequency domains. In this paper, we focus on its applicability 

studies while the method itself will be published elsewhere. 
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1. Introduction 

In an FEL the role of the active laser medium and the energy pump are both 

taken over by the relativistic electron beam. An optical cavity is no longer possible 

for wavelengths below 100 μm, because the reflectivity of metals and other mirror 

coatings drops quickly to zero at normal incidence. Here one has to rely on the 

principle of Self Amplified Spontaneous Emission (SASE) where the laser gain is 

achieved in a single passage of a very long undulator magnet. One big advantage of 

an FEL in comparison with a conventional laser is the free tunability of the 

wavelength by simply changing the electron energy [1]. 

SASE FELs can be described as narrow-band amplifiers of random input signal 

– shot noise in electron beam. In this case the output signal of such devices has 

properties of Gaussian random process: the real and imaginary parts of the slowly 

varying complex electric field amplitude of electric vector of the amplified radiation 

have Gaussian distribution [2].  

The method of retrieval of SASE FEL pulse duration was proposed in [3] and 

studied further in [4]. It works under two assumptions: Gaussian statistics of 

analyzed radiation and quasistationarity. 

Statistics of Gaussian random process strictly specking holds only in the linear 

amplification regime. Therefore, we try to verify up to which point we can apply 

this beyond linear regime. We want to verify the applicability of the relation 

       
    , where    and    are the second and first order normalized 

correlation functions in frequency. We will show that, the applicability is 

surprisingly good also at saturation, though not justified by strict mathematics. 

Quasistationarity is a process in a limited system that spreads within the system 

so quickly that in the time required for it to expand to the limits of the system its 

state does not have time to change. In examining a quasi-stationary process it is 

possible therefore to disregard the time required for it to spread through the system.  

We want to verify lowest number of spikes where this statistics also conserves. 

So will show interesting and surprising result that quasistationarity requirement is 

not necessary for a proper pulse shape retrieval (reducing pulse duration to several 

spikes does not qualitatively change its shape).  

Moreover, we want to study the influence of the spectrometer detector noise. 

 

 

 



2. Theoretical background 

2.1 Wiener-Khinchine theorem. 

“Given a single known time function u(t), which may be one sample function 

of a random process, the time autocorrelation function of u(t) is defined by: 

                                     
   

 

 
             

   

    

 

Closely related, but a property of an entire random process U(t), is the statistical 

autocorrelation function, defined by  

                              

 

  

                   

From a physical point of view, the autocorrelation function measures the structural 

similarity of u(t) and u(t+τ), averaged over all time, whereas the statistical 

autocorrelation function measures statistical similarity of       and       over the 

ensemble. 

For a random process with at least wide-sense stationarity,    is a function only of 

the time difference         . For the more restrictive class of ergodic random 

process, the time autocorrelation functions of all sample functions are equal to the 

statistical autocorrelation function. For ergodic process, therefore, 

             (All sample functions) 

It is thus pointless to distinguish between the two types of autocorrelation function 

for such processes.” [5] 

So, Wiener-Khinchine theorem convince that, for a process that is at least 

wide-sense stationary, the autocorrelation function and power spectral density form 

a Fourier transform pair,   

                      
 

  

 

                     
 

  

 

 

2.2 The Siegert relation 

“The time-dependent autocorrelation function of the fluctuations of the 

scattered field       
             

         
, and the corresponding normalized 



autocorrelation function of the intensity fluctuations       
            

       
   are related 

by the Siegert relation: 

                
  

Where the coefficient β is determined by the detection conditions; For ideal 

detection conditions β = 1 (in particular in the case of using a receiver with an 

aperture much smaller than the characteristic size of the correlation region of spatial 

fluctuations of the scattered field related to the mean speckle size). The Siegert 

relation is satisfied for optical fields with Gaussian statistics and a zero mean value 

of the field amplitude generated by multiply scattered disordered media consisting 

of a large number of non-interacting scatterers.” [6] 

 

2.3 The Gaussian Random Process 

Perhaps the most important continuous random process in systems is the 

Gaussian random process. 

So, we know that the statistics of the Gaussian random process are fulfilled 

under condition linear gain mode. In our case, the averaged spectrum in the time 

domain will look like a rectangle (flattop). Accordingly, the autocorrelation will 

have the form of a triangle. Also we assume that we work in quasistationarity 

requirement. Our task is to check this statistics in case of failure of these two 

conditions. 

 

2.4 Relation between Time and Frequency domains 

The time domain and frequancy domain of the laser radiation are related by the 

Fourier transform: 

                       
 

  
 . 

An average number of maxima in both domains are equal. Moreover,    

       
     and          , where     – average bandwidth of radiation spectrum, 

   – bandwidth of a single spike,   – average duration of the radiation pulse,      - 

duration of a single temporal spike (coherence time). 

 

 

 



2.5 Correlation functions 

The stochastic nature of the SASE FEL radiation allows to introduce a 

radiation parameter, the correlation function of the field of laser radiation.  

The normalized spectral correlation function of the first order is defined as: 

         
                   

                           
 , 

Where           – is the laser radiation field at frequency        and 

          denotes a radiation field squared and averaged over an ensemble. 

The second-order normalized spectral correlation function is defined as: 

         
                        

                          
. 

Since the spectrometer can measure only the squared modulus of electric field in 

frequency domain,              , we can rewrite the expression above as 

         
                  

                    
, 

The inverse Fourier transform of the non-normalized first order spectral 

correlation function                              gives the power 

spectral density in the time domain: 

          
             

 

  
                

 

  

 

We can neglect dependence on ω, since we assume quasistationarity. 

The Fourier transform from the second-order non-normalized spectral 

correlation function 

                                                         , 

according to Wiener-Khinchine theorem, gives: 

                       , 

where symbol * denotes correlation and             . 

The importance of the autocorrelation function is due to two circumstances. 

First, the autocorrelation of the signal can often be measured directly, which 

ultimately gives the opportunity to experimentally determine the spectral density of 

the signal. To find the frequency spectrum of power in digital or analog form, 

perform the Fourier transform of the experimentally measured autocorrelation 

function. 



Secondly, the autocorrelation function often allows analytically to calculate 

the spectral power density for a random process model, which is described only 

statistically. 

We can reconstruct the autocorrelation of the averaged radiation pulse by 

applying Fourier transform to second order correlation function          : 

     
 

  
                 

 

  

 

 

3. Reconstruction results 

3.1 Linear regime and saturation 

We consider the example of a 10μm-long flat-top SASE FEL pulse with 

500eV photon energy. We study the shape of the reconstructed autocorrelation of 

the pulse shape both in the linear regime and saturation. 

  
 

Fig.1 Electron beam (first column) and emitted radiation (second column) parameters as function 

of undulator length: 

a) Undulator parameter K and quadrupole field strength; b) σxy – rms size of electron beam (blue 

and green for horizontal and vertical dimensions correspondingly); c) mean electron energy (blue) 

and energy spread (red and purple for peak and average values)  d) Electron beam bunching (grey  

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 



– peak value, black – average); e) Peak radiation power (green) and pulse energy (black) in 

logarithmic scale; f) The same in linear scale; g) Spectral density of radiation (solid) and spectral 

bandwidth (doted and dashed); h) Cross section of radiation. 

 

Fig. 2 Radiation peak power as a function of an undulator length. The light-grey lines refer 

to single-shot realizations. The darker gray line refers to one typical shot. Black line is the 

average. 

Fig.1, 2 show that the linear mode ends around at a distance of 30 m. 

 

 
 

Fig. 3 Radiation power as a function of beam length. First figure shows radiation power on 

length of undulator at 30 meters (end of linear mode), second - radiation power on length of 

undulator at 70 meters (deep saturation).  



 

   

   
 

 

Fig. 4 The reconstructed autocorrelation of the 10μm flat-top SASE FEL radiation calculated from 

autocorrelation functions with different central frequencies (presented here as photon energies on 

vertical scale). Subplots on the right and the top present radiation spectra and autocorrelation line-

offs for selected central frequencies. Black line represents an average autocorrelation. All lines on 

the top plot are normalized to unity as their peak value. Saturation starts at 40 meters of undulator 

length. 

 

 

Shape of autocorrelation function depends on undulator length and regime. 

Based on these results, one can conclude that the Gaussian random process statistics 

applies both in the linear amplification mode and in the saturation regime, that is, 

the relation                        is valid in both cases. 

 

3.2 Quasistationarity requirement 

Now we want to check impact of the quasistationarity assumption by 

analyzing the signal with duration comparable with coherence time (           ). 

The sample is a signal which has photon energy 500 eV and pulse duration 1 um. 

10m 20m 30m 

40m 50m 60m 



 

Fig. 5 Radiation power as a function of undulator length. The light grey lines represent 500 

independent simulations. The darker gray line shows a single realization. Black line – average 

power. 

The Fig. 5 shows that the linear mode ends approximately at a distance of 30 m. 

 

 

Fig. 6 Radiation power as a function of beam length.  

 

Fig. 7 Shape of the reconstructed autocorrelation function in case of short SASE FEL pulse 

at 30 meters.  



One can see that if only several temporal modes are present in the radiation 

pulse, the calculated autocorrelation function still allows to estimate SASE FEL 

pulse duration.  

 

3.3 Noise Effect  

Now we want to check how the noise of detector affects the reconstruction of 

autocorrelation function. We assume 10μm-long pulse with 500eV photon energy 

obtained in the end of linear amplification regime (30 m). We add Gaussian noise 

with different rms values in terms of an average spectrum peak value. 

1  2  

3  4  

5  6  
 

Fig. 9 Shape of the reconstructed autocorrelation function. We assume 10μm-long pulse with 

500eV photon energy obtained at the end of linear amplification regime (30 m). With noise equal 

to: 

1) without noise 



2) 10% of the averaged spectrum value 

3) 20% of the averaged spectrum value 

4) 50% of the averaged spectrum value 

5) 80% of the averaged spectrum value 

6) 100% of the averaged spectrum value 

 

If the noise does not exceed one tenth of the averaged signal value, the 

autocorrelation function is preserved. But if the noise does exceed a half of the 

average value of the signal, then this case starts to seriously spoil the form of the 

autocorrelation function. 

So we can see that low levels of noise do not affect shape of reconstructed 

autocorrelation. 

 

3.4 Effect of transverse coherence 

FEL radiation has very good transverse coherence and up to now we were analyzing 

on-axis FEL spectra. Since spectrometer would provide spectra of transversely 

averaged radiation, the limited transverse coherence might affect the reconstructed 

pulse shape. Now we want to compare reconstructions based on the on-axis and 

transversely averaged spectra at the end of the linear mode and in saturation. 

We consider the example of a 10μm-long flat-top SASE FEL pulse with 500eV 

photon energy. 

1  2  

3   4  

 

Fig. 10 Shape of the reconstructed autocorrelation function: 



1) based on the on-axis at the end of linear regime (30m); 

2) transversely averaged spectrum at the end of linear regime (30m); 

3) based on the on-axis at the saturation (60m); 

4) transversely averaged spectrum at saturation (60m).  

 

3.5 Linear regime and saturation for Hard X-ray 

We consider the example of a 1um-long flat-top SASE FEL Hard X-ray pulse 

with 8000eV photon energy. We study the shape of the reconstructed 

autocorrelation of the pulse shape both in the linear regime and saturation. 

 

Fig. 11 Radiation power as a function of undulator length. The light grey lines represent 500 

independent simulations. The darker gray line shows a single realization. Black line – average 

power. 

The Fig. 11 shows that the linear mode ends approximately at a distance of 40 m. 
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Fig. 12 The reconstructed autocorrelation of the 1μm flat-top SASE FEL radiation calculated from 

autocorrelation functions with different central frequencies (presented here as photon energies on 

vertical scale). Subplots on the right and the top present radiation spectra and autocorrelation line-

offs for selected central frequencies. Black line represents an average autocorrelation. All lines on 

the top plot are normalized to unity as their peak value. Saturation starts at 40 meters of undulator 

length. 
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Summary and conclusions 

We have shown that regardless of whether we have a linear mode or 

saturation mode Gaussian random process we can reconstruct the autocorrelation of 

the SASE FEL pulse. The reconstruction is also valid for a very short FEL pulses 

with a few modes in them. Spectrometer noise affects the reconstruction but at 

levels below around 10% of an average signal value this effect is negligible.  
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